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ABSTRACT
Numerous studies have shown the advantages of hardware
and software co-design using FPGAs. However, increas-
ingly lengthy place-and-route times represent a barrier to
the broader adoption of this technology by significantly re-
ducing designer productivity and turns-per-day, especially
compared to more traditional design environments offered
by competitive technologies such as GPUs. In this paper,
we address this challenge by introducing a new approach to
FPGA application design that significantly reduces compile
times by exploiting the functional reuse common through-
out modern FPGA applications, e.g. as shared code li-
braries and unchanged modules between compiles. To eval-
uate this approach, we introduce Block Place and Route
(BPR), an FPGA CAD approach that modifies traditional
placement and routing to operate at a higher-level of ab-
straction by pre-computing the internal placement and rout-
ing of reused cores. By extending traditional place-and-
route algorithms such as simulated-annealing placement and
negotiated-congestion routing to abstract away the detailed
implementation of reused cores, we show that BPR is capa-
ble of orders-of-magnitude speedup in place-and-route over
commercial tools with acceptably low overhead for a variety
of applications.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering]: Computer-aided De-
sign

General Terms
performance, design

Keywords
macroblock, placement and routing, core, reuse, coarse-grain,
FPGA, speedup
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1. INTRODUCTION
Existing work has shown the performance and power ad-

vantages of hardware/software co-design using FPGAs [1, 2].
However, the complexity of current FPGA design method-
ologies has been a barrier to mainstream adoption of this
promising technology [3]. Chiefly, typical placement and
routing (PAR) times of tens of minutes to hours and even
days [4] present significant challenges in the development of
FPGA systems by lengthening the design-debug cycle and
decreasing the turns-per-day of designers, resulting in de-
creased design quality and increased time to market. FPGAs
also increasingly compete for the attention of designers against
technologies without such problems, such as DSPs and GPUs,
which even if not ideal in terms of performance, have com-
pile times of seconds to minutes. In fact, increasingly pop-
ular languages such as OpenCL rely on these fast compile
times for runtime compilation, which prevents fully com-
pliant OpenCL usage on FPGAs. Furthermore, ever larger
designs making use of rapidly increasing device resources
means that PAR times will only continue to grow. Because
this trend does not hold for competing technologies such as
CPUs and GPUs, without a new approach, today’s FPGA
productivity gap will only be exacerbated by tomorrow’s de-
vices.

In this paper, we present an approach for significantly re-
ducing PAR times based on functional reuse. Many modern
FPGA designs often incorporate custom datapaths for effi-
cient computation as part of a larger system on chip (SoC)
that includes large cores such as soft processors and inter-
faces to external board components. Because their design
and verification is inherently time consuming, SoC cores are
good opportunities for reuse and are often selected by the
designer from shared or vendor libraries such as Altera’s
SOPC builder [5] or OpenCores [6], or are imported from
previous designs. Custom datapaths, too, often make use
of widely used cores such as floating-point arithmetic op-
erators. Even in cases where truly unique cores must be
developed for a single instance in an application, the core is
ultimately reused in time, present in numerous compiles over
the course of the system’s development and testing. Our ap-
proach to placement and routing allows this existing reuse
to enable large PAR speedups for most designs.

Towards this end, we’ve developed a new FPGA CAD
approach, Block Place and Route (BPR), that modifies tra-
ditional FPGA placement and routing to operate at a higher
level of abstraction. Unlike traditional FPGA CAD flows,
shown in Figure 1(a), which decompose a circuit into numer-
ous fine-grained lookup-tables (LUTs) during every compi-
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Figure 1: (a) Traditional CAD flows decompose circuits into numerous LUTs, resulting in lengthy place and
route. (b) BPR enables fast placement and routing of reused cores with a database of pre-computed core
implementations for different FPGA locations. For each reused core, BPR only has to place the black-box
footprint (i.e. macroblock) of the core, and routes only the connections between macroblocks, providing 100x
speedup compared to commercial tools.

lation, BPR pre-computes the internal placement and rout-
ing of reused cores for numerous positions in the FPGA.
As shown in Figure 1(b), BPR enables reused cores to be
compiled a single time into a core database and then reused
in different locations on the FPGA in subsequent compiles,
with only new logic requiring a full-detail PAR. We extend
traditional PAR algorithms such as simulated-annealing place-
ment [7] and negotiated-congestion routing [8] to place only
the footprints of these pre-computed cores, calledmacroblocks,
and route only the communication between cores. This ab-
straction achieves large speedups in PAR up to 190x over
commercial tools, enabling average 1.1s compile times in
line with competing technologies such as GPUs. By ex-
tending the best current approaches to traditional place-
ment and routing, BPR achieves these speedups with ac-
ceptable overhead in terms of area (up to 49% utilization)
and performance (average 34% decrease in clock frequency)
relative to full-detail PAR performed by commercial tools
for many applications. For situations where such overhead
is prohibitive, BPR could speedup debugging iterations and
be replaced with a full-detail PAR upon completion. Fur-
thermore, BPR achieves these fast compilation times while
using under 25MB for a large Altera EP3C120 Cyclone III,
compared to up to 500MB for commercial tools. This small
memory footprint potentially enables just-in-time (JIT) com-
pilation of FPGA circuits for languages such as OpenCL.

2. PREVIOUS WORK
One previous method of accelerating PAR uses special-

ized devices that substitute fine-grain FPGA resources with
coarse-grain functionality specific to various domains [9, 10].
This specialization can result in substantially faster synthe-

sis and PAR through large reductions in problem size. Spe-
cialized devices can additionally achieve higher performance
with reduced area through optimized hardware, but sacrifice
the flexibility provided by the fine-grain reconfigurability of
FPGAs. These specialized devices also require costly design
and manufacture without the economies of scale of more
general architectures.

Intermediate fabrics [11] and similar approaches [12, 13]
achieve the PAR acceleration of coarse-grain physical archi-
tectures on commercial-off-the-shelf (COTS) FPGAs through
virtualization, implementing the specialized architecture as
an overlay network. Virtualization can retain some of the
flexibility of the underlying FPGA by switching between any
number of virtual fabric instances, each designed for dif-
ferent application domains. One limitation of intermediate
fabrics is the area and clock (alternately, latency) overhead
caused by implementing the architecture’s routing resources
on top of the underlying FPGA. Also, although fabric se-
lection can be deferred to increase flexibility, the fabric in-
stances used must still be designed offline and a priori, since
the fabric itself must be compiled for the target device, typ-
ically requiring hours. This limitation leads inevitably to
some additional overhead due to functional mismatches be-
tween a design and the available fabrics, and makes interme-
diate fabrics impractical for SoC-style design, where it isn’t
possible to incorporate every possible interface or large core
a priori. BPR similarly uses abstraction to achieve PAR
speedup, but has less overhead and does not have these flex-
ibility limitations. BPR can also be complementary to in-
termediate fabrics, potentially improving the flexibility of
intermediate fabrics by allowing fabric instances to be gen-



erated rapidly from precompiled functional units and fabric
resources.
Other approaches have looked at modifying PAR algo-

rithms to reduce runtimes at the expense of some qual-
ity. Lysecky introduced JIT FPGA compilation [14] and
dynamic FPGA routing [15] to speedup place and route.
However, that work required a specialized FPGA fabric and
didn’t directly support COTS FPGAs. Mulpuri and Hauck
[16] explored routing quality and execution time tradeoffs,
enabling up to 3x PAR speedups with 27% clock overhead.
Although this speedup is significant for many uses, potential
applications such as JIT compilation require larger speedups.
Wires on Demand [17] introduced a fast PAR approach for
partial reconfiguration (PR) flows, enabling rapid synthesis
of interconnect between pre-PARed modules in a PR system.
BPR is conceptually similar, but doesn’t focus on statically
planned PR regions, and might be used in conjunction with
Wires on Demand to quickly synthesize additional modules
whose performance or area is not of chief concern.
Previous work has also looked at reducing placement and

routing times, or both, through the use of precompiled logic,
called macroblocks or hard macros, by analogy with ASIC
floorplanning approaches. Tessier [18] proposed using inter-
nal placement data for precompiled cores to speedup place-
ment, using a multiple-step custom floorplanning and place-
ment algorithm, achieving a total 2.6x speedup over com-
mercial PAR times. Our approach also attempts to reuse
internal placement data, except that we use modified ver-
sions of traditional simulated annealing FPGA placement
algorithms. We also attempt to reuse pre-computed inter-
nal routing, resulting in substantially larger PAR speedups.
Most recently, Lavin et al. introduced HMFlow [19], a

tool that makes use of both placement and routing infor-
mation for precompiled cores, achieving 10x speedups over
commercial PAR, with a 2-4x decrease in clock rate for de-
signs up to 50% of device area. The current version of
HMFlow focuses on smaller cores than BPR, using case
studies with an average of 16 slices per core. HMFlow
also uses a custom greedy-based placement heuristic and
a single-pass congestion-avoiding router. BPR focuses on
larger cores, including those encountered in SoC design and
floating-point computations. Using larger cores can permit
greater speedups, but introduces complexities which we dis-
cuss in this paper, including leaking routes and core pack-
ing/performance tradeoffs. BPR also uses modified ver-
sions of traditional and (at least theoretically) higher quality
placement and routing algorithms, contributing to compar-
atively lower overhead in many cases.
Finally, many commercial FPGA toolchains include some

support for manual incremental compilation and manual
floorplanning, with a goal of avoiding re-synthesizing or re-
computing the placement and routing of unchanged mod-
ules in a large design [20]. BPR accelerates compilation
similarly, but instead pre-computes the PAR for each mod-
ule in the design at many (typically all) possible locations
on the device. This data gives BPR the ability to adjust to
even large changes in communication between core instances
in a design by essentially re-floorplanning the design, auto-
matically, during BPR’s placement phase. Note that BPR’s
more dynamic approach is more similar to the flexible place-
ment of hard macros in ASIC design flows. One difficulty
in adapting this technique for use with FPGAs is accommo-
dating variations in the logic and routing resources across
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Figure 2: Overview of BPR tool flow. High-level
BPR netlists are matched against relocatable core
data, including intra-block PAR and port specifi-
cations. BPR then places each core as blocks and
stitches blocks together through inter-block routing.
The output files include an Altera Quartus-specific
netlist file (VQM), placement (QSF) and routing
(RCF) data for the full design. This design is vali-
dated and final bitfiles and timing are produced by
Altera’s Quartus.

modern FPGAs, which is discussed in more detail in Sec-
tion 3.2.

3. BPR: MACROBLOCK-BASED PAR
This section describes the Block Placement and Routing

(BPR) tool. Section 3.1 presents an overview of the tool
flow. Section 3.2 explains how cores are integrated with BPR
and converted into relocatable macroblocks. Section 3.3 dis-
cusses the BPR placement algorithm. Section 3.4 explains
BPR routing.

