
Fast Real-Time LIDAR Processing on FPGAs

K. Shih, A. Balachandran, K. Nagarajan, B. Holland, C. Slatton, A. George

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL

Abstract—Light Detection and Ranging (LIDAR) plays an

important role in remote sensing because of its ability to provide

high-resolution measurements of 3D structure. For

time-sensitive airborne missions, fast onboard processing of

LIDAR data is desired and yet difficult to achieve with

traditional embedded CPU solutions due to the computational

requirements. FPGAs have the potential to speed up processing

by employing multi-level parallelism, but their use in LIDAR

processing has typically been limited to data capture due to the

difficulties associated with efficiently migrating LIDAR

processing algorithms to FPGAs. We demonstrate two

equivalent FPGA designs for coordinate calculation of LIDAR

data written using different languages (VHDL and

MATLAB-based AccelDSP), comparing their performance and

productivity. For the VHDL design, a ~14× speedup is

obtained over an Opteron processor on a Cray XD1 system. In

addition, a recently proposed performance prediction

methodology is employed, and the accuracy of its

pre-implementation predictions is analyzed.

1. Introduction

Over the past few decades, airborne LIDAR technology has

emerged as an important remote sensing modality for many

scientific and military applications [1], [2]. Most LIDAR

applications involve terrain mapping, but LIDAR data have also

been fused with other sensor types, such as multi-spectral

imagery [3]. The importance given to LIDAR data comes from

its capabilities to provide high-resolution position information

on targets of interest from a remote distance. These targets

include terrain topography, vegetation structure, and building

features. Obtaining high-resolution data is made possible

through high density of laser returns. For example, Optech

Gemini system records laser returns at frequencies as high as

167 kHz [1], [2], [4], collecting more than ten million laser

returns every minute. Raw LIDAR data (laser ranges, scan

angles, etc.) recorded by the sensor needs to be processed in

order to present information in the form of a 3D point cloud, and

such processing is computationally demanding at near realtime

rates due to the high laser pulse rates. For example, compact

modern ground-based LIDARs can record laser ranges for pulse

rates up to a few kHz [5]. Discrete-return airborne LIDARs

operate at laser pulse rates in excess of 150 kHz and record four

or more returns per transmitted pulse [2]. Spaceborne LIDARs

typically have lower pulse rates, but digitize the return pulse into

100 or more samples [6]. As a result, LIDAR data are often

saved to onboard storage devices and processed off-line on PC

workstations at a later time. However, in a time-constrained

scenario, the acquired data have to be processed onboard for

realtime analysis and feedback.

Onboard processing of LIDAR data may be feasible if LIDAR

operators on the aircraft use commercially available laptops with

large-volume hard disk drives, but many General-Purpose

Processors (GPPs) on laptops still render tasks serially and thus

likely fail to meet the realtime analysis requirements. In contrast

to GPPs, High-Performance Embedded Computing (HPEC)

systems featuring FPGAs can be used to speed up the procedure

by exploiting multi-level parallelism inherent in algorithms used

for LIDAR processing. Moreover, the reconfigurability of

FPGAs opens the possibility to migrate diverse signal

processing algorithms to hardware designs according to a

particular application’s requirements.

Although FPGAs have much to offer in terms of power,

adaptivity, and performance improvements, developing efficient

designs that function at high frequencies using conventional

hardware description languages (HDLs) can be unwieldy for

application scientists because the underlying programming

techniques commonly require detailed hardware knowledge that

can be beyond their comprehension or interest. In addition, short

design times and more importantly shorter re-design times

would increase the productivity of application scientists when

migrating complex algorithms. Therefore, generating efficient

hardware designs by translating high-level languages (HLLs) to

HDLs using application mappers (HLL tools) is highly

desirable.

It is also critical for application designs to meet the

requirements of the project during the migration to hardware.

Yet, different algorithmic approaches in combination with

potential platform architectures can likely lead to dissimilar

designs with distinct performance improvements (or

degradations), and this makes it time-consuming and inefficient

to determine the most favorable choice of algorithmic approach

and platform architecture by developing full hardware designs.

Therefore, it is important to estimate the likely outcome of a new

design (speedup and resource usage) before expending

significant effort on any specific algorithm, architecture, or

platform. In other words, an efficient and accurate prediction

methodology can likely increase performance and productivity

while minimizing unnecessary development time and effort.

The remainder of this paper is structured as follows. In

Section 2, previous works related to LIDAR processing on

FPGAs are reviewed, followed by a discussion of the

fundamentals of onboard LIDAR processing in Section 3. In

Section 4, the hardware design methodology is explained in

detail. In Section 5, experimental results are reported, and

performance and productivity results of the HLL- and

HDL-based designs are compared. Concluding remarks are

given in Section 6 by listing key insights gained and scope for

future work.

2. Related work

In [7], the authors described the design of a new

photon-counting LIDAR system that uses a number of Xilinx

FPGAs. This type of LIDAR has a slower laser pulse rate than

the Optech Gemini, but actually has a higher data rate because it

pixelates the laser footprint. The FPGAs were primarily used for

registering each photo-electron return event from a 10×10

multi-channel photo-multiplier tube (PMT), which constitutes

the detector. Similar work was also found in [8] for a

multi-kilohertz micro-laser altimeter developed by NASA

Goddard Space Flight Center. At a laser pulse rate of 10 kHz, a

10×10 detector can generate 1,000,000 return events per second.

The actual data rate can be even higher since each return pulse

may be spread out in time and thus generate more than one return

“event” in each channel. In [7] and [8], the FPGAs were simply

used to record the raw ranges for each return laser pulse, and

thus additional parallelism gains could be realized by designing

architectures using FPGAs to efficiently process the LIDAR

data into 3D locations. The determination of the 3D locations is

referred to as the “coordinate calