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Abstract— Point-to-point connectivity through FPGA
high-speed serial I/O is an important component for
many space-based applications. The susceptibility of
high-speed transceivers to soft errors is still under in-
vestigation and is a matter of concern in reliable point-
to-point communications. This work develops a tech-
nique to provide full-bandwidth, lossless data transmis-
sion across high-speed transceivers in the presence of
soft errors. The technique utilizes a redundant channel
which can be used if the first channel fails and needs to
be repaired. This allows for uninterrupted transmission
even in the face of soft errors. The design has been im-
plemented and tested through manual injection of various
faults. No system failures occurred under the injection
of any combination of tested faults on a single channel
thus demonstrating the potential of such a design to pro-
tect against soft errors while maintaining high-bandwidth
transmission. The cost of this technique is that it con-
sumes 4.7× the area and has a throughput that is 98%
that of an unmitigated single-channel design.
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1. INTRODUCTION

Many space-based applications require high-bandwidth
point-to-point connectivity such as for the collection and
processing of large amounts of sensor data or for commu-
nication between chips. Field programmable gate arrays
(FPGAs) provide an effective platform for space-based
applications due to their flexibility, reprogrammability,
and low development cost. The increased availability of
Multi-Gigabit Transceivers (MGTs) on FPGAs are pro-
viding the high speed communication links necessary to
meet the demands of many of these high-bandwidth ap-
plications.

Concerns arise, however, over the susceptibility of
MGTs to single event upsets (SEUs) in a space envi-
ronment, especially for applications intolerant to data
loss. Preliminary research on MGT failure modes in-
dicates most failures are completely recoverable with
proper stimulus, but the time necessary to recover may
be on the order of microseconds [1]. With data trans-
mission speeds reaching 28 Gbps over a single channel,
a soft error which causes a loss of link lasting only mi-
croseconds can result in several kilobytes of data loss.

To date, very little work has been done on developing re-
liable architectures for high speed serial at the data link
layer. Many protocols exist that are designed to provide
reliable transmission in the face of signal noise but few
are designed to handle any failure of the actual trans-
mit or receive mechanism. Those protocols that could
conceivably be used for such reliability are generally ex-
pensive in terms of resource utilization and spatial and
temporal overhead. Furthermore, these protocols are
overly complex and inappropriate for point-to-point ap-
plications. The goal of this work is to investigate soft
error mitigation techniques at the data link layer which
provide full-bandwidth, lossless data transmission in the
presence of SEUs.
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2. MOTIVATION

Failure mechanisms in MGTs caused by SEUs is an area
of ongoing research by various groups such as the Xilinx
XRTC. There are two main areas of concerns from possi-
ble effects of SEU failures - 1) corruption of transmitted
data (bit errors), and 2) failure of the transmit or receive
mechanisms (resulting in a loss of link). The first area of
concern can be modeled as signal noise and conventional
protocol techniques such as CRCs can be utilized to de-
tect errors [2]. The failures resulting in loss of link are
thus of primary concern in the development of mitigation
techniques.

Research described in [1] on the failure mechanisms of
MGTs suggests that loss of link failures due to high-
energy radiation can almost always be recovered by ap-
plying appropriate local stimulus such as a reset of the
transceiver or one of its components. The amount of
time required to recover, however, can be of great con-
cern to systems that require continuous high-bandwidth
transmission. Such systems may not be able to tolerate
a communication link that is down for even microsec-
onds. Thus it is necessary to provide a mechanism that
will allow for continuous transmission in spite of MGT
failures.

One solution to provide reliable uninterrupted data trans-
mission is to provide a redundant channel. The redun-
dant channel allows for data to be transmitted across the
working channel while the failed channel is recovering
from a failure. This work describes an implementation
of such a dual-channel architecture and details its archi-
tecture, design, and fault testing.

3. PRELIMINARY WORK

A significant concern when creating a dual-channel ar-
chitecture is properly aligning the received data so that
both channels will be synchronized. Prior to the de-
velopment of the dual-channel architecture described in
this paper, we conducted an experiment to determine
the maximum skew between data transmitted across in-
dependent channels. We discovered that under normal
conditions the skew between channels was very limited,
especially if they shared the same reference clock, with
data on the two channels arriving only a couple of clock
cycles apart from each other if there was any skew at all.