The current version of BPR is compatible with Altera
Cyclone III devices [21], so much of the discussion involves
terminology specific to that vendor’s devices. However, this
practical limitation of our tool is due to the limited public
information on commercial FPGA architectures. Note that
BPR could be made to work for any island-style FPGA ar-
chitecture with directional routing, given information about
the device’s layout and routing connectivity, and with the
addition of any PAR data formatters appropriate for the
platform. To our knowledge, BPR is the only non-proprietary
router that can target Altera devices.

3.1 Overview
From the highest level, BPR performs placement for a

complete design using black-box footprints of pre-implemented,
coarse-grain cores, referred to as macroblocks. Such block
placement is possible because every macroblock is relocat-



able to potentially any location on the FPGA, due to a
BPR pre-processing step that computes PAR for the in-
ternals of the corresponding core at each block location,
which we refer to as intra-block PAR. After placing each
macroblock, BPR performs inter-block routing by stitching
together the internal placement and routing of each placed
macroblock. Speedup in placement and routing is realized
by using coarse-grain cores, which reduces the problem size
of PAR by ignoring the details of intra-block PAR, and fo-
cusing instead on how the system of macroblocks fit together
on the device. The BPR tool flow that implements this
approach is illustrated in Figure 2 and summarized in the
following subsections.

3.1.1 Core Database (DB) and Mapping
BPR must initially be provided with a library of precom-

piled cores to stitch together to compose larger designs. The
contents and construction of this database will be discussed
more in Section 3.2, but it contains three main pieces of
data needed by BPR: the name and port specification of
each core, the rectangular size and origin of all legal place-
ments of each core on the device, and the specific device
resources (logic and routing) used by the core for each legal
placement.
BPR accepts a simple high-level netlist format that sup-

ports core instances and nets capable of connecting arbitrary
subranges of instances’ ports. BPR performs core mapping
on these netlists, similar to functional mapping in traditional
FPGA tools, by matching instance types to the core types
available in the core database, producing a legal core netlist.
The mapper also takes care of miscellaneous issues such as
clock net promotion (BPR currently uses Quartus to route
clock signals). Although there are interesting opportunities
for optimization of these high-level netlists, such optimiza-
tions are outside the scope of this paper. Furthermore, as
shown in Figure 1(b), BPR can support a mixture of reused
cores (high-level BPR netlists) and non-reused HDL handled
in a post-processing step of traditional PAR (e.g. allowing
the specification of unique control logic). However, in this
paper we solely evaluate reused cores. For Altera target
devices, BPR exports a core netlist to Quartus as a two-
level hierarchical netlist for the complete design as VQM files
specifying the top-level entity and core implementations.

3.1.2 Block Placement and Inter-block Routing
Once a core netlist has been created by the mapper, BPR’s

block placer attempts to choose between all legal block place-
ments for each core (specified in the core database) in a way
that fits all core instances on the device while minimizing
the distance and expected routing congestion between con-
nected instances. Note that a legal block placement for one
core type will typically overlap many legal placements for
other core types (and even other placements of the same
type). Our approach to block placement uses a modified
version of the VPR [7] simulated-annealing placement al-
gorithm that we have extended to handle these issues. We
provide a more detailed discussion of the block placer in Sec-
tion 3.3. For Altera targets, the placement of each resource
is exported as full placement constraints in a QSF file.
Finally, once the blocks for all core instances have been

placed on the device, the inter-block router is only responsi-
ble for handling the nets connecting blocks because all intra-
block routing can be loaded from the core database. First,

the router must load from the core database and mark as
unavailable all the routing resources utilized internally by
each block. The router then loads the resource endpoints of
each block’s ports. Given these hard constraints, the nets
between blocks are routed while minimizing route length.
Our inter-block routing approach, discussed in more detail
in Section 3.4, is a negotiated-congestion router based on
PathFinder [8]. For Altera targets, BPR exports these inter-
block routes, along with the internal routes of each block,
as full wire-level routing constraints in an RCF file.

3.1.3 Bitfile and Timing
BPR provides the various output files shown in Figure 2

to Quartus for validation and bitfile creation. In the cur-
rent version of BPR, Quartus is responsible for two other
tasks due to limited available information for the Cyclone
III device architecture. First, although BPR has informa-
tion about the connectivity of most routing resources on
Cyclone III devices, it does not have information about the
device’s clock distribution networks. Thus, we currently rely
on Quartus to handle clock distribution. Second, for block
PAR, the maximum clock frequency fmax is determined by
two factors: the minimum clock rate of any of the core place-
ments used in the final design and the maximum delay of the
inter-block routes. The core database contains block timing
data; however, BPR lacks detailed delay information for the
Cyclone III’s routing resources, currently requiring Quartus
to compute the inter-block delays.

3.2 Core DB: Making Blocks Relocatable
As previously discussed, cores supported by BPR must be

supplied in a pre-existing core database. BPR is capable of
adding arbitrary cores to this database, specified as stan-
dard VHDL or Verilog modules. In this section we describe
how the core database is populated and the process used to
create the relocatable macroblocks used by the placer and
router. This process is illustrated in Figure 3. Rather than
performing these steps manually, we have created a collec-
tion of Python tools that integrate with external programs
such as Altera Quartus for intra-block PAR and Synopsys
Synplify for core synthesis.

3.2.1 Specification
Cores are added to the database by providing two sets of

files to BPR: the standard VHDL or Verilog specification of
the core module and an XML-based core specification file,
corespec, that describes how the core should be handled by
the tools. The corespec contains the core’s name for use in
netlists, a human-readable description for tools and debug-
ging, and identifies the implementing HDL files and top-level
entity name. The corespec also identifies and describes the
ports that should be exposed in BPR, and allows specifying
generics for parameterized modules. Cores may use multiple
HDL files in their implementation, but must only contain a
single top-level entity.

3.2.2 Synthesis and Resource Determination
The BPR database tools first wrap the core entity by a

top-level interface enforcing the corespec. The wrapped en-
tity is then synthesized using standard HDL synthesis tools,
currently either Quartus or Synplify. This synthesis pass is
required for future steps, but also provides standard opti-
mizations for logic inside the module. Note that because
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leaking routes outside the block area.

the top-level entity is synthesized in this stage in isolation,
optimization between cores is prevented, potentially reduc-
ing the quality or fit of the overall circuit. This limitation
could be addressed through the use of high-level optimiza-
tions, but such approaches are likely to be domain-specific,
and are outside the scope of this paper. Finally, the results
of synthesis are cleaned up to remove entities inferred by
Quartus, such as IO and clock buffers, and stored in the
database for future export.
The core is then placed and routed on the device us-

ing Quartus, with top-level ports assigned to device pins.
This trial PAR pass is used to find the device primitive
types and counts required by the module, enumerating the
device primitives used through back-annotating Quartus’
placement to QSF. This method works even for cores in-
corporating protected IP (e.g. some Altera Megafunctions),
where the primitives used would otherwise by obscured be-
hind black-box instances in the VQM after synthesis.

3.2.3 Block Planning
Once Quartus or Synplify has optimized the core logic

and determined the core’s resource requirements, the BPR
database tools can begin planning potential placements of
blocks on the device. BPR is currently limited to handling
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cores shaped as rectangular blocks. On Altera devices, we
measure block geometry in terms of the coordinates of is-
land structures such as the Logic Array Blocks (LABs) and
special resources like M9Ks memory units [21].

The first step of block planning is determining block size.
For cores composed of mostly logic (i.e. flip-flops and LUTs),
block size is determined by the number of resources required
for the core and the packing ratio of the LABs (i.e. the aver-
age ratio of flip-flops or LUTs occupied in each LAB). Low
packing ratios waste device resources, as the placer can’t
resolve placement of the fine-grain structures within over-
lapping blocks. For large cores, very high packing ratios will
sometimes fail intra-block PAR using Quartus, typically due
to routing pressure within the core. However, even before
intra-block PAR fails outright, high packing can reduce the
fmax Quartus achieves for the block. In practice, choosing
an appropriate packing ratio, and thus block size, is cur-
rently performed manually, with target ratios of 80-95% pro-
viding good area utilization without overly impacting per-
formance. An example of these trends is shown in Figure 4.
Note that the actual area used by the core (red line), set
through the target packing ratio, changes in steps, depend-
ing on the closest rectangular area and other constraints on
shape including the device’s spacing for any required special
resources. As the figure illustrates, for many cores, packing
can be increased up to a point without significantly affecting
fmax, but dropping rapidly after (e.g. 80% packing).

The second step of block planning involves identifying
rectangular regions on the device that contain the necessary
number and type of resources. To determine legal place-
ments, the block planner uses a sliding-window approach,
moving a block-sized footprint across the device one unit
at a time while checking whether the resources covered are
sufficient, as illustrated in Figure 3.

Once all the legal placements have been identified, the
database tools group the placements into sets based on porta-
bility. The internal placement and routing of one block is
portable to another location only if the logic and routing
resources used inside the block exist at the same relative lo-
cations (and have the same connectivity) at the other loca-
tion. The block planner determines portable sets by assign-
ing signatures to each placement that incorporate informa-
tion about the logic and routing resources within each place-
ment footprint. From each of these sets, one block is chosen
as a representative, called a block exemplar, which reduces



the work in subsequent stages by serving as a stand-in re-
placement for all the blocks in the set. The block planner ul-
timately stores a grid of all legal placements in the database,
with each placement identifying its exemplar block, for the
later use of the BPR placer.

3.2.4 Intra-block PAR and Leaking Routes
Finally, BPR determines the intra-block PAR of each ex-

emplar block by another pass through Quartus. BPR can
stitch together the intra-block PAR of blocks without con-
flict only if all the placed primitives and routes are con-
tained within the block’s footprint. For Altera targets, intra-
block placements are confined to the rectangular placement
footprint by specifying a LogicLock floorplanning constraint
[22] on the top-level module. Unfortunately, current ver-
sions of Quartus don’t guarantee that intra-block routing
will be confined to the LogicLock region, so the output of
this second pass often includes internal routes making use
of resources outside the block footprint, which we call leaked
routes.
Though we might wish LogicLock could take care of these

issues for us, the inability of LogicLock to make guarantees
about routing reflects the limitations of modern FPGA rout-
ing architectures. The general-purpose routing of modern
FPGA architectures relies heavily on long wires, wires span-
ning multiple islands before terminating in a switch box [23].
For example, the primary general-purpose routing resources
on the Cyclone III architecture are the R4 and C4 wires,
which span four LABs in row and column channels, respec-
tively. Length-16 and even -24 (C16 and R24) are available
on the large devices in the Cyclone III family. These long
wires complicate the confinement of intra-block routing. For
example, for a 2x2 block footprint, no length-4 wires starting
within the block can terminate within the block. Though lo-
cal wires can usually handle the routes for such small blocks
without leaks, in general, the more logic contained within
a core and the smaller its block footprint, the more routes
will leak. The effects and trends of these leaks are illus-
trated in Figure 5 for an example core, showing that, due
to internal routing pressure and the use of long tracks, an
increasing number of a core’s internal routes leak from the
core’s placement footprint (# of LABs) as the size of the
footprint is reduced. In the future, as FPGA device sizes
continue to increase, we can expect an even greater reliance
on long wires to keep interconnect delays low [23], meaning
more leaked routes complicating intra-block PAR.
In most cases, there are two factors leading to leaked

routes. First, for some nets, a leaking route may provide
lower delays than any non-leaking route, helping achieve a
high fmax for the block. Second, at high routing pressures
it may not even be possible to route a net without leaking.
Thus, BPR deals with leaked routes in two stages. First,
any leaking routes are detected after the first pass through
Quartus. The worst leaks are then constrained using addi-
tional routing constraints (RCF interval constraints) to the
block footprint, and Quartus is re-run with all other routes
locked. This process is effective to remove a large number
of leaks, at some cost to fmax increasing with the number
of routes re-routed. However, for large blocks, it is rare that
all leaks can be fixed in this way. In this case, we currently
add padding to the block’s footprint to avoid overuse of the
leaked routes’ resources.
It should be noted that capturing the intra-block PAR for
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Figure 5: Number of leaked routes for different
packing ratios for a floating-point multiplier. The
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area (leaking) increases with larger packing ratios
due to internal routing pressure.

all the legal placements of a core is typically the most time-
consuming step involved in populating BPR’s core database.
For a large device, most cores will yield hundreds of ex-
emplars after block planning, requiring hundreds of runs
through Quartus, which can take considerable time. The
time required to add a new core can be substantially re-
duced in two ways. First, although a core may have many
exemplars, each exemplar is not equally valuable in terms
of placement flexibility, with some exemplars corresponding
to only a single placement option, and others covering tens
or hundreds. Thus, we have added an option to our tools to
sift exemplars, throwing out low-value exemplars until flex-
ibility is impacted to some degree, specified as a percentage.
Second, the intra-block PAR of each block placement is in-
dependent, and thus is computed in parallel by our tools
(using up to one instance of Quartus per machine thread).
For some use-cases, for example traditional offline FPGA
design, this process could be parallelized over multiple ma-
chines making core addition extremely fast.

3.3 Block Placement
Given a legal core netlist, BPR’s first task is determining

where each core instance should be placed on the device.
BPR’s block placer is responsible for fitting all cores on the
device by choosing between legal placement blocks, while
considering routability by minimizing the distance between
communicating instances and minimizing the expected con-
gestion experienced by those nets.

Because of the similarities with traditional FPGA place-
ment, we based our block placer on the well-known simulated-
annealing placement strategy of VPR [7]. However, block
placement differs significantly from traditional FPGA place-
ment in two important ways: 1) blocks placed by BPR are
not atomic in size and type, conflicting through overlap with
multiple other placements, and 2) conflicting with place-
ments of other core types. In this section we discuss how we
modified VPR’s placement algorithm to handle these com-
plexities and support block placement.

Like VPR, our block placer begins with an initial, poor
(randomly generated) placement and evolves an improved
solution through many iteratively applied random adjust-
ments, with a tendency to prefer improvements based on an
annealing schedule. The solution is perturbed in each iter-
ation by randomly selecting a block instance, placed or un-
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Figure 6: Placer conflicts and bookkeeping. The
block placer uses an array of planes to keep track
of the blocks of each core type available under the
current placement. Individual device resources are
marked as used or free on a common use grid. Note
that the placement of a single block, here a block of
type core 0, typically conflicts with multiple other
blocks on each plane.

placed, and moving it to a new randomly selected placement,
displacing or evicting any other instances whose placements
are newly in conflict.
The primary challenge of adapting this process to place

blocks, rather than atomic device resources, is the need for
efficient bookkeeping. For example, to determine if a par-
ticular block is in conflict with other placed blocks, it is
necessary to check if any of the device resources under its
footprint are already used by the placement of another in-
stance, which is equivalent to checking if the block footprint
intersects the footprint of any other instance. Because this
check is performed every iteration, it is also essential that
the check be performed efficiently.
In BPR’s placer, we require two pieces of information in

each iteration: which blocks of each core type are in conflict,
and which instances, through which block placements, are
making use of each device resource. BPR efficiently deter-
mines this information through a data structure resembling
Figure 6. We maintain a grid representing the device cell
layout (e.g. LAB or M9K) as a common reference for area
utilization. Each coordinate in this grid contains two point-
ers, referencing the instance and block (a placement) making
use of the cell, or nil if the resource is free. Upon choosing
a random placement during an iteration, this grid can be
used to efficiently find any affected instances for displace-
ment or eviction. We track the availability of placement
blocks through an array of planes, one for each core type
used in the netlist. Each plane holds a grid of legal place-
ments, referenced by origin, as well as used and unused lists,
permitting efficient random access to available placements
(e.g. for displacement operations).
One other challenge faced by block placement is that, in

terms of block performance, all placements are not created
equal. Because the distribution of logic and, to a greater ex-
tent, the distribution and connectivity of routing resources
varies across the device, there is also variation in the fmax

achieved for the same core placed at different locations. The
amount of variation depends on the core, but can be signifi-
cant in the worst cases, with deviations of up to 20% for large
blocks such as memory interfaces. The BPR placer handles
this issue by incorporating the frequency of the minimum-
performing block in the current solution as a term in the cost
function, preferring the selection of faster blocks in these sit-
uations.

