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Abstract. AI and deep learning are experiencing explosive growth in
almost every domain involving analysis of big data. Deep learning using
Deep Neural Networks (DNNs) has shown great promise for such scientific
data analysis applications. However, traditional CPU-based sequential
computing can no longer meet the requirements of mission-critical appli-
cations, which are compute-intensive and require low latency and high
throughput. Heterogeneous computing (HGC), with CPUs integrated
with accelerators such as GPUs and FPGAs, offers unique capabilities to
accelerate DNNs. Collaborating researchers at SHREC1 at the University
of Florida, NERSC2 at Lawrence Berkeley National Lab, CERN Open-
lab, Dell EMC, and Intel are studying the application of heterogeneous
computing (HGC) to scientific problems using DNN models. This paper
focuses on the use of FPGAs to accelerate the inferencing stage of the
HGC workflow. We present case studies and results in inferencing state-of-
the-art DNN models for scientific data analysis, using Intel distribution of
OpenVINO, running on an Intel Programmable Acceleration Card (PAC)
equipped with an Arria 10 GX FPGA. Using the Intel Deep Learning
Acceleration (DLA) development suite to optimize existing FPGA primi-
tives and develop new ones, we were able accelerate the scientific DNN
models under study with a speedup from 3x to 6x for a single Arria 10
FPGA against a single core (single thread) of a server-class Skylake CPU.

1 Introduction

AI and deep learning are experiencing explosive growth in almost every domain
involving analysis of big data. Deep learning(DL) using Deep Neural Networks
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(DNNs) has shown great promise for such scientific data analysis applications.
However, traditional CPU-based sequential computing without special instruc-
tions can no longer meet the requirements of mission-critical applications, which
are compute-intensive and require low latency and high throughput. Heteroge-
neous computing (HGC), using CPUs integrated with accelerators such as GPUs
and FPGAs, offers unique capabilities to accelerate DNNs. At the University
of Florida site of the NSF Center for Space, High-Performance, and Resilient
Computing (SHREC: www.nsf-shrec.org), we are developing such an HGC sys-
tem to support a complete HGC workflow for deep learning. This project is
a collaborative effort between SHREC and NERSC at Berkeley National Lab,
CERN openlab, Dell EMC, and Intel.

Fig. 1. Heterogeneous computing workflow for machine learning

The concept diagram for the HGC workflow for deep learning is shown in
Figure 1. The HGC workflow consists of three stages:

1. Data Analysis and Pre-processing
2. Model Training
3. Deployment and Inferencing

The Data Analysis and Pre-processing stage converts raw data from an application
of interest into a form that is suitable for model training using any of the
training frameworks. Current pre-processing methods include data cleaning,
data normalization, and data augmentation[13]. In the HGC workflow, the pre-
processed data is used as inputs to the training tools in the Model Training stage.
Currently, popular open-source frameworks for training these models include
TensorFlow[2], Keras[5], Caffe[17], and BigDL[6]. The output of the Training
stage is trained models which are used in inference engines in the Deployment
and Inferencing stage. Some of the common approaches for running inferencing
primarily use Xeon CPU; but recently there has been much interest in using
FPGAs (field programmable gate arrays) for inferencing. This paper will focus
on how we can use Intel Arria 10 FPGAs for inferencing and what is the work
flow behind it.

The remainder of this paper is organized as follows. Section 2 provides a survey
of the recent and the state-of-the-art FPGA deep-learning acceleration tools that
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are available in research and commercially. In Section 3, the experimental setup
is described, including the case-study models used for our study, and how they
are pre-processed and trained in preparation for the Deployment and Inferencing
stage. The three state-of-the-art DNN models used are HEP-CNN, CosmoGAN,
and 3DGAN. HEP-CNN[19,20] is a deep-learning model used by NERSC to
identify new particles produced during collision events at particle accelerators
such as the Large Hadron Collider (LHC). CosmoGAN[22], also under study by
NERSC, is used to generate cosmology weak lensing convergence maps to study
GAN model for science applications. The 3DGAN model [11] is a generative
model under study by CERN openlab to replace the Monte Carlo method for
particle collision simulations. Also in Section 3 is the description of the platform
setup for FPGA-based inferencing. The hardware platform for the inference
engine is the Intel Programmable Acceleration Card (PAC), equipped with an
Arria 10 GX FPGA. The PAC card is installed in a Dell server equipped with an
Intel gold-level Skylake CPU. Intel distribution of OpenVINO toolkit is used to
optimize and deploy the trained models onto the FPGA.

In Section 4, we present and discuss the inference results in our study. First, the
initial findings using the native DLA runtime are described. Next, we described
how we used the Intel Deep Learning Accelerator (DLA) development suite
to optimize existing FPGA primitives in OpenVINO to improve performance
and develop new primitives to enable new capabilities for FPGA inferencing.
For the scientific DNN models under study, we were able to demonstrate a
speedup from 3x to 6x for a single Arria 10 FPGA against a single core (single
thread) of a server-class Skylake CPU. The studies described in this section and a
demonstration of the HGC workflow were submitted to and declared the winner
of the first-ever Dell EMC AI Challenge in 2018[1]. Finally Section 5 will provide
the conclusions of the paper and a discussion of future work.

2 Related Works

Although CPUs and GPUs have been widely used for DNN inferencing, inference
engines accelerated with FPGAs have recently emerged. Recent improvements
in FPGA technologies greatly increased the performance for DNN applications,
e.g., with a reported performance of 9.2 TFLOPS for Intel Stratix 10 FPGA[23].
Furthermore, FPGAs have other advantages important to many mission-critical
applications such as low latency and energy efficiency. As a result, the amount
of research and development on deploying and accelerating DNN models on
FPGAs in recent years has grown, demonstrating great interest in both academia
and industry. While some of the works focused on optimizing datapaths or
computation algorithms for FPGA devices, many also involve developing tools for
DNN model inferencing on FPGA platforms to provide a generalized framework
for developers to build their customized applications.

One notable tool developed in the research community is PipeCNN[25], an
OpenCL-based FPGA accelerator designed for large-scale convolutional neural
networks (CNNs). The main goal of PipeCNN is to provide an FPGA accelerator
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architecture of deeply pipelined CNN kernels to achieve improved throughput
in the inference stage. Unlike previous OpenCL design, memory bandwidth is
minimized by pipelining CNN kernels. Efficiency is enhanced by using task-
mapping techniques and data reuse. The PipeCNN architecture was verified by
implementing two CNNs, AlexNet and VGG, on an Altera Stratix-V A7 FPGA,
achieving a peak performance of 33.9 GOPS with a 34 percent resource reduction
on DSP blocks.

Another notable FPGA-based inference tool is hls4ml from Fermilab[9], which
is a deep neural network compiler based on HLS (High-level Synthesis language).
The input to hls4ml is a fully connected neural network trained from conventional
training frameworks such as Keras and PyTorch. The network is translated to
Vivado HLS (from Xilinx) and then compiled for the target FPGA. For the first
result in using this framework, the researchers focused on using FPGA for machine
learning in an application of real-time event reconstruction and filtering in the
Large Hadron Collider at CERN. The accessibility and ease of configurability
in HLS allows for physicists to quickly develop and optimize machine learning
algorithms targeting FPGA hardware.

The success of deploying and accelerating DNN models on FPGAs resulted
in commercial offerings of these tools from both major FPGA vendors. Open-
VINO, from Intel/Altera[15], is a comprehensive toolkit designed to support
deep learning, computer vision, and hardware acceleration using heterogeneous
(CPU, GPU, FPGA) platforms. The OpenVINO toolkit comprises of a Model
Optimizer and an Inference Engine. The Model Optimizer takes, as input, a
trained deep-learning model outputted from one of the supported frameworks
(e.g., TensorFlow, Keras). It performs static model analysis and adjusts the deep
learning model for optimal execution on end-point target devices, CPU, GPU,
FPGA, or HETERO (CPU+GPU or CPU+FPGA). In this project, our focus
is on the use of OpenVINO in the FPGA mode to accelerate the inferencing of
state-of-the-art, scientific DNNs. OpenVINO and its components will be described
in more details in Sections 3 and 4.