There are two options which could be used for clocking
a dual-channel design: (1) a shared reference clock for
both channels or (2) two independent reference clocks,
one for each channel. A shared reference clock is a rea-

sonable architectural decision because each channel has
its own PLL to generate its own clock from the reference
clock. Thus, the reference clock routing going to the PLL
in each channel forms a very small target for SEUs com-
pared to any other component in the system and limits
the probability of a common mode failure. Furthermore,
although the logic for each channel provides for a unique
reference clock, the high I/O costs and difficulty of gen-
erating low jitter differential clocks may deem such an
option not worth the cost. Our initial testing used such a
shared reference clock. In our final testing of the design,
however, we routed the single reference clock into the
FPGA over two different paths. Thus, each channel re-
ceived the same frequency clock but with different phase.
Both designs performed equally well. Understanding the
limited skew between independent channels gave us con-
fidence in being able to design a system which could
properly align received data from dual channels with a
minimal amount of buffering.

4. ARCHITECTURE

A block diagram of our dual-channel architecture is
shown in Figure 1. As each half of the figure is a trans-
mit/receive pair, we have highlighted in black a transmit
block on the left and a receive block on the right to show
data transmission from left to right. The implementation
is built on top of the Xilinx Aurora protocol [3], although
the concept is not dependent on a specific protocol.

In a Xilinx FPGA, each high speed serial I/O tile contains
two MGT cells. To avoid a single point of failure that
could bring down both channels at the same time, this
design places the two redundant channels into separate
tiles.

Aurora Protocol

The Aurora protocol is an open IP core which is designed
to provide a minimal amount of logic and protocol over-
head to interface with the physical layer of the MGT se-
rial links on Xilinx FPGAs. It provides a mechanism for
the framing of data across a serial link, 8B/10B encod-
ing, and basic error checking for encoding errors, physi-
cal layer errors, and framing errors. It does not however,
provide any frame tracking or data verification beyond
8B/10B encoding. Aurora accepts data packets from the
user circuitry, surrounds each data packet with start-of-
frame and end-of-frame characters, and transmits them.

We utilized Aurora to provide the basic interface to the
serial links and built added reliability circuitry around it.
Our design (called RAPS for Reliable Architecture for
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Figure 1. Block diagram of RAPS.

Point-to-Point Serial I/O) uses the Aurora Protocol im-
plementation version 5.1 generated using Xilinx Core-
gen. Our logic presents the same interface to the rest of
the FPGA design that the original Aurora core presented.
Thus, our logic can easily be inserted into an existing de-
sign.

Transmission

Packet # User Data CRC 

Figure 2. RAPS packet structure

In our design the transmit block receives data from the
user. A sequential packet number is prepended to the
data. Additionally, a 32 bit standard ethernet CRC is gen-
erated from the user data and appended. The complete
packet structure is illustrated in Figure 2. The new packet
is then passed to the two independent Aurora cores for
transmission across both channels. For verification, a
data corruption block was inserted at location A in Fig-
ure 1. More details on this block are provided in the
testing section.

Reception

On the receive side, the packets are checked for any er-
rors that may have occurred during transmission as re-
ported by error signals from the Aurora protocol and
CRC check failures. The receiver then aligns the data
according to the packet number and a voting mechanism
tests the twin data packets for errors and selects between
the two if an error is found in either packet. A further
description of the blocks is given below.

CRC Check—The trailing CRC on the packet is checked
immediately following the Aurora core. The CRC
checker is a Xilinx Coregen block which verifies the data
against the CRC 32 bits at a time and strips the CRC from
the data stream.

Align and Vote—The alignment of the packets proved to
be a complicated procedure. The packets must be aligned
to compare the received data and appropriately pass it to
the end user. Prior testing revealed that skew between
channels is minimal, usually only consisting of a few
bytes. This means that extensive buffering of data is not
required.

To prepare the data to be aligned, the data is buffered
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Figure 3. Flow Diagram of the Receivers Alignment Procedure

in a FIFO sufficiently large to hold at least 2 packets.
All information about the packet is also stored in a sep-
arate FIFO. This information includes the packet num-
ber, packet length, and errors (from the Aurora core and
the CRC checker) relating to the packet. Once this in-
formation is available on both lanes, the two transmitted
packets are ready to be aligned.

