
 978-1-4673-7676-1/16/$31.00 ©2016 IEEE
 1

DrSEUs: A Dynamic Robust Single-Event Upset Simulator
Edward Carlisle, Nicholas Wulf, James MacKinnon, Alan George

NSF CHREC Center, ECE Department, University of Florida
327 Larsen Hall, 968 Center Drive, Gainesville, FL 32611

352-392-5225
{carlisle,wulf,mackinnon,george}@chrec.org

Abstract—This paper presents DrSEUs (Dynamic robust
Single-Event Upset simulator), a novel fault injector that uses
the Simics full-system simulator. Fault-injection testing enables
the use of commercial off-the-shelf (COTS) processors in
space, which are susceptible to radiation-induced faults but are
desirable due to the lower cost and higher performance of
COTS devices. The de facto standard for fault injection is
radiation-beam testing, which is often prohibitively expensive
and time-consuming. Our methodology provides a means to
iteratively decrease design vulnerabilities through rapid fault
injection prior to beam testing. Additionally, our methodology
can supplement beam-test results by targeting injections at
individual components of interest that are difficult to isolate in
beam tests. Our fault-injection mechanism uses simulation
checkpoints, allowing DrSEUs to target a wide range of system
components for injection. The deterministic nature of Simics
checkpoints enables the repeatability of injection results and
the monitoring of latent faults propagating through the system.
We demonstrate the injection capabilities and analysis features
of DrSEUs by presenting fault-injection results for an image-
processing application.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. RELATED WORK ... 2
3. DRSEUS OVERVIEW .. 3
4. METHODOLOGY ... 4
5. EXPERIMENT SETUP ... 5
6. ANALYSIS AND RESULTS .. 7
7. CONCLUSION... 10
ACKNOWLEDGMENTS .. 10
REFERENCES... 10
BIOGRAPHY .. 11

1. INTRODUCTION
Space systems typically employ radiation-hardened
processors to maintain high levels of reliability in the harsh
environment of space. However, lower reliability
commercial processors bring many advantages that appeal
to space-system designers, including increased performance,
power efficiency, and lower cost. Fault-injection testing is
required to study the dependability of these components
before launch. The de facto standard of fault injection for
space-computing devices is radiation-beam testing, since
beam testing irradiates components in a manner similar to
space radiation. Unfortunately, radiation-beam testing is an
expensive and time-consuming process. To minimize cost,
designers often use alternative forms of fault-injection to
iteratively analyze and improve their designs before arriving
at the beam.

Designers employ many forms of fault injection, including
hardware-based, software-based, and simulation-based
injection, where each type comes with tradeoffs. Hardware-
based fault injection, including radiation-beam testing, is the
most representative of the harsh environment of space, but
risks causing permanent damage to the device under test
(DUT). Software-based fault injection does not risk any
damage to the DUT, but requires altering the target system’s
software in a way that may undesirably affect how faults
manifest as errors. Simulation-based fault injection is
unique because simulations offer the most visibility into and
control over the DUT. However, the accuracy of results
depends on the fidelity of the simulation models. We chose
the Simics toolset, detailed in [1] and [2], from Wind River
for this research because of Simics’ extensibility and
capability to run full target-application binaries on simulated
processors. We can apply the methodology presented in this
paper to any processor model in the Simics catalog (and
possibly to other full-system simulators); however the target
processor for this research is the Freescale P2020, a dual-
core, PowerPC-based processor studied by JPL [3] and
featured in the Proton400k single-board space computer
from Space Micro [4].

Our methodology relies on Simics’ checkpointing feature,
which can save and restore the entire state of the simulated
system at any point during execution. Our methodology
uses these checkpoints to perform injections and compare
the injected system state to a previously established gold
system state (i.e., without fault injection). Since these
checkpoints contain the entire state of the system, we can
target a wide range of components for injection. We
perform fault injections on these checkpoints without any
interaction with Simics, such that the target system, and
even Simics, is unaware of the injection of faults.
Furthermore, these checkpoints ensure that all fault-
injection runs are isolated from one another, facilitating
error diagnosis and classification. These checkpoints also
allow for the detection of latent faults that exist in the
system that may not affect the target application’s execution
but can manifest as errors in subsequent operations.

The remainder of this paper is organized as follows. Section
2 covers related work, including a survey of existing fault
injectors. In Section 3, we discuss the scope of our
methodology and the unique features of our fault injector.
DrSEUs, the Dynamic robust Single-Event Upset simulator,
includes analysis features that neatly organize and display
campaign results in tables and charts enabling advanced
analysis. We present our fault-injection methodology in
Section 4. Section 5 presents the experimental setup for our

 2

fault-injection campaign that we performed on an edge-
detection, image-processing application. In Section 6, we
present our analysis of the fault-injection campaign, which
demonstrates the depth of analysis achievable through
manipulating the variety of information DrSEUs collects.
We also study the effects of latent faults by performing
additional computation when latent faults exist in the
system. These detailed results are only possible through
simulation-based fault injection, as controlling the number
and location of single-event upsets is not possible with
radiation-beam testing nor do hardware testbeds offer the
visibility required for the detection of latent faults. We
present our conclusions in Section 7 and discuss future work
for this research.

