Distributed Shared Memory Programming in the Cloud

Ahmad Anbar, Vikram K. Narayana and Tarek El-Ghazawi
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering
The George Washington University
{anbar, vikram, tarek} @ gwu.edu

Abstract—Cloud computing is beginning to play a dominant
role in scientific computing. However, there are still several
challenges that need to be addressed, before data-intensive sci-
entific applications make the transition to the cloud. Adoption
of a distributed shared memory (DSM) programming paradigm
will be one approach to ease the transition, through the use
of Partitioned Global Address Space (PGAS) languages. This
paper explores initial results from the adoption of a PGAS
language, Unified Parallel C, in programming a representative
private cloud based on Eucalyptus.

Keywords-Parallel Programming; Cloud
Distributed Shared Memory; PGAS; HPC; UPC

Computing;

I. INTRODUCTION

Cloud computing involves the use of the internet for
providing on-demand access to shared resources, such as
computational capabilities, data, storage and applications.
Resources may be offered to users as services at different
levels - software as a service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [1]. These
levels respectively offer decreasing levels of abstraction,
with IaaS allowing the greatest level of control over the
operating system, storage and applications, and therefore
best suited for custom scientific application development.

High-performance computing (HPC), based on parallel-
programming paradigms such as message-passing or shared
memory, has traditionally focused on using dedicated HPC
platforms such as compute clusters or supercomputers.
These platforms reside either within the organization, or
are present in national labs and remotely accessed on a
time-shared basis. Both of these solutions have limitations,
such as high acquisition and maintenance costs (for in-house
HPC hardware) and large turnaround times (for time-shared
HPC resources). The use of cloud as a shared resource
provides a sweet spot between these two options. Moreover,
isolation between users through virtualization, and ability
to deploy custom application environments through IaaS,
makes cloud computing an attractive option for HPC. This
is evidenced by Amazon recently opening up the “Cluster
Compute Instance” in their cloud computing service [2].

This work was supported in part by the I/UCRC Program of the National
Science Foundation under Grant No. ITP-0706352.

O Process/Thread
\\ D Address Space

pepeelefeele

Message Passing Shared Memory DSM/PGAS

MPI OpenMP UPC

Figure 1. Parallel Programming Models in HPC

II. MOTIVATION

In a typical usage scenario of HPC in the cloud, a virtual
cluster is allocated to a user for developing and deploying
parallel programs. Parallel programming on the virtual clus-
ter exhibits the same programming complexity as traditional
HPC. When we also consider the virtualization overheads,
the cloud can become a rather unattractive solution for
scientific computing if we do not address the programming
issues. For instance, the widely used MPI [3] approach
requires explicit two-sided communication between pro-
cesses to exchange data, due to a distributed view of the
memory address space (Figure 1). Programming efforts
may be eased by using a shared-memory programming
approach such as OpenMP [4], through a unified view of the
address-space across processes. However, a shared memory
view does not provide any distinction between local and
remote data; this can cause performance degradation in a
cloud when individual nodes could possibly be allocated
in physically distant nodes. We believe that the distributed
shared-memory (DSM) programming paradigm, embodied
by Partitioned Global Address Space (PGAS) languages
such as UPC (Unified-Parallel C, UPC [5]), is better suited
for the cloud. DSM provides ease-of-programming due to
one-sided communication afforded by the shared memory
view, while enabling locality-awareness for increased per-
formance. Based on this observation, we have initiated our
explorations with UPC benchmarks deployed on a simple,
private cloud configured in-house, described as follows.

Table I
CHARACTERISTICS OF THE TESTBED

H Compute Node VM Instance

oS Ubuntu Linux 10.04 LTS
Processor Intel Nehalem E5620 @ 2.4 GHz
CPU cores 4 4
Memory 12 GB 2 GB
Storage 500 GB 20 GB
EP
20
80
- 70 \\
g 60
i, AN
: N
: 40 —4—VM - Class A
‘2 30 .\ \ =l=Phy - Class A
E 20
10 ‘\:\‘
—
o

Number of Threads

Figure 2. Results for NAS Parallel Benchmark: EP

III. TESTBED

We built a private cloud based on the open-source Euca-
lyptus [6] software platform available as part of the Ubuntu
Linux operating system. Our initial prototype platform con-
sists of 4 compute nodes, and a controller node that hosts
the management components of Eucalyptus. Instances of
KVM-based [7] virtual machines (VM) are launched on
the compute nodes, based on user requests made to the
Eucalyptus management system. The characteristics of the
compute nodes and the VMs are summarized in Table I. We
created a virtual cluster based on four instances of the VM
launched on the compute nodes. For UPC programming, we
use Berkeley UPC compiler version 2.14.0 [8].

IV. PRELIMINARY EXPERIMENTAL RESULTS

Our experiments are based on UPC versions of the NAS
Parallel Benchmarks developed by us [9]. Figures 2 and 3
show the results for the EP and MG benchmarks respec-
tively, comparing the execution within the cloud-based vir-
tual cluster against native execution on the physical compute
nodes. Threads were assigned to a node up to a maximum
of four threads per node, before using a new compute node.
As expected, we observed that execution on the cloud incurs
some overheads, although it reduces substantially for 16
threads of the computationally intensive benchmark EP. For
the MG benchmark, overheads were significantly larger with
more nodes, due to greater communication among UPC
threads, and also possibly due to UDP-based inter-node
communication used in our UPC configuration.

MG

-
@

[
SIS

) /
H
g 10
g /
y
E 8
£ / =M - Class A
'.2 8 / —B—Phy- Class A
3
]
g, [—
2 ‘\\‘*I-—T/__._____//‘

o

Number of Threads

Figure 3. Results for NAS Parallel Benchmark: MG
V. CONCLUSION
Distributed shared memory (DSM) programming

paradigm is a promising approach for HPC in the cloud.
Further explorations are required in our experimental
setup to obtain optimum configurations of UPC and the
Eucalyptus-based platform.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud comput-
ing,” NIST special publication 800-145, 2011.

[2] Amazon. (2011, Nov. 15) Announcement: Announcing a new
Amazon EC2 Cluster Compute Instance. [Online]. Available:
https://forums.aws.amazon.com/ann.jspa?annlD=1247

[3] M. P. I. Forum, “MPI: A Message-Passing Interface standard,”
International Journal of Supercomputer Applications, vol. 8,
no. 3/4, pp. 165-414, 1994.

[4] L. Dagum and R. Menon, “OpenMP: an industry standard API
for shared-memory programming,” Computational Science &
Engineering, IEEE, vol. 5, no. 1, pp. 46-55, 1998.

[5] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC:
Distributed shared memory programming. John Wiley & Sons
Inc., New York, May 2005.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source
Cloud-Computing System,” in 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID),
May 2009, pp. 124 —131.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: The Linux Virtual Machine Monitor,” in Proceedings
of the Linux Symposium, vol. 1, 2007, pp. 225-230.

[8] Berkeley UPC Compiler. [Online]. Available: http://upc.lbl.gov
[9] The George Washington University High Performance

Computing Laboratory. UPC NAS Parallel Benchmarks.
[Online]. Available: http://threads.hpcl.gwu.edu/sites/npb-upc