The alignment and voting decision procedure is dia-
grammed in Figure 3. In the diagram, a decision tree
is traversed until a decision is made for the current state
of the receiver. Decisions include delaying until more
information is present, accepting and passing the data to
the end user, discarding and retaining packets for the it-
eration for alignment purposes, matching the expected
packet number to what actually appears from the trans-
mitter, and possibly acknowledging that packet data is
unrecoverable and continuing on.

The alignment circuitry stores the packet until either both
lanes have fully received a packet or one of the Aurora
cores reports a loss-of-link event. A steady stream of
data is necessary as a lost packet can only be detected
by the reception of the following packet. Once either
of these states occurs, the system attempts to align the
data based off of the packet number, and then passes the
packet containing correctly transmitted data along to the
user.

Under normal operation packets are received on both
channels, and the packets are checked for transmission
errors. Both packets should contain a packet number
one greater than the previously received packet. Either
of these packets is then certified to be valid and passed
along to the user. If one or more bit errors occurs on only
one of the channels, the packet from the other channel is
accepted. If one of the channels appears to have gotten
ahead or behind the other, mechanism are in place to dis-
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card lagging packets while maintaining current packets
or retaining leading packets while passing along current
packets to realign the data.

To allow for the continuous transmission of data in the
event of a loss of link on a single channel, the receiver
will operate using the single active channel until the
faulty channel is repaired. This allows for the broken link
to be repaired without suffering a loss in throughput.

Finally, mechanisms are in place to update the expected
packet number should the transmitter and receiver break
in packet numbering (usually resulting from a transmit-
ter reset). The voter is also able to acknowledge that a
packet’s data is unrecoverable in some events and con-
tinue operation while alerting the user to the lost data.

Upset Recovery

The architecture is designed to provide as much informa-
tion as possible on the types of failures which have oc-
curred through various error signals. These error signals
include information on each channel such as connection
status, framing errors, packet alignment, loss of packet,
etc. This information allows an external repair mecha-
nism to determine a probable cause of the failure and to
perform the lowest cost repair necessary to correct the
system. Such recovery techniques of differing costs are
known and discussed in [1].

Performance

The architecture allows for minimal overhead. The
added data transmission latency is small and is relative
to the size of the transmitted packet as the packet must
be buffered to allow the accompanying CRC to be ver-
ified. The additional overhead for each frame is only 4
bytes, allowing an efficiency of 98% of the throughput of
an unmitigated Aurora core at a packet size of 256 bytes.

5. IMPLEMENTATION AND TESTING

To verify the architecture’s reliability, the design of Fig-
ure 1 was implemented onto a Xilinx Virtex5 LX110T
FPGA. The design was completed in roughly two months
by a team of two graduate students. The implementation
focused on the testing of the architecture and did not in-
clude sophisticated repair mechanisms for the MGTs.

The resource utilization for the design, as well as the uti-
lization for a single channel design using the Aurora pro-
tocol is given in Table 1. The dual channel design utilizes
two Aurora cores as well as the additional reliable proto-
col logic. The cost of the additional protocol logic makes

the reliable design more than four times that of an unmit-
igated Aurora protocol design but is still less than a TMR
design. A TMR design would require even more logic for
aligning the received data and would utilize three rather
than two times the logic for the Aurora cores.

Approximate Resource Utilization
Component Slices BRAM CRC32 MGTs
Dual Channel 1,389 12 3 2

Aurora 296 0 0 1
Frame Gen 189 4 1 0
CRC Check 71 0 1 0
Alignment 672 7 0 0

Available on 17,280 148 32 8FPGA (LX110T)

Table 1. FPGA resource utilization for dual channel
design.
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Figure 4. Testing and verification setup.

The test setup on the FPGA is detailed in Figure 4. It
was created by generating two instances of the design
on a single FPGA. The MGTs of each instance were
connected via SMA cables. To better represent a multi-
FPGA environment, each MGT in the design was run
from a different phase reference clock. The reference
clock rate was 156.25 Mhz which resulted in a transmis-
sion rate of 3.125 Gbs across the MGTs. Attached to one
instance was a data generator which created randomly
sized packets separated by random wait intervals. The
receiving instance logged errors on the redundant chan-
nels of received data.

The architecture was verified by injecting a variety of
errors. The faults injected consisted of the following:
(1) errors in the data stream, (2) errors in the Aurora
frame headers and footers, and (3) catastrophic failures
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(eg. loss of link). Error types (1) and (2) were injected
at location A in Figure 1 with a VHDL data corruption
block. These errors were meant to simulate the different
types of errors that are typical of MGTs.