2. RELATED WORK
The effects of radiation on electronics are an important area
of research for space computing. Karnik et al. present a
study on the interactions of radiation particles with VLSI
circuits in [5]. In order to simulate these effects in the lab
and understand the impact of these effects on system
reliability, researchers can perform fault-injection testing.
Quinn et al. explain the importance of fault-injection testing
as a means to assess a system’s reliability in the presence of
harmful radiation in [6].

Researchers have classified and compared several methods
for performing fault injections, as in [7] and [8]. There are
four primary categories of fault injection, each with unique
advantages and disadvantages, including hardware-based,
software-based, simulation-based, and emulation-based.

Hardware-based Fault Injection

Hardware-based fault injection is composed of two
subcategories, fault injection with or without physical
contact, as discussed in [7] and [8]. Hardware-based fault
injection without physical contact is most similar to what a
device would experience in a space environment. This
method uses either radiation or electromagnetic interference
to cause faults in the DUT. Hardware-based fault injection
with physical contact uses either active probes or socket
insertion to introduce voltage or current changes to the
DUT. This category of fault injection can simulate open
faults, short circuits, bit flips, spurious current, power
surges, or stuck-at faults. Drawbacks to hardware-based
fault injection include possible damage to the DUT and the
necessity to modify the DUT.

Software-based Fault Injection

Software-based fault injection is popular since it is portable,
does not usually require any hardware modifications to the
DUT, and does not risk damage to the DUT. However,
software-based fault injection also comes with
disadvantages, for example not being able to inject faults
into places that are not accessible through software, such as
caches. Software-based fault injectors also introduce the
possibility of disturbing the processing workload in
unintended ways. For example, adding additional software

required for performing injection may alter the scheduling
and timing of system tasks, as discussed in [7].

The Simple Portable Fault Injector (SPFI), is a software-
based fault injection tool presented in [9]. SPFI uses the
GNU Debugger (GDB) to pause execution and randomly
inject single-bit flips into CPU registers and memory values
during the execution of a targeted application. However, the
use of GDB as the injection mechanism limits injection
scope to the targeted application. Therefore, it is not
possible to study the effects of injected faults on the
remainder of the system (e.g., operating system, device
drivers).

JPL’s Implementation of a Fault Injector (JIFI) is similar to
SPFI, but uses ptrace (the Unix system call used by GDB to
control other processes) instead of GDB to inject faults,
offering lower-level access to the system [10]. JIFI requires
modification of the targeted application to include specific
function calls that perform fault injections.

Many other software-based fault injectors exploit the
interrupt-handling capabilities of modern processors to
trigger code that performs injections. These are commonly
referred to as code emulating upsets (CEU) and are studied
in [11], [12], [13], and [14].

Simulation-based Fault Injection

Simulations also serve as a testbed for fault injection. In
fact, injecting faults in a simulation model has some
advantages over injection in a physical system. Simulations
operate at different levels of abstraction, which allows the
use of multiple fault models. Due to the tight integration of
fault-injection mechanisms and system-simulation models,
fault injections become transparent from the target system’s
point of view. Simulations also provide the most visibility
into and control over both the target system and the fault-
injection mechanism.

Simulation-based fault injectors can use hardware
description language (HDL) models of targeted devices as
in [14]. Unfortunately, obtaining HDL models of
commercial processors is often difficult. Instead, researchers
can perform fault injections using full-system simulators,
which provide all of the functionality required to run full
software stacks for the targeted device. Velazco et al. [15]
use d3sim, a DSP simulator, to inject faults into a simulation
of the DSP32C. Other studies have used Simics, another
full-system simulator detailed in [1] and [2], as a testbed for
fault injection. For example, Bastien implements the
Saboteur Module [16] as a Simics module to inject faults in
the simulation of an x86 processor. This module is capable
of injecting transient or permanent faults into CPU registers,
memory or I/O data busses, and memory address busses. In
[17], Chao et al. modified Sam, a chip multithreading
(CMT) simulator from Sun Microsystems built atop Simics
[18], in order to develop the Full system Simulator-based
Fault Injection (FSFI) tool and perform testing on the
UltraSPARC T2 processor.

 3

Emulation-based Fault Injection

The final fault-injection category is emulation based. This
category is similar to HDL-based simulation fault-injection.
However, instead of using an HDL simulator to perform
injections, the DUT is synthesized onto a field
programmable gate array (FPGA) and augmented with fault-
injection mechanisms. The study in [19] presents a
methodology for emulation-based fault injection on both the
MicroBlaze and Leon3.