With the recent acquisition of DeePhi, Xilinx provides the Deep Neural
Network Development Kit (DNNDK)[8] to enable the acceleration of the deep
learning algorithms in FPGAs and SoCs. At the heart of the DNNDK is the deep
learning processor unit (DPU). The basic stages of deploying a deep learning
application into a DPU are:

1. Compress the DNN model (using the Deep Compression Tool) to reduce the
model size without loss of accuracy.

2. Compile the DNN model (using the Deep Neural Network Compiler) into
DPU instruction code.

3. Create an application using DNNDK (C/C++) APIs.
4. Use the hybrid compiler to compile the hybrid DPU application.
5. Deploy and run the hybrid DPU executable on the target DPU platform.

The DNNDK deep learning SDK is designed as an integrated framework which
aims to simplify and accelerate deep learning applications development and
deployment for Xilinx DPU platforms.
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3 Experimental Setup

As illustrated in Figure 1, the heterogeneous computing workflow for DNN
consists of three stages: 1) Data Analysis and Pre-processing, 2) Model Training,
and 3) Deployment and Inferencing. In Section 3.1, we describe the three case-
study models used for this peoject, and how they are pre-processed and trained
in preparation for the Deployment and Inferencing stage. In Section 3.2, the
platform setup for FPGA-based inferencing is described: hardware platform and
the OpenVINO deployment tool. Inference results using OpenVINO are presented
in Section 4.

3.1 Overview of Case Studies

HEP-CNN HEP-CNN[19,20] was developed as a proof-of-concept study for
improved event selection at particle collider experiments. For example, at the
Large Hadron Collider experiment (LHC) at CERN, protons are collided at
almost the speed of light and disintegrated in the process, forming showers of
particles which are detected by experiments such as ATLAS or CMS. These
experiments generate large amounts of data in units of events, which correspond
to a detector snapshot after a number of particle collisions. Most of the events
can be explained by the well understood Standard Model of Particle Physics,
also referred to as background. The challenge is to find and select events which
potentially contain candidates for new physics. More specifically, HEP-CNN
was designed to distinguish events containing r-parity violating supersymmetric
particle signatures from background. It is comprised of 5 convolution and max-
pooling layers with Leaky ReLU activations[12,14]. The kernel and stride sizes
are 3x3 and 1x1 respectively and it employs 128 filters per layer. The final set
of layers consists of an average pooling across the dimensions output image
followed by a fully connected layer with softmax activation which performs the
binary classification. The training data was obtained by coupling the Pythia[24]
event generator to the Delphes[7] fast detector simulator. The cylindrical data is
represented as a 2D image of size 224x224, where the two dimensions represent
the binned azimuth angle and pseudorapidity[26] coordinates. The three input
channels are given by the hadron and electromagnetic calorimeter energy deposits
as well as the multiplicity of reconstructed tracks from the pixel detector. Trained
using the ADAM optimizer[18], the model outperforms its benchmark, i.e. a hand
crafted decision tree, by more than 2x in true positive rate at the same false
negative rate.
Because of the lightweight and simplistic nature of the model as well as the
importance of real-time event selection in particle detectors, we consider HEP-
CNN a suitable prototype for inference performance exploration on embedded
systems or deep learning accelerators.

CosmoGAN Cosmological simulations of the ΛCDM model are traditionally
very expensive: they consist of three dimensional n-body simulations followed by
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raytracing steps in order to obtain two dimensional weak gravitational lensing
maps which are observed in large angle sky surveys. CosmoGAN[22] is a deep
convolutional generative adversarial network (DC-GAN) which was designed to
serve as a cheap emulator for these simulations. It is an unconstrained GAN which
is able to reproduce these mass maps to very high statistical accuracy (cf. [22])
for a fixed set of cosmological parameters. The network input is a 64-dimensional
vector of uncorrelated gaussian noise, followed by a fully connected layer to
cross-correlate all inputs, followed by a series of four transpose convolutions,
leading to a single 256x256 output image. Each inner layer is batch-normalized[16]
and uses Leaky ReLU activation, while the output layer uses a tanh activation.
For more details on the network parameters cf. [22]. We decided to include this
model into this paper because it is a scientific example of an important new class
of generative deep neural network architectures. Another important aspect is
that it does not require a data input pipeline, as the random numbers can be
easily generated on the devices considered in this study. Therefore, it allows us to
more precisely measure the compute and latency capabilities because the model
is not limited by DRAM or PCIe bus bandwidth and latency.