Data Stream Errors

When an error on the data stream was requested, the
block would pseudo-randomly flip a bit or series of bits
in the data payload entering the Aurora core. This is ap-
proximately equivalent to a bit error. This type of error
was easily detected by the CRC blocks on the receive
channel.

Testing with insertion of more than 200 million data
stream errors in a single test run resulted in no failures
in the system. Additionally, data stream errors never re-
quired a reset of the channel. Errors were inserted in both
channels, but only in a single channel at any given time.

Framing Errors

When a framing error was requested, the corruption
block would corrupt the signal which tells the Aurora
core to create an end-of-frame signal for the packet. This
would thus remove or insert an erroneous end-of-frame
character in the transmitted data stream. These errors
were potentially more hazardous to the system because
they caused alignment mismatches on the receive side.
Because received packet lengths were different sizes, or
frame signatures were missing entirely, these faults were
designed to stress the alignment and frame tracking of
the receive logic.

Similar to data stream errors, testing included the injec-
tion of more than 200 million framing errors in a single
test run with no system failures. The insertion of fram-
ing errors had the potential to affect the system more than
data stream errors due to the effect of improperly filling
data FIFOs in the align logic. However, successive fram-
ing errors were inserted to stress the alignment logic and
never resulted in failure. Again, framing errors were in-
serted on both channels but not simultaneously.

Catastrophic Failures

Catastrophic failures were simulated by resetting the
MGT or physically removing the cables connecting the
transmit/receive pair. These faults were designed to test
the complete failure of the transmit or receive mecha-
nism. Any reset of the core or loss of link from remov-
ing a cable completely disrupts the connection between
MGTs and forces the channel connection to reinitialize
after the fault is removed. We note that such catastrophic

failures due to radiation events are rare as described in
[1].

Following bit errors or framing errors, the faulty channel
was fully operational for the next packet of data. Follow-
ing a catastrophic failure, the faulty channel was unus-
able until it was reinitialized by the Aurora core. Such
a reinitialization of the channel required time on the or-
der of a few microseconds. During this time, however,
the other redundant channel was able to continue trans-
mitting data. After reinitialization the previously faulty
channel was again fully operational.

The nature of inserting catastrophic failures and the re-
covery time necessary made it more difficult for a test
run to contain as many fault insertions. However, testing
with the insertion of more than 100 catastrophic failures
resulted in no system errors.

The design also experienced no failures with any com-
bination of multiple types of errors injected into a single
channel. Additionally, the affected channel always re-
covered after the injected fault was removed. Obviously,
when errors were injected on both channels data trans-
mission was interrupted and data lost. However, a reset
of the system then always caused the system to recover
and data transmission was able to resume.

6. FUTURE WORK

In order to further verify the operation of the dual-
channel architecture fault injection of the FPGA config-
uration bitstream should be performed. Additionally, we
are interested in testing the design in a high ion beam.
We are interested to see the effects of SEUs on the Au-
rora core, particularly to see if the design is capable of
mitigating errors to the Aurora core logic. To perform
beam testing, a recovery mechanism for the architecture
will need to be implemented. An area for future investi-
gation is to utilize the error signals from the architecture
to provide an efficient, high-level recovery mechanism.
Also, The current implementation of the architecture fo-
cuses on mitigation of MGT failures. Further work needs
to be performed to investigate protection against failures
for the surrounding protocol logic and memories.

Additionally, while the architecture requires fewer re-
sources than a full TMR implementation, the use of two
transceivers for a single lane of data is still too costly
for many applications. Future work may include a multi-
channel design with only one redundant channel. Such a
system could be modeled after a RAID system and would
provide for higher throughput with less overhead.

6



7. CONCLUSION

The dual-channel architecture for serial IO presented
in this work provides a data link layer mitigation tech-
nique for reliable MGT data transmission in the face of
SEUs. A main focus of this work has been to provide a
highly available system in order to have continuous high-
bandwidth transmission despite faults. The dual-channel
design provides for reliability and availability with less
overhead than a TMR system. Our implementation of
the design demonstrated its effectiveness in protecting
against SEU failures, and lays the foundation for the de-
velopment of more efficient architectures in the future.
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