3.4 Inter-block Routing
Once the block placer has determined the location of each

block instance, and thus the specific intra-block PAR being
used, it is the inter-block router’s task to stitch the design
together by routing the nets connecting each placed block.
Inter-block routing is identical to traditional FPGA routing,
except that much of the design has already been routed as
part of the placer’s selection of blocks, and, in this sense,
the router has less flexibility to minimize net delays. Due to
these similarities, we chose the PathFinder [8] negotiated-
congestion router as the basis for the inter-block router in
BPR.

The router begins by loading the device’s routing resource
graph, stored alongside cores in the core database. Because
of the large size of modern FPGAs, one of the major chal-
lenges in making BPR’s router fast was finding an efficient
in-memory representation for this graph. Our representation
stores the graph as an array of grids, one for each permuta-
tion of resources (e.g. R4-C4 or R4-R4), using the device’s
coordinate system. For each resource pair, the connectiv-
ity at each coordinate, equivalent to an individual switch-
or connection-box, is stored efficiently as a grid of bitfields
for offsets in a neighborhood around the driving resource’s
(x, y) position. In the database, space is saved by sorting
these connectivity patterns and storing each unique pattern,
or box topology, exactly once. The router’s dynamic cost
data is stored similarly. In addition to providing an efficient
representation of the device’s resource graph, this method of
storage has other advantages when performing pathfinding,
which will be discussed later.

After loading the device’s routing graph, the router loads
the routing resource utilization data from the core databse
for each block appearing in the final placement. This data
represents routes that BPR’s router cannot disrupt. To en-
sure that BPR will not overuse these routing resources, this
data is used to break connections in the router’s representa-
tion of the device’s routing resource graph. The endpoint
routing resources corresponding to blocks’ ports are also
loaded at this time and used to annotate the nets.

With the newly modified graph, BPR routes all nets us-
ing essentially the same process described in PathFinder [8].
In the details, though, we have made a couple of optimiza-
tions to keep run times low. First, instead of using Dijk-
stra’s method to find shortest-paths, we have used a much
faster implementation of A* [24], providing speedups of up
to 16x on large devices. Second, we reduce the effective size
of the routing resource graph when exploring shortest-paths
by making the approximation that wire cost is independent
of a wire’s index within the channel and depends only on the
distance the wire covers. Under this assumption, our router
simultaneously considers all legal wire indexes at each point
in the search, leveraging our bitfield implementation for the
storage of resource connectivity to track this information ef-
ficiently as an accumulation. The search can progress from



a vertex as long as some index is valid in this accumulation.
When the search terminates, the exact index used at each
step is determined through backtracking, selecting arbitrar-
ily when multiple paths are possible.

4. EXPERIMENTS
In this section we evaluate the performance of BPR com-

pared to the traditional full-detail FPGA placement and
routing flow implemented in commercial tools. We evalu-
ate BPR’s performance for a number of case study netlists
incorporating a variety of cores, implemented in BPR’s cus-
tom netlist format. For each case study, we compare BPR’s
execution time against the time required for Altera Quartus
to implement the same circuit from an equivalent VHDL de-
sign using the same core HDL, treating synthesis and place
and route times separately. We also evaluate the perfor-
mance overhead of BPR’s methodology by comparing the
area utilization and maximum clock rate fmax achieved by
each tool.
In our analysis, we compare against Altera Quartus 9.1

SP2 using low placement effort and optimization level set-
tings for faster compilation at the expense of some circuit
quality. Execution times were compared on a quad-core 2.66
GHz Intel Xeon W3520 workstation with 12GB RAM, run-
ning CentOS 6.1 x86 64. We compare circuit implementa-
tions for the Altera Cyclone III family of devices [21].

4.1 Case Studies
We evaluated BPR’s performance on 13 case studies, shown

in Table 1, covering a variety of applications. SAD computes
the sum-of-absolute differences for image comparison. Gaus-
sian performs a Gaussian blur on an image. Sobel performs
image edge detection. FIR is a finite impulse response filter.
Where appropriate, we tested multiple instances of the same
netlist at different sizes (e.g. by changing the kernel size
for the image processing applications) to demonstrate how
BPR’s performance scales with problem size. In many cases
we also evaluate both single-precision floating point (indi-
cated by float) and 16-bit fixed point versions of the same
circuit. To determine the effect of device size, we tested
BPR with two devices in the Cyclone III device family:
the small EP3C5 (EP3C5F256C8) with 5k logic elements,
46 M9K memories, and 23 DSPs; and the large EP3C120
(EP3C120F484C8) with 119k logic elements, 432 M9Ks, and
288 DSPs.
Most of the case studies in Table 1 incorporate large fixed-

point or floating-point arithmetic datapaths. The arithmetic
operators in these datapaths consist of tens (fixed point) to
hundreds (floating point) of LUTs and make use of the Cy-
clone III architecture’s DSP and M9K memory units when
applicable, as determined by the vendor tools’ synthesis op-
timizations. The floating-point operators were generated
from Altera Megafunctions [20]. Because arithmetic com-
ponents are prevalent in common applications of FPGAs,
and are often instantiated in large quantities within a sin-
gle netlist, they were added to the database without sift-
ing of low-valued placements to maximize flexibility, with
database population requiring up to several hours running
on one workstation.
The 2D DSP examples (e.g. Gaussian 3x3 1080p 16b) also

include sliding window interfaces to external memory, with
the various window and image dimensions specified for each
instance through corespec parameters wrapping a common

parameterized VHDL implementation. Because these mem-
ory interfaces are large and appear in limited quantities in
most applications, high sifting values were used to speedup
database population by discarding all but a small percent-
age of possible placements, limiting the collective time re-
quired for database population to under an hour. Although
this sifting limits placement flexibility for instances of these
memory interfaces, we have found that good results can still
be achieved for designs whose other components (e.g. arith-
metic operators) retain high placement flexibility. Note that
these decisions were made on an ad-hoc basis, and are likely
not optimal. We leave a detailed analysis of sifting tradeoffs
for different core types and sizes as future work.