3DGAN 3DGAN represents the first application of three-dimensional convo-
lutional Generative Adversarial Networks to the simulation of high granularity
electromagnetic calorimeters. The aim of the study is to produce a network which
can be passed as input a particle type, energy and trajectory, and which will
produce an accurate simulation of the corresponding particle detector output.
Our study is based on pseudo-data simulated with GEANT4 [4] in the proposed
Linear Collider Detector (LCD) for the CLIC accelerator [21]. The LCD consists
of a regular grid of 3D cells with cell sizes of 5.1 mm3 and an inner calorimeter
radius of 1.5 m. Individual electron, photon, charged pion, and neutral pion
particles are shot into the calorimeter at various energies and at various angles
to the calorimeter surface. For each event we take a 25× 25× 25 cell slice of the
electromagnetic calorimeter (ECAL) and store them as two 3D arrays containing
information about the energy deposited in each cell. The 3DGAN generator and
discriminator models consist of four 3D convolution layers. Leaky ReLU activation
functions are used for the discriminator network layers. A batch normalization
layer is added after all activations except the first layer. The output of the final
convolution layer is flattened and connected to a sigmoid neuron corresponding
to real/fake output of GAN as well as a linear unit for energy regression. The
generator has a latent vector of size 128 and a similar architecture with leaky
ReLU (ReLU for the last layer) activation functions. Batch normalization layers
were added after the first and second layers. The GAN cost function was modified
to include an auxiliary energy regression task as well as checks on total energy
deposited in order to constrain the distribution of individual cell energies. The
model is implemented using Keras and Tensorflow. The network is trained for 30
epochs using the RMSprop optimiser. Results show a remarkable agreement to
standard Monte Carlo output (within a few percents) [11] .
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3.2 Platform Setup

As shown in Figure 1, OpenVINO consists of two parts: Model Optimizer and
Inference Engine. The OpenVINO software is built to emulate the Open Visual
inference and neural network optimization. The OpenVINO toolkit extends the
workload across Intel hardware and maximizes performance. The Model Optimizer
is a cross-platform, command-line tool that facilitates the transition between the
training and deployment environment on a target inference engine. The input
to the Model Optimizer is a network model trained using one of the supported
frameworks. It performs static model analysis and adjusts the input deep learning
models for optimal execution on end point target devices, which can be a CPU,
GPU, FPGA, or a combination (HETERO). The output of the Model Optimizer
is an Intermediate Representation (IR) suitable as input to the selected target
inference engine. In our study, our goal in the Deployment and Inferencing stage is
to deploy the trained model on an FPGA to accelerate the classification process.

In addition to the trained model from the Model Optimizer, the other input
to the OpenVINO Inference Engine is the data to be analyzed. The output is a
probability-based classification. The Inference Engine is a C++ library with a
set of C++ classes to infer data (images) to obtain a result. The C++ library
provides an API to read the Intermediate Representation (IR), set the input and
output formats, and execute the model on devices.

The hardware platform used in this study for the FPGA-accelerated inference
engine is the Intel Programmable Acceleration Card (PAC). The PAC card
contains an Arria 10 GX, a moderate-sized FPGA fabricated using 20 nm process
technolgy. The PAC card is installed in a Dell server equipped with an Intel Gold
6130 Skylake CPU (14 nm process technology), running at a clock speed of 2.1
GHz. The Skylake is a dual-socket CPU, with 16 cores per socket, and 2 threads
per core. Performance comparisons to be presented in Section 4 will be with a
single Arria 10 FPGA versus different numbers of Skylake cores (threads).

