An Introduction to TSHMEM for Shared-Memory
Parallel Computing on Tilera Many-Core Processors

Bryant C. Lam Alan D. George

Herman Lam

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering
University of Florida
Gainesville, FL 32611-6200
{blam, george, hlam}@chrec.org

1. INTRODUCTION

Parallel programming is experiencing explosive growth
of demand due to processor architectures shifting toward
many processing cores in an effort to maintain performance
progression in the face of technological and physical limi-
tations. With the emergence of many-core processors into
high-performance computing (HPC), the development of
parallel programming models, tools, and libraries is more
essential than ever before.

We briefly present and evaluate the design of TSHMEM
(TileSHMEM), a SHMEM library based on the OpenSHMEM
version 1.0 specification [1]. TSHMEM delivers a high-
performance many-core programming library that improves
developer productivity and enables SHMEM application
portability for the Tilera TILE-Gx and TILE Pro architec-
tures. With the purpose of leveraging many-core capabilities
and optimizations, TSHMEM is built atop Tilera-provided
libraries with microbenchmarking employed in order to com-
pare the realizable performance and overhead between those
libraries and TSHMEM functionality.

Our research focuses on the TILE-Gx36 with its pre-
decessor, the TILEPro64, as baseline. The TILEPro is
Tilera’s previous generation of many-core processors with
32-bit processing cores interconnected via four dynamically
dimension-order-routed networks and one developer-defined
statically routed network. The TILE-Gx is Tilera’s new
generation of 64-bit many-core processors. FEach 64-bit
processing core is now attached to five dynamic networks.
In addition, TILE-Gx provides hardware accelerators not
found on previous Tilera processors: mPIPE (multicore Pro-
grammable Intelligent Packet Engine) for wire-speed packet
classification, distribution, and load balancing; and MiCA
(Multicore iMesh Coprocessing Accelerator) for cryptographic
and compression acceleration.

2. DEVICE PERFORMANCE STUDIES

Tilera provides the Tilera Multicore Components (TMC)
library for general application development, suitable for any
task model and componentized such that developers only
leverage the routines needed. In addition, the gxio library
provides programmability for features specific to TILE-Gx
devices, such as mPIPE and MiCA. Benchmarking these
libraries is necessary to determine the upper bound on per-
formance realizable for any library design (e.g., TSHMEM) or
application. Routines relevant to the functionality required in

This work was supported in part by the I/UCRC Program of the National Science
Foundation under Grant Nos. EEC-0642422 and 1IP-1161022.

TSHMEM are microbenchmarked to compare performance
and overhead. These include TMC common memory for
shared-memory programming, TMC spin and sync barriers
for processing synchronization, and UDN helper functions
that communicate explicitly on the iMesh.

TSHMEM leverages common memory to provide the PGAS
model and shared-memory semantics of SHMEM. The band-
width of memory-copy operations to and from this shared
memory is decisively important in TSHMEM due to signif-
icant use in one-sided data transfers. Effective bandwidth
on TILE-Gx36 experiences three significant transitions in
performance. The first two transitions are attributed to and
occur at the L1d (32kB) and L2 (256 kB) cache sizes. The
L1d cache performance tops out around 3100 MB/s, and the
L2 cache performance reaches a peak between 1900 MB/s and
2700 MB/s. Tilera’s DDC (Dynamic Distributed Cache) is
attributed to the third performance transition. DDC presents
a large L3 unified cache that is the summation of each tile’s
L2 cache. Effective bandwidth decreases from 1000 MB/s as
transfer sizes beyond 1 MB begin exceeding the L2 caches of
nearby tiles from DDC, converging at 320 MB/s in memory-
to-memory transfers. The TILEPro64 follows the same
trends experienced with TILE-Gx36. Performance is stable
at or near 500 MB/s through the L1d and L2 cache sizes and
decreases into memory-to-memory transfers (370 MB/s).

The TMC library provides two types of barriers for syn-
chronization: spin and sync. As expected, spin barriers vastly
outperform sync barriers due to their polling nature, with
latencies of 1.5 ps and 47.2 s at 36 tiles for the TILE-Gx36
and TILE Pro64, respectively, compared to 321 ps and 786 ps.
Futhermore, the spin barrier for the TILE-Gx significantly
outperforms the TILE Pro’s.

Tilera provides access to the UDN (User Dynamic Net-
work), a low-latency direction-order-routed dynamic network
on their iMesh. The TMC library provides UDN helper
routines that facilitate these transfers via two-sided send-
and-receive calls. Minimum payload (8 bytes for TILE-Gx,
4 bytes for TILE Pro) throughput for neighbor-to-neighbor,
side-to-side, and corner-to-corner cases between two tiles on
the UDN is 2900, 2500, and 2000 Mbps on TILE-Gx and
1700, 1300, and 980 Mbps on TILE Pro.