4.2 Results
Table 1 illustrates BPR’s place and route speedup, device

resource utilization, and performance overhead for each case
study. The left-most major column gives a short description
of the case study application as well as the Cyclone III device
it was compiled for. The second major column compares
BPR’s execution time to the time required for Quartus’ PAR
flow (quartus_fit) to place and route an equivalent VHDL
design. Because the original HDL source for each core is
retained in the core database, the BPR tool is capable of
generating these equivalent designs itself, ensuring identical
core HDL is used for a fair comparison.

For BPR, we measure execution time including the time
to initialize BPR’s PAR data structures with the mapped
netlist, and ending when the final PAR solution is produced
in memory. We exclude the time required to export the solu-
tion to Quartus in the large human-readable QSF and RCF
formats. The PAR time reported for Quartus is the elapsed
time reported by quartus_fit when run with low effort set-
tings for placement and physical optimizations. Note that
Quartus also does not write out QSF and RCF constraints in
the normal course of PAR, requiring the use of a second tool
(quartus_cdb) when back-annotating this data. We exclude
the time required to run quartus_cdb, which is typically on
the order of a few seconds, in the times for Quartus.

The results show an average 93x PAR speedup over all
case studies, requiring an average of 1.1s. The speedup num-
bers are higher on average for the floating-point examples,
at 154x, compared to the fixed-point examples, at 76x. This
larger speedup is caused by a larger reduction in problem
size for the floating-point examples over detailed PAR, with
a typical float operator containing 100s of LUTs, compared
to 10s for the fixed-point operators, all of which is hidden
behind black-box footprints in BPR.

The third major column shows the percentage of device
resources required to implement the design as reported by
Quartus for each netlist case study, without BPR’s PAR
constraints. We include this data to give an idea of the size
of each design, which impacts the execution times of place-
ment (by complicating fit) and routing (through increased
obstacles). Note that although area overhead due to overly
generic cores is possible in BPR’s methodology, it was not
significant for these case studies. LABs are an Altera primi-
tive consisting of 16 logic elements, LEs, which each consist
of a configurable LUT. DSP corresponds to multiplier blocks
and M9K represents on-chip block RAMs.

BPR was able to use up to 49% of the small (C5) Cy-
clone III when working with fixed-point datapaths. This
high utilization is possible because of the placement flexibil-



Table 1: BPR place and route speedup and overhead of case study circuits.
Applications

Netlist
Applications Place and Route (PAR) TimesPlace and Route (PAR) TimesPlace and Route (PAR) TimesPlace and Route (PAR) TimesPlace and Route (PAR) Times AreaAreaAreaArea ClockClockClock

Device BPR BPR Placer BPR Router Quartus Speedup LABs LEs DSP M9K BPR Quartus Overhead
SAD 3x3 480p 16b

FIR 14-tap 16b
FIR 20-tap 16b

Gaussian 3x3 1080p 16b
Gaussian 5x5 1080p 16b
Gaussian 7x7 480p 16b

FIR 48-tap 16b
FIR 76-tap 16b
FIR 96-tap 16b

Sobel 1080p 16b
SAD 3x3 1080p float

FIR 9-tap float
FIR 16-tap float

Average
Geometric Mean

C5 0.629 0.039s 0.59s 0m 11s 17x 45% 38% 0% 13% 72 MHz 73 MHz 1%
C5 0.076s 0.048s 0.028s 0m 9s 118x 56% 34% 61% 0% 222 MHz 225 MHz 1%
C5 0.176s 0.12s 0.056s 0m 13s 74x 80% 49% 87% 0% 208 MHz 225 MHz 8%

C120 0.285s 0.239s 0.046s 0m 38s 133x 6% 2% 3% 3% 69 MHz 76 MHz 10%
C120 0.595s 0.478s 0.117s 0m 53s 89x 15% 4% 9% 5% 63 MHz 75 MHz 19%
C120 2.059s 1.772s 0.287s 1m 9s 34x 31% 8% 11% 4% 62 MHz 64 MHz 3%
C120 1.319s 1.168s 0.151s 0m 54s 41x 24% 5% 17% 0% 157 MHz 224 MHz 43%
C120 2.857s 2.672s 0.185s 1m 33s 33x 38% 8% 26% 0% 124 MHz 224 MHz 81%
C120 3.69s 3.473s 0.217s 1m 35s 26x 48% 10% 33% 0% 95 MHz 224 MHz 137%
C120 0.188s 0.156s 0.032s 0m 35s 186x 2% 2% 4% 0% 62 MHz 77 MHz 24%
C120 0.768s 0.662s 0.106s 1m 58s 154x 23% 17% 0% 11% 51 MHz 72 MHz 40%
C120 0.41s 0.354s 0.056s 1m 18s 190x 16% 11% 11% 2% 123 MHz 140 MHz 14%
C120 1.171s 1.051s 0.12s 2m 19s 119x 29% 21% 19% 3% 109 MHz 146 MHz 34%