Simics

Simics, detailed in [1] and [2], provides cycle-accurate
simulations at the instruction-set level and includes
simulation models for peripheral components, such as
memory and interrupt controllers, PCI, Ethernet, etc. Simics
allows for the execution of unmodified operating systems,
firmware, device drivers, middleware, network stacks, and
of course applications. The internal state of the processor,
memory contents, and executing instructions are all exposed
during simulation. Another important Simics feature for our
methodology is the ability to save a checkpoint, containing
the entire state of the system, which can be later loaded in
Simics to continue the simulation from the same state.

3. DRSEUS OVERVIEW
Our fault-injection methodology benefits from the
advantages of simulation-based fault injection. Most
notably, the high level of visibility into the system provides
a wide range of components to target for injection. This
property also allows us to study the propagation of faults
throughout the system as well as the effects of latent faults.
Unlike most of the fault injectors surveyed in the previous
section, DrSEUs does not require any modifications to the
DUT, including both software and (simulated) hardware
modifications. This property also extends to the simulator
itself, since our fault-injection mechanism is external to
Simics. In fact, our methodology is extendable to other full-
system simulators, so long as the simulators provide the
same level of simulation, allow access to the same interfaces
to the DUT, and can save checkpoint files containing the
state of the entire system at a given point in time.

Our methodology is not meant to replace radiation testing.
Instead, it enables system designers to better prepare for
radiation tests by iteratively improving their designs through
fault-injection testing. This preparation allows designers to
maximize the effectiveness of beam time, which is typically
a limited resource. Our methodology also provides much
greater control in targeting device components for injections
than is possible with radiation beams. Therefore, when
designers find individual components that are exceptionally
sensitive to radiation-induced faults, our methodology
allows them to supplement radiation-test results with
targeted fault injections to study the effects on the system in
greater detail.

DrSEUs simulates two of the most important single-event
effects (SEE): single-event upsets (SEU) and single-event

functional interrupts (SEFI). However, there are certain
SEEs and other radiation effects that Simics, and
consequently our fault injector, cannot accurately model.
These include single-event transients (SET), single-event
latchup (SEL), single-event burnout (SEB), single-event
gate rupture (SEGR), and cumulative effects like total dose.
While Simics can model SETs in certain components of the
system (address and data buses), this functionality would
require modifying the simulation model to include fault-
injection modules. Our methodology aims to be completely
transparent in order to avoid effects caused by the
unintended consequences of modifying the DUT. As
previously stated, we inject faults into checkpoints outside
the context of Simics to achieve transparency. Other
simulation-based, fault-injection techniques that use
register-transfer level (RTL) models are capable of
simulating SETs in a wider range of components (including
combinatorial-logic networks). However, acquiring the RTL
models for commercial processors is usually not possible.
Simulating SELs, SEBs, and SEGRs would require much
lower-level modeling akin to SPICE-based simulations.
These lower-level simulations cannot offer the same
magnitude of performance that Simics provides for system-
level simulations.

In order to achieve high performance, DrSEUs can perform
multiple injections in parallel to speed up campaign
progress. Each injection instance uses a private instance of
Simics to isolate the simulation. The experiment in this
paper uses as host a quad-core Core i7 processor with eight
threads to instantiate eight parallel instances of the fault
injector in order to keep the host busy at all times. Our
methodology can easily scale to computing clusters in order
to perform massively parallel fault-injection campaigns. Our
performance is limited to the number of CPU cores and
available Simics licenses (each instance of Simics requires a
license).

DrSEUs also includes many features to aid in fault-injection
campaign analysis. One of these components is a web
application that organizes results into tables and charts that
are dynamically generated. We present some of these charts
in the experiment section of this paper. A filtering capability
is included to narrow down the data in the tables and charts
to only the results of interest. Each result includes the
associated injection data, DUT console output, Simics
console output, and lists of latent faults located in registers,
TLB entries, and memory blocks. Checkpoint regeneration
is another powerful feature to aid in analysis. Due to the
deterministic nature of Simics simulations, DrSEUs can
regenerate injected system checkpoints and launch these
checkpoints in Simics allowing further analysis of
interesting results. This feature also allows designers to use
Simics’ advanced debugging capabilities to further study
faults.

4

4. METHODOLOGY
Figure 1 shows the architecture of our fault injector.
DrSEUs interfaces with Simics through standard in
(STDIN) and out (STDOUT), allowing DrSEUs to control
and monitor Simics. Simics connects the DUT’s serial
console to a pseudo-terminal on the host, mimicking the
serial connection to a physical device, allowing DrSEUs to
issue commands and monitor execution. Simics also
forwards a network port from the host to the DUT, via a
virtual Ethernet connection. This network connection allows
DrSEUs to send and receive files, including application
binaries and input/output files. If the simulated device does
not include an Ethernet interface, Simics provides a
SimicsFS kernel module that can mount the host’s file
system and transfer files. Finally, DrSEUs modifies
checkpoint files, created by Simics, in order to perform fault
injections. DrSEUs can then load these modified checkpoint
files in Simics to continue the simulation from an injected
state.