3. DESIGN OVERVIEW OF TSHMEM

The SHMEM communication library [2] adheres to a strict
PGAS model whereby each cooperating parallel process (also
known as a processing element, or PE) consists of a shared
symmetric partition within the global address space. Each

3500

=4=TILE-Gx36 dynamic put
3000 || —®=TILE-Gx36 dynamic get
==#—TILE-Gx36 static put
=>=TILE-Gx36 static get
=#=TILEPro64 dynamic put
=@-=TILEPro64 dynamic get

N
a
o
1<)

2000

1500

1000

Effective Bandwidth (MB/s)

o
o
<)

4B

Transfer Size

Figure 1: Effective bandwidth of TSHMEM put/get
transfers for dynamic-dynamic on TILE-Gx36 and
TILEPro64 and static-static on TILE-Gx36.

symmetric partition consists of symmetric objects (variables
or arrays) of the same size, type, and relative address on
all PEs. TSHMEM currently supports a subset of the
OpenSHMEM V1.0 specification and implements the core
functions commonly required by most SHMEM applications.
These functions include symmetric memory management,
one-sided put/get transfers, barriers, memory fencing, point-
to-point sync, and collectives (e.g., broadcast, reduction).
Atomic operations are not currently available in TSHMEM.

3.1 Point-to-Point Data Transfers

OpenSHMEM specifies several categories of point-to-point
data transfers consisting of elemental, bulk, and strided
put/get operations.

Dynamic symmetric variables are allocated at runtime on
all PEs via SHMEM’s dynamic memory allocation function
shmalloc(). Due to the symmetry of each partition, a tile
can determine the virtual address of any other tile’s dynamic
symmetric object by calculating the offset of its own object
from its partition’s start address and then adding the offset
to the target tile’s partition start address.

Static variables reside in the heap segment of the program
executable and are allocated during link time. Unfortunately,
the heap space resides in private memory of a process and
is not directly accessible to other processes. TSHMEM
facilitates data transfer from these static symmetric objects
via UDN interrupts on Tilera’s iMesh interconnect. If the
local tile cannot service an operation, it can notify the
remote tile over UDN for assistance. In the case when
both target and source addresses point to static symmetric
variables, neither local or remote tile will be able to service
the operation. One of the tiles will create a temporary
shared-memory buffer to assist in the transfer, incurring
an additional memory copy operation as overhead. Static
symmetric variable transfers in TSHMEM are not currently
supported on the TILE Pro architecture due to lack of support
for UDN interrupts.

Figure 1 shows the effective bandwidth for dynamic and
static put/get transfers in TSHMEM. Note that put per-
formance closely aligns with get performance for both the
TILE-Gx36 and TILEPro64. TSHMEM dynamic put/get
operations demonstrate low overhead in comparison with the
performance of the common memory microbenchmark. Ma-
jor performance penalty is incurred only in the static-static
case when temporary shared-space allocation is required to
aid in the transfer.

Latency (us)

0 5 10 15 20 25 30 35 40
Number of Tiles
=4—TSHMEM, TILE-Gx36 (best) ==TSHMEM, TILE-Gx36 (worst)
TSHMEM, TILEPro64 ===TMC spin, TILE-Gx36

Figure 2: Latencies of TSHMEM barrier.

3.2 Synchronization

OpenSHMEM specifies several categories of synchroniza-
tion: barrier sync; communication sync with fence/quiet; and
point-to-point sync (waiting until a variable’s value changes).

Microbenchmark results for Tilera’s TMC spin and sync
barriers illustrate that using sync barriers is not feasible due
to very high latency and the spin barrier on TILEPro is
significantly slower than the one on TILE-Gx. Consequently,
TSHMEM implements OpenSHMEM barriers using the UDN
to synchronize between tiles. The start tile in the active set
generates an active-set identification for the barrier in order
to prevent overlapping barrier calls from returning out-of-
order or stalling. The active-set identification is encoded with
a wait signal and is sent to the next tile and resent linearly
until the last tile sends it back to the start, acknowledging
that all participating tiles have reached the same execution
point in the program. The process is then repeated with
a release signal, allowing the blocking processes to linearly
forward the signal before resuming program execution.

The performance of TSHMEM barriers is shown in Figure 2.
As noted, the TILEPro64’s TSHMEM barrier with a latency
of 3ps at 36 tiles vastly outperforms its corresponding TMC
spin barrier (47.2 ps). Due to a higher clock frequency, the
TILE-Gx36’s TSHMEM barrier exhibits lower latencies of
1.5 to 2.4 ps at 36 tiles.

4. CONCLUSIONS AND FUTURE WORK

We have briefly presented and evaluated our software
architecture and design for TSHMEM, a high-performance
OpenSHMEM library built atop Tilera-provided libraries
for their Tilera TILE-Gx and TILEPro many-core archi-
tectures. Performance is demonstrated with microbench-
marks of Tilera-library and TSHMEM functions, offering
direct validation of realizable performance and any inherited
overhead. Future work of TSHMEM will focus on fully
achieving OpenSHMEM compliance via addition of atomic
operations. We also plan to leverage novel architectural
features of the TILE-Gx such as the mPIPE packet engine as
we explore designs for expanded functionality in TSHMEM
across multiple many-core devices.

S. REFERENCES

[1] OpenSHMEM. OpenSHMEM API, v1.0 final, 2012.
http://wuw.openshmem.org/.

[2] Silicon Graphics International Corp. SHMEM API for parallel
programming, 2012. http://wuw.shmem.org/.

http://www.openshmem.org/
http://www.shmem.org/

	Introduction
	Device Performance Studies
	Design Overview of TSHMEM
	Point-to-Point Data Transfers
	Synchronization

	Conclusions and Future Work
	References