1.094s 1m 2s 93x 32% 16% 22% 3% 109 MHz 142 MHz 32%
0.637s 0m 46s 72x 23% 10% 97 MHz 124 MHz 14%

avg time avg speedup max speedup avg overhead
1.09 93.36 190.24 31.83

avg time avg float avg fixed avg overhead
1.09 154.20 75.11 31.83

ity of the smaller fixed-point cores, one of which (add16) is
purely logic. These smaller cores also achieve high packing
ratios due to low internal communication requirements, as
discussed in Section 3.2.3, resulting in a higher ceiling for
area. Higher utilization was also achieved for the floating-
point DSP circuits on the large (C120) device. However, for
these larger cores, another factor limits circuit size: com-
petition for the device’s scarce resources such as DSPs and
M9Ks. The typical floating-point core incorporates one or
more of these resources, but has a black-box footprint (due
to logic requirements) that covers many more, leading to a
large amount of waste. We plan to address this challenge as
future work, and discuss this problem in more detail in that
section.
The right-most major column compares the maximum fre-

quency fmax of BPR’s exported designs against designs us-
ing Quartus’ full-detail place and route. For each case study,
we report the clock frequency achieved by BPR’s place and
route against the frequency achieved by Quartus from the
equivalent HDL design without constraints. The frequency
for BPR is the value reported by Quartus timing analy-
sis after running BPR’s constrained design through quar-

tus_fit for finalization, as discussed in Section 3.1. In all
cases we report the unrestrained fmax number reported by
quartus_sta.
BPR’s speedups were achieved with an average 34% re-

duction in circuit frequency. This overhead was lowest for
the small C5, down to 1%, in part because of the reduced im-
pact of poor quality placements on a small device. The high-
est overhead numbers were experienced by the large fixed-
point FIR filters on the C120, at up to 137%. Part of the
large overhead of these large circuits is due to a limitation
in BPR’s current router where it doesn’t have access to very
long wires in the Cyclone III architecture (e.g. C16). Note
that although the worst-case overhead for these circuits is
significant, they are comparable to previous work with typ-
ical 2-4x overhead [19]. For many of the 2D DSP examples,
e.g. the Gaussian kernels, the circuit’s performance over-
head is determined by the fmax of the sliding-window buffer.
Here, the overhead is caused by the need to confine the win-
dow core to a compact rectangular footprint, as discussed in
Section 3.2.3. These examples illustrate that area/frequency
tradeoffs are especially important for slower cores which may
set a circuit’s fmax before other, faster components or inter-
block routes. We leave a thorough evaluation of these trade-
offs as future work.

5. FUTURE WORK
The performance of BPR’s placer is often limited by crowd-

ing around special device resources such as DSPs and M9Ks,
which are scarce compared to LABs and are arranged densely
in columns on the Cyclone III. It is common for a single
core (e.g. floating-point arithmetic operators) to incorporate
only one or two such resources along with a large amount
of logic, which has the effect of requiring large block foot-
prints. Because BPR is limited to placing these cores as
rectangular blocks which cannot overlap, a single block will
often cover multiple unused DSPs and M9Ks, preventing ac-
cess to these resources by other blocks. We plan to address
this in future versions of BPR by stripping out such scarce
resource types when they’re used by a core, to be placed and
routed separately as small sub-blocks.

The limitations of BPR’s current placer are exacerbated
by BPR’s simplistic core mapper. In the current version of
BPR, core mapping does not consider the limited number of
resources such as DSPs available on the device. Thus, the
core mapper will continue to map core instances to imple-
mentations making use of DSPs and other scarce resources
even after all such resources on the device have been ex-
hausted, making placement of subsequently mapped blocks
impossible. We plan to address this in future versions of
BPR by expanding core database population to include sec-
ondary core implementations that don’t include scarce re-
sources, giving the mapper other options in these situations.

The performance of BPR’s router is also limited by the
inflexibility of the many intra-block routes imported after
placement, which are currently immutable. In addition to
reducing the fmax achieved by BPR, this inflexibility can
potentially make large designs with dense blocks unroutable.
We plan to extend future versions of BPR by allowing the
router to rip-up imported intra-block routes as necessary in
these situations, possibly subject to some tunable effort level
to allow for tradeoffs between quality and execution time.

6. CONCLUSIONS
In this paper, we introduced BPR, a new FPGA CAD

tool for the fast compilation of FPGA circuits that exploits
the functional reuse common in modern FPGA design. BPR
modifies traditional FPGA place and route algorithms to ab-
stract the low-level implementation details of reused cores in
a design, with the corresponding reduction in problem size
enabling large speedups over full-detail commercial FPGA



place and route, while also requiring significantly less mem-
ory. The main limitation of BPR is performance (fmax)
overhead and limited scalability due to reductions in place-
ment and routing flexibility caused by limiting the imple-
mentation of cores to immutable rectangular footprints. How-
ever, we show that over 13 case studies covering a variety
of applications, the current version of BPR achieves an av-
erage 93x speedup, with a relatively low 34% average re-
duction in circuit fmax compared to full-detail PAR per-
formed by commercial tools, which is acceptable for many
applications. Furthermore, these results bring FPGA com-
pilation times much closer to those of competing technolo-
gies including GPUs, potentially enabling FPGA support for
emerging just-in-time compilation models such as OpenCL.
Future work addressing limitations in the current version of
BPR, identified in this paper, may make BPR and similar
approaches more competitive with traditional FPGA com-
pilation flows.
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