Figure 1. Fault injector architecture

Before performing any fault injections, we augment the
targeted application with signal handlers that print easy-to-
parse messages indicating which signal the application
encounters. These signal handlers are not required but can
facilitate error diagnosis and classification. Optionally, we
can also augment the targeted application with messages
that print statistics, such as the number of detected errors, so
DrSEUs can include these statistics in the logged results.

Our methodology begins with the creation of a new fault-
injection campaign, outlined in Figure 2. At this stage,
DrSEUs starts Simics with a script that instantiates all
components of the DUT and creates connections to the host.
Once Simics has instantiated all components and
connection, the DUT boots Linux. Next, DrSEUs uses SCP
(Secure Copy, which copies files using the Secure Shell, or
SSH, protocol) to transfer application binaries and input
files to the DUT via Simics’ forwarded network port.

After transferring the necessary files, DrSEUs times the
execution of the targeted application. In this step, the DUT
runs the targeted application and Simics measures the
number of elapsed DUT clock cycles. Dividing the

measured cycles by the desired number of gold checkpoints
calculates the number of cycles that should separate the
checkpoints. To create these gold checkpoints, DrSEUs
halts the simulation and queues a command for the DUT to
run the targeted application. Then, for each desired gold
checkpoint, Simics advances the simulation the appropriate
number of cycles and creates a checkpoint. Finally, after
Simics creates the last checkpoint, DrSEUs resumes the
simulation and uses SCP to transfer the output file to the
host for later comparison.

Figure 2. Campaign creation

Performing Fault Injections

We use the gold checkpoints as the entry point for our fault-
injection mechanism. Checkpoints contain the entire state of
the simulation for a given point in time, including memory
contents, general-purpose register values, CPU control-
register values (e.g. program counter), SoC peripheral
component controller (e.g. Ethernet controller) register
values, and translation-lookaside buffer (TLB) entries.
DrSEUs targets all of the components contained on the
processor for injection, excluding caches as they are not
included by default in Simics’ models. We plan to include
cache models for fault injection in future work, as we
discuss further in Section 7. DrSEUs does not target
memory contents or other devices external to the processor
for injection.

As shown in block 1 of Figure 3, DrSEUs begins each fault-
injection iteration by randomly picking one of the gold
checkpoints for injection (excluding the final checkpoint, as
the application has already completed execution by this
point) and copying all files associated with this checkpoint
to the injection directory. By modifying a copy of a gold
checkpoint for each iteration, DrSEUs achieves two
desirable characteristics. First, this process provides
isolation between iterations, facilitating error diagnosis and
classification. Second, campaign progression is accelerated
because Simics does not need to repeat the device
instantiation and DUT boot process for each iteration.

Start Simics Instantiate
DUT

Connect to
Host

DUT Boots
Linux

Transfer
Files

Time
Execution

Create
Checkpoints

Transfer
Output

Host

Simics

DUT
DrSEUs

STDIN/STDOUT

Pseudo-Terminal
Virtual Ethernet

Checkpoint Files

File
I/O File

I/O

5

Figure 3. Fault injection

In block 2 of Figure 3, DrSEUs randomly chooses a register
or TLB entry for injection and uses the number of bits each
target contributes to the overall system to distribute
injection probability. DrSEUs then injects a fault by flipping
a random bit of the selected target in the copied checkpoint
and loads the modified checkpoint in Simics. Because fault
injections take place outside the context of Simics, the DUT
(and even Simics) is unaware that an injection has occurred.

Figure 4. Injection and checkpoint comparison

Execution monitoring begins in block 3 of Figure 3. In this
phase, Simics advances the simulation the appropriate
number of cycles and saves the next checkpoint. DrSEUs
then compares this checkpoint with the corresponding gold
checkpoint in order to track the propagation of faults (in
memory blocks, TLB entries, and register values)
throughout the system. DrSEUs repeats this process,
comparing each checkpoint with the equivalent gold
checkpoint. Figure 4 demonstrates the injection and

comparison process for an example campaign of 5
checkpoints, where DrSEUs chooses checkpoint 3 for
injection. In the fault-injection campaign that we present in
the next section, we skip checkpoint comparison until the
final gold checkpoint in order to reduce the time required
for execution monitoring. After comparison with the final
gold checkpoint, DrSEUs continues the simulation and
monitors the DUT’s console, shown in blocks 4 and 5 of
Figure 3, checking for messages related to execution errors
(including signal handler messages and Linux kernel errors)
while using a timeout to detect if the DUT is hanging. If the
application completes without any execution errors, DrSEUs
uses SCP to retrieve the output file for comparison with the
gold output file (retrieved during campaign creation) to
check for data errors, shown in block 6 of Figure 3. In the
case where the application completes successfully yet
DrSEUs detects faults when comparing checkpoints,
DrSEUs runs the target application a second time to
determine the impact of these latent faults on the system.
Finally, DrSEUs logs all results for later analysis, as shown
in block 7 of Figure 3.