4 Experimental Results

In this section, we present and discuss the inference results in our study. Section
4.1 discusses the initial findings using the native DLA runtime which was delivered
with OpenVINO. In Section 4.2, we described how we used the DLA development
suite (obtained from Intel via NDA) to optimize existing FPGA primitives
in OpenVINO to improve performance and develop new ones to enable new
capabilities for FPGA inferencing. The optimized results are presented in Section
4.3.

4.1 Native OpenVINO Results

Table 1 summarizes our initial inferencing performance results of two of the
above scientific DNN models (HEP-CNN and CosmoGAN) using the OpenVINO
toolkit with native Deep Learning Accelerator runtime.
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Table 1. Inferencing performance of HEP-CNN and CosmoGAN with native OpenVINO.
(*HETERO: OpenVINO heterogeneous inferencing mode with FPGA + CPU)

DNN Model
HETERO*
Throughput
(images/s)

Speedup vs. CPU
1 core/ 1 core/ 32 cores/
1 thread 2 threads 64 threads

HEP-CNN 66.3 2.52 1.32 0.25
CosmoGAN 4.7 0.21 0.11 0.03

Using the native DLA runtime, we cannot perform inferencing on either
model completely on the FPGA. OpenVINO automatically use the HETERO
(heterogeneous) mode with CPU as a fallback device on parts of the DNN which
cannot be run on the FPGA. Still HEP-CNN achieved 2.52x speedup vesus
the Skylake CPU (1 core/1 thread). Although having a regular AlexNet-like
CNN topology, HEP-CNN could not be completely inferenced on the FPGA
because of its unsupported (by OpenVINO) "average pooling" layer between
the last convolutional and the fully-connected layer. Thus, during inferencing,
OpenVINO automatically maps the average pooling layer onto the CPU and
transfers outputs of the last convolutional layer to the main memory. It then
transfers results back to the FPGA to complete its operation. This back-and-forth
transfer between CPU and FPGA introduces a large overhead that negatively
impacts the inferencing performance of the HEP-CNN model. An optimized
result will be shown in Section 4.3.

The CosmoGAN model also cannot be completely inferenced on the FPGA
due to the unsupported "deconvolutional" layers. As a result, the HETERO
mode causes multiple data transfering between the FPGA and CPU (2N times),
where N equals the number of deconvolutional layers in the model. This overhead
is reflected in the extremely poor performance of CosmoGAN shown in Table 1.

In order to improve the performance, we optimized the inferencing of HEP-
CNN and CosmoGAN by enabling the FPGA primitives (using the DLA developer
suite - Section 4.2) for the "average pooling" layer and "deconvolution" layer,
respectively. This optimization eliminates the back-and-forth, data-transfer over-
head and greatly improve the inference performance. Design space exploration of
the FPGA architecture was also performed to further improve the result (Section
4.3).

4.2 Deep Learning Accelerator Suite

In order to customize the FPGA architecture for our needs, we acquired the
Intel Deep Learning Accelerator (DLA) developer suite, which is the underlying
tool that enables inferencing of DNN models on FPGA devices with OpenVINO.
DLA consists of a high-level API (DLIA plugin) that interacts with OpenVINO’s
inference engine and an FPGA bitstream that creates the architecture shown in
Fig. 2.

The architecture contains a stream buffer, a PE (Processing Element) array,
and various other modules that compute activation function, max-pooling, and
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Fig. 2. DLA architecture[3]

normalization (LRN). The stream buffer takes advantage of the high bandwidth
internal RAM of the FPGA, preparing the input data for the PE array. The
PE array performs matrix multiplications and accumulations by utilizing DSP
resource of the FPGA. DLA inferences a DNN model by first separating it into
multiple sub-graphs, which typically consist of a convolutional layer, an activation
layer, a max-pooling layer, and a normalization layer. The sub-graphs are then
iteratively processed.