DrSEUs can perform multiple fault-injection iterations in
parallel to accelerate campaign progression. To achieve this,
DrSEUs concurrently injects multiple checkpoints and
launches each checkpoint in a separate instance of Simics.
Each instance of Simics uses unique pseudo-terminals and
host network ports for execution monitoring, preventing any
cross communication between simulated DUTs.

5. EXPERIMENT SETUP
In this section, we present our experimental setup for a case
study, which we analyze in the next section. Our experiment
includes a fault-injection campaign for a Simics simulation
of Freescale’s PowerPC-based P2020 running an edge-
detection, image-processing application. The campaign uses
1000 checkpoints to provide a fine granularity for injection
time and includes over 71,000 fault injections.

Injection & Result Descriptions

Figure 5 shows each component of the P2020 targeted for
injection and the components’ contribution to bits targeted
for injection. These include: configuration, control, and
status registers (CCSR); CPU control registers (i.e., program
counter, memory-management assist registers, etc.); direct
memory access (DMA) controller registers; e500 coherency
module (ECM) registers; enhanced local-bus controller
(ELBC) registers; enhanced secure digital host controller
(ESDHC) registers; enhanced serial peripheral interface
(ESPI) controller registers; enhanced three-speed Ethernet
controller (ETSEC) registers; general-purpose input/output
(GPIO) registers; general-purpose registers (GPR); I2C
module registers; L2 SRAM registers; memory controller
(MC) registers; PCI express controller registers;
programmable interrupt controller (PIC) registers; RapidIO
controller registers; TLB entries; and universal serial bus
(USB) controller registers.

1. Pick &
Copy

Checkpoint

2. Randomly
Inject Bit-Flip

3. Compare
Checkpoints

4. Continue
Simulation
4. Con
Simul

5. Monitor
Console

6. Check
Output

7. Log
Results

Gold Checkpoint 1

Gold Checkpoint 2

Gold Checkpoint 3 Checkpoint 3’
Copy & Inject

Gold Checkpoint 4 Checkpoint 4’ Compare

Gold Checkpoint 5 Checkpoint 5’ Compare

Step X Cycles

Step X Cycles

Step X Cycles Step X Cycles

Step X Cycles Step X Cycles

 6

Figure 5. P2020 component contributions to bits

targeted for injection

Table 1 lists and describes each of the result classifications
for fault-injection iterations. In Section 6, we group the
figures included in our analysis by outcome (for detail) or
by category (for conciseness).

Application Description

Edge detection, and convolution in general, is an essential
part of high-level algorithms in machine vision. Feature
detection uses convolution-based edge detection to find
corners or points of interest, which computer-vision
algorithms can use to autonomously determine image
quality. Spacecraft sensors can generate large amounts of
raw data, yet downlink capabilities are limited. Therefore, it
is necessary to perform image processing in situ and
intelligently transmit only interesting images in order to
conserve bandwidth.

In our case study, we implement convolution using Fourier
transforms instead of the direct form of convolution. FFT
convolution is favorable because processing in the
frequency domain is less computationally intensive for
typical space-camera image resolutions and large kernels.
This optimization consists of performing the image
processing in the frequency domain (by multiplying the
transformed kernel and image) and then computing the
inverse FFT on the result, as shown in Figure 6.

Figure 6. Stages in image-processing application

Table 1. Fault injection classifications

Category Outcome Description

No Error

Latent Faults
Application executed successfully,
but DrSEUs detected faults when

comparing checkpoints

Masked
Faults

Application executed successfully,
and DrSEUs did not detect any

faults when comparing checkpoints

Persistent
Faults

Application executed successfully,
and the only fault DrSEUs detected
when comparing checkpoints was

the originally injected fault

Data Error

Detected
Data Error

Application completed execution,
but reported data errors

Silent Data
Error

Application completed execution,
but output file did not match gold

output file

Execution
Error

Hanging
Application failed to complete

execution and DUT became
unresponsive

Illegal
Instruction

Application failed to complete
execution due to an illegal

instruction (not reported by signal
handler)

Kernel Error Application failed to complete
execution due to Linux kernel error

Segmentation
Fault

Application failed to complete
execution due to a segmentation

fault (not reported by signal
handler)

Signal
SIGILL

Application failed to complete
execution and signal handler
reported SIGILL was raised

Signal
SIGIOT

Application failed to complete
execution and signal handler
reported SIGIOT was raised

Signal
SIGSEGV

Application failed to complete
execution and signal handler

reported SIGSEGV was raised

Signal
SIGTRAP

Application failed to complete
execution and signal handler

reported SIGTRAP was raised

Simics
Error

Address Not
Mapped

Simulation halted due to
unmapped memory address

Dropping
Memop

Simulation halted due to
unmapped memory address

SCP Error Missing
Output

Application completed execution,
but SCP failed to retrieve the

output file from the DUT

Post-
Execution

Error
*

Latent fault outcome where a
subsequent run of the application

failed

Read Input
Image

Convert to
Grayscale Perform FFT

Perform
Complex

Multiplication

Perform Inverse
FFT

Write Output
Image

7

6. ANALYSIS AND RESULTS
This section demonstrates the advanced analysis made
possible by DrSEUs. We collect a variety of information
during fault-injection campaigns, which allows us to
organize the results in different ways to gain unique insights
into the system and our targeted application.

Randomness of Injections

Before beginning our analysis, we demonstrate the
randomness of injections. Figure 7 shows that DrSEUs
evenly distributes the randomly injected faults over all bits
targeted for injection, as these injection ratios closely match
the bit ratios shown in Figure 5.

Figure 7. Total injections performed for each target,

grouped by category

Due to the great disparity in sizes among the injection
targets, Figure 7 impedes the visualization of outcomes that
result from injections into some of the targets. To facilitate
analysis, Figure 8 reorganizes the data of Figure 7 to show
the percentage of outcomes for each target.

Figure 8. Percentage of injections for each target,

grouped by outcome

Detail of Results

We can also view the results for each register within a
selected target. For example, Figure 9 shows results for

injections in each general-purpose register. By compiling
the results in this manner, we can perform further analysis to
correlate the vulnerability and usage of each general-
purpose register. For example, the PowerPC architecture
commonly uses r1 the stack pointer, which explains the
occurrence of SIGSEGV signals (denoting a segmentation
fault). We can inspect general-purpose register usage by
analyzing a targeted application’s assembly-language
representation, which a disassembler can facilitate.

Figure 9. Total injections performed for each general-

purpose register, grouped by outcome

Overview of Result Categories

Figure 10 shows an overview for the injection campaign,
with results grouped by category. As shown in the figure,
most injected faults result in the no error category and do
not affect the application’s execution or output.

Figure 10. Campaign overview of result categories

No Error—While the results in the no error category did not
affect the targeted application’s execution or output, Figure
11 shows half of these results stem from the latent and
persistent fault outcomes, indicating the injected fault still
affects the system. In these cases, we perform a second
execution of the application to determine the effects of these
latent faults on subsequent operations. Although the targeted
application is unaffected, we note that other applications, or
possibly the Linux kernel, can later suffer from an error. We

 8

explore this possibility further in the analysis of the post-
execution error category, shown in Figure 16.

Figure 11. Outcomes in no error category

Data Error—Data error is the most common category that
results in errors. All of the data errors for this application
are silent data errors, as this application did not include any
form of fault-tolerance to detect data errors. Figure 12 plots
the severity of data errors for each target, demonstrating that
injections into the Ethernet controller are the most
destructive errors for the output data. These destructive
errors are attributed to the fact that we use Ethernet to
retrieve the output file from the DUT. Fortunately, Figure
13 shows the number of injections into the Ethernet
controller resulting in data errors is quite low.

Figure 12. Average data match percentage for targets,

filtered for data errors

Figure 13. Total injections for targets, filtered for data

errors

Execution Error—The next most common result category is
execution error. Figure 14 shows the breakdown of
outcomes that fall under this category. The most common
outcome in the execution error category is hanging, where
the device simply becomes unresponsive. After these
outcomes are segmentation faults (caught and uncaught),
followed by illegal instructions (caught and uncaught).

Figure 14. Outcomes in execution error category

Simics Error—Simics error is the next most common
category. Both of the outcomes that fall under this category
result from the system attempting to access a memory
address that is unmapped. In a physical system, this would
result in an execution error. However, in Simics, these
actions prevent the simulation from advancing.
Unsurprisingly, all faults that result in Simics errors are due
to TLB injections.

SCP Error—We classify an iteration in the SCP error
category when an error occurs while trying to retrieve the
output file from the DUT (over SCP). We can filter the chart
in Figure 7 to only display results in the SCP error category
resulting in Figure 15, which clearly shows that SCP errors
most commonly result from injections into the Ethernet
controller, which is not surprising given that SCP
communication takes place over Ethernet.