The DLA FPGA architecture (Figure 2) can be customized for inferencing
different DNN models. For example, DLA connects the max-pooling and the
normalization modules to an "Xbar" module which can be configured to bypass
or determine the execution order of pooling and normalization layers. It also
allows the developer to create new primitives and connecting them to the "Xbar".
Moreover, the stream buffer size can be configured to reduce the number of
memory requests to the main memory. The PE array can also be configured
by changing "C_VEC" and "K_VEC" in Fig. 2. C_VEC defines the channel
depth of the input data and convolution kernels streaming out from the stream
buffer; while K_VEC defines the number of PEs in the PE array, which is also
equivalent to the channel depth of the output data. Due to the resource constraint
of the Arria 10 FPGA, DLA slices the input data along the channel dimension
to complete the inferencing of a convolutional layer in multiple iterations. We
will see in Section 4.3 how various configurations can affect performance.

4.3 Optimized Results

HEP-CNN As mentioned in section 4.1, the inference performance of HEP-CNN
can be greatly improved by implementing the "average pooling" computation
primitive on FPGA. By modifying DLA’s architecture configuration, we are able
to enable the "average pooling" computation inside the "Pooling" module, as
shown in Fig. 3.

The implementation of "average pooling" function eliminates the need of
using OpenVINO’s HETERO mode and thus the overhead of data transfer
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Fig. 3. Customized DLA architecture with average pooling enabled

between CPU and FPGA, improving the performance over that of the native
architecture. We also performed design space exploration (size of the stream
buffer, size (C_VEC) and number of PEs (K_VEC)) to further investigate
the tradeoffs for HEP-CNN. Table 2 shows the comparison of the inferencing
performance with different configurations for C_VEC and K_VEC. Also shown
in Table 2 is the performance comparison for different configurations of the CPU:

• 1 core, 1 thread: representing mission-critical applications with SWaP (space,
weight, and power) constraints

• 1 core, 2 threads (both threads in the core): represents applications in between
• 32 cores, 64 threads: represents data-center applications

Table 2. Comparison of inferencing performance of HEP-CNN with different configu-
rations (batch size = 16)

PE Array Size
(C_vec × K_vec)

FPGA
Throughput
(images/s)

Speedup vs. CPU
1 core/ 1 core/ 32 cores/
1 thread 2 threads 64 threads

8 × 48 (default) 138.4 5.26 2.76 0.55
8 × 64 164.9 6.27 3.3 0.66
16 × 64 148.2 5.63 2.96 0.59

Since all convolutional layers of HEP-CNN have an output channel depth
of 128, as mentioned in section 4.2, the default K_VEC value of 48 will cause
DLA slicing the input data three times along the channel depth, resulting in
48× 3− 128

48× 3
= 11.1% wasting of computational resources. Thus, an optimal

K_VEC should be one of the factors of 128 (e.g., 16, 32, or 64). It is also
important to consider the balance of the resource consumption of the stream
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buffer and the PE array. Moreover, larger computing logic in the PE array could
also results in a lower clock frequency in the FPGA as shown in Table 3.

Table 3. Effect of PE array configuration on stream buffer size and clock frequency

PE Array Size
(C_vec × K_vec) Stream Buffer Depth FPGA Clock Frequency

8 × 48 (default) 12768 252 MHz
8 × 64 11480 235 MHz
16 × 64 5040 190 MHz

CosmoGAN For inferencing CosmoGAN on an FPGA, the deconvolutional
layers need to be computed in the PE array. The term "deconvolutional" here
does not refer to its mathematical definition, which defines the inverse of the
convolutional operation. Instead, "deconvolution" often refers to the "transposed
convolution" in deep learning literature and programming frameworks. Computa-
tion for DNN deconvolution is roughly equivalent to convolving an input signal
with a transposed kernel[10]. Depending on its padding type and the number of
strides, the input of a deconvolutional layer may also need to be zero padded
and/or be dilated. Computing deconvolution for DNN by using convolution is
illustrated in Fig. 4, which shows the deconvolution of a stride of 2 (Fig. 4(a)) is
equivalent to the convolution of a stride of 1 with the transposed kernel and the
dilated input.

Fig. 4. : (a) Deconvolution of stride 2 is equivalent to (b) Convolution of stride 1 with
transposed kernel and dilated input

The DLA contains the primitive utilizing the PE array to compute decon-
volution in the same way as computing regular convolution without changing
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its original logic and behavior. It also adds additional logic that transposes
the weights matrix, and if needed, adds zero padding and dilates the input
before streaming them into the PE array. Table 4 shows the inferencing perfor-
mance of CosmoGAN model after we have made the enhancements to enable the
deconvolution primitives in the DLA architecture configuration.

Table 4. Comparison of inference performance of CosmoGAN.

PE Array Size
(C_vec × K_vec)

FPGA
Throughput
(images/s)

Speedup vs. CPU
1 core/ 1 core/ 32 cores/
1 thread 2 threads 64 threads

8 × 48 (default) 22.2 0.98 0.52 0.14
8 × 64 24.2 1.07 0.57 0.16
16 × 64 19.9 0.88 0.47 0.13

As you can see, the performance on FPGA for CosmoGAN is very poor. Upon
further investigation, we determined the DLA architecture has a limitation that
the "activation" layer is hardwired to the PE array so it has to be executed before
the "pooling" or "normalization" layer within one sub-graph (see Fig. 2). This
architecture makes sense for many mainstream CNN model, but not for models
such as CosmoGAN which implements the normalization layer before ReLU
activation. As a result, using the current DLA architecture, the CosmoGAN
DNN has to be inferenced in two separated iterations. We hypothesize that this
limitation caused the FPGA performance to be reduced by half. To confirm
this hypothesis, we manually switched the execution order of normalization and
activation layers in the CosmoGAN model, simply for the purpose of exploring
the theoretically best inferencing performance of CosmoGAN on the FPGA. Of
course, the actual classification will not be correct, but the inferencing process
should require the same amount of computation. The corresponding performance
results are shown in Table 5, which are consistent with our expectation. The new
speedup against 1 Skylake CPU core (1 thread) is approximately 3x. Note the
speedup against the HETERO mode (FPGA + CPU in Table 1) is 14x.

Table 5. Comparison of inferencing performance of CosmoGAN after switching the
execution order of activation layer and normalization layer

PE Array Size
(C_vec × K_vec)

FPGA
Throughput
(images/s)

Speedup vs. CPU
1 core/ 1 core/ 32 cores/
1 thread 2 threads 64 threads

8 × 48 (default) 39.4 1.74 0.92 0.25
8 × 64 67.5 2.97 1.58 0.43
16 × 64 39.9 1.76 0.93 0.26
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5 Conclusions and Future Directions

Heterogeneous computing (HGC), using CPUs integrated with accelerators such
as GPUs and FPGAs, offers unique capabilities to accelerate DNNs. In this
paper, we presented an HGC workflow in performing deep learning studies on
scientific DNN models. In particular, we focused on the use of Intel’s OpenVINO
to facilitate the use of FPGA-accelerated inferencing on the HEP-CNN and
CosmoGAN models from NERSC (Lawrence Berkeley Lab) and the 3DGAN
model from CERN openlab.

From the results presented in Section 4, we demonstrated that, for scientifically
relevant DNN models such as HEP-CNN and CosmoGAN, a single Arria 10
FPGA (20 nm technology) can produce speedups of 6X and 3X, respectively,
against a single core (single thread) of a server-class CPU (Skylake CPU, 14 nm
technology). Going forward, from a FPGA device point of view, we are looking
forward to working with the PAC card equipped with an Intel Stratix 10 (14 nm
technology).

From a framework and tools point of view, the lessons learned thus far in
using OpenVINO and the DLA development suite will be invaluable in our effort
to enhance the DLA primitives and architecture to support existing and emerging
scientific DNN models and applications. In particular, we have been developing
the necessary primitives to support the 3DGAN model from CERN openlab.

Finally, the results from this study, as exemplified by the results presented
in Section 4, provide an excellent foundation for more extensive data space
exploration going forward to investigate various architectural, model, and tool
tradeoffs on performance and other important metrics such as power and cost.
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