Figure 15. Injection targets resulting in SCP errors

9

Post-Execution Error—The final injection result category is
post-execution error. We classify an iteration in this
category if, after the target application executes
successfully, DrSEUs detects latent or persistent faults in
the system and a second execution of the application fails.
Figure 16 shows the breakdown of outcomes in the post-
execution error category. The figure clearly shows that the
faults in this category cause errors at the system level and
result in kernel errors and system unresponsiveness, leading
us to the hypothesis that other results in the latent- and
persistent-fault categories can still lead to system errors
even if the injected faults did not have an immediate effect
on the target application.

Figure 16. Outcomes in post-execution error category

Injection Time

Plotting the results over injection time (or checkpoint
number) presents a unique view into the vulnerability of the
target application. Figure 17 applies a moving average filter
to the results to increase the clarity of trends showing that
there are three distinct phases of our application that are
more vulnerable than the rest of the application. Monitoring
the devices console output while creating the gold
checkpoints in the campaign creation process allows us to
correlate ranges of checkpoints with processing stages.
Table 2 shows this correlation. It is now apparent that the
forward and inverse FFT phases of the application are by far
the most vulnerable, as the first two areas of elevated errors
occur during the forward FFT phase and the third are of
elevated errors occurs during the inverse FFT phase.

Table 2. Checkpoints for each application stage

Execution Phase Checkpoint Range
Read input image 0-1

FFT preparation 1-32

Forward FFT 32-605

Complex multiplication 605-643

Inverse FFT 643-964

Save output image 964-999

Figure 17. Injections over time

 10

Latent Faults

The unique ability of our fault injector to detect latent faults
in the system allows us to measure the spread of faults
throughout the system. Figure 18 shows the average number
(across all results) of registers and memory blocks that an
injected fault corrupts. We can see that only a few injection
targets contribute significantly to the propagation of faults,
and these are CPU, GPR, and TLB. Furthermore, there is a
correlation between the targets in Figure 18 that cause a fault
in about one register on average and the targets in Figure 8
that generally result in persistent faults.

Figure 18. Fault propagation

7. CONCLUSION
This paper has presented our methodology for performing
fault-injection testing on simulated commercial CPUs using
Simics. The nature of the simulation allows us to observe, in
great detail, the effects of injected faults on the system and
target software. Our methodology allows designers to
rapidly perform fault-injection campaigns to prepare for and
supplement radiation-beam testing. We also presented a case
study to demonstrate the powerful analysis made possible by
our fault injector. We performed the case study’s fault-
injection campaign on a simulation of the Freescale P2020
running an image-processing application, which is
representative of a real space-processing system.

Processor caches interesting for fault injection as caches
occupy a large proportion of a device’s area and therefore
can account for a significant amount of SEUs within a
device. While Simics does not include models of device
caches by default, Simics does supply tools for creating
cache models. We plan to augment the simulation of the
P2020 with L1 and L2 caches so that we can target these
caches for fault injection.

Work is currently underway to add support for the ARM
Cortex-A9 processor to DrSEUs. We chose to add support
for this device as there are two A9 cores included on
Xilinx’s Zynq SoC, which is featured in the CHREC Space
Processor (CSP) [20] [21]. We are also working to expand
our injection capabilities to physical devices by injecting
faults via JTAG (for both Freescale P2020 and ARM A9),

which will allow us to make comparisons between the
results seen in simulation and those seen on physical
devices.

ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge the Simics
toolset provided by Wind River that helped make this work
possible.

REFERENCES

[1] J. Engblom and D. Ekblom, "Simics: A Commercially
Proven Full-System Simulation Framework," in
Workshop on Simulation in European Space
Programmes, 2006.

[2] P. Magnusson, M. Christensson, E. Jesper, D.
Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A.
Moestedt and B. Werner, "Simics: A Full System
Simulation Platform," Computer, vol. 35, no. 2, pp.
50-58, 2002.

[3] S. Guertin and M. Amrbar, "SEE Test Results for
P2020 and P5020 Freescale Processors," in Radiation
Effects Data Workshop, Paris, 2014.

[4] Space Micro, "Proton400k™ Single Board Computer,"
9 May 2014. [Online]. Available:
http://www.spacemicro.com/assets/datasheets/digital/s
lices/proton400k.pdf. [Accessed 18 October 2015].

[5] T. Karnik, P. Hazucha and J. Patel, "Characterization
of Soft Errors Caused by Single Event Upsets in
CMOS Processes," IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 2, pp. 128-143,
2004.

[6] H. Quinn, D. Black, W. Robinson and S. Buchner,
"Fault Simulation and Emulation Tools to Augment
Radiation-Hardness Assurance Testing," IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp.
2119-2142, 2013.

[7] H. Ziade, R. Ayoubi and R. Velazco, "A Survey on
Fault Injection Techniques," The International Arab
Journal of Information Technology, vol. 1, no. 2, pp.
171-186, 2004.

[8] M. Hsueh, T. Tsai and R. Iyer, "Fault Injection
Techniques and Tools," Computer, vol. 30, no. 4, pp.
75-82, 1997.

[9] N. Wulf, G. Cieslewski, A. Gordon-Ross and A.
George, "SCIPS: An Emulation Methodology for Fault
Injection in Processor Caches," in IEEE Aerospace,
2011.

[10] R. Some, W. Kim, G. Khanoyan, L. Callum, A.
Agrawal and J. Beahan, "A Software-Implemented
Fault Injection Methodology for Design and
Validation of System Fault Tolerance," in Internation
Conference on Dependable Systems and Networks,
Goteberg, 2001.

[11] R. Velazco, S. Rezgui and R. Ecoffet, "Predicting

 11

Error Rate for Microprocessor-Based Digital
Architectures through C.E.U. (Code Emulating
Upsets) Injection," IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2405-2411, 2000.

[12] A. Benso, P. Prinetto, M. Rebaudengo and M. Reorda,
"EXFI: A Low-Cost Fault Injection System for
Embedded Microprocessor-Based Boards," ACM
Transactions on Design Automation of Electronic
Systems, vol. 3, no. 4, pp. 626-634, 1998.

[13] J. Carreira, H. Madeira and J. Silva, "Xception: A
Technique for the Experimental Evaluation of
Dependability in Modern Computers," IEEE
Transactions on Software Engineering, vol. 24, no. 2,
pp. 125-136, 1998.

[14] G. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S.
Pontarelli and R. Velazco, "Bit flip injection in
processor-based architectures: a case study," in IEEE
Interational On-Line Testing Workshop, 2002.

[15] R. Velazco, A. Corominas and P. Ferreyra, "Injecting
Bit Flip Faults by Means of a Purely Software
Approach: a Case Studied," in IEEE Internation
Symposium on Defect and Fault Tolerance in VLSI
Systems, 2002.

[16] B. Bastien, "A Technique for Performing Fault
Injection in System Level Simulations for
Dependability Assessment," Master Thesis, Univeristy
of Virginia, 2004.

[17] W. Chao, F. Zhongchuan, C. Hongsong and C. Gang,
"FSFI: A Full System Simulator-Based Fault Injection
Tool," in Internation Conference on Instrumentation,
Measurement, Computer Communication and Control,
Beijing, 2011.

[18] D. Nussbaum, A. Fedorova and C. Small, "An
overview of the Sam CMT simulator kit," Sun
Microsystems, Inc., Mountain View, 2004.

[19] H. Guzman-Miranda, M. Aguirre and J. Tombs,
"Noninvasive Fault Classification, Robustness and
Recovery Time Measurement in Microprocessor-Type
Architectures Subjected to Radiation-Inuduced
Errors," IEEE Transactions on Instrumentation and
Measurement, vol. 58, no. 5, pp. 1514-1524, 2009.

[20] C. Wilson, J. Stewart, P. Gauvin, J. MacKinnon, J.
Coole, J. Urriste, A. George, G. Crum, E. Timmons, J.
Beck, T. Flatley, M. Wirthlin, A. Wilson and A.
Stoddard, "CSP Hybrid Space Computing for STP-
H5/ISEM on ISS," in Small Satellite Conference,
Logan, 2015.

[21] Space Micro, "Radiation Tolerant CHREC Space
Processor," 23 April 2015. [Online]. Available:
http://www.spacemicro.com/assets/datasheets/digital/s
lices/CHREC.pdf. [Accessed 18 October 2015].

BIOGRAPHY
Edward Carlisle is a doctoral
student in ECE at the
University of Florida. He
received B.S. degrees in EE
and CEN and a M.S. in ECE
from the University of Florida.
He is a research assistant at
the NSF Center for High-
Performance Reconfigurable

Computing (CHREC) studying fault-injection and
mitigation for space applications.

 Nicholas Wulf is a doctoral
candidate in ECE at the
University of Florida. He is a
research assistant in the
advanced processing devices
group in the NSF CHREC Center
at Florida. His research interests
include analysis and comparison

of fixed and reconfigurable device architectures and low-
overhead fault-tolerant techniques.

James MacKinnon received his
B.S. in Electrical Engineering
from the University of Florida in
2014 and is currently pursuing an
M.S with an expectation to
graduate in 2016. He is a
Research Assistant in the NSF
CHREC Center in the field of

hybrid space computing. His research interests include
fault-tolerant space-computing systems and image
processing.

Alan D. George is Professor of ECE
at the University of Florida, where
he serves as Director of the NSF
Center for High-performance
Reconfigurable Computing known as
CHREC. He received the B.S. degree
in CS and M.S. in ECE from the
University of Central Florida, and
the Ph.D. in CS from the Florida

State University. Dr. George's research interests focus
upon high-performance architectures, networks, systems,
services, and applications for reconfigurable, parallel,
distributed, and fault-tolerant computing. He is a Fellow
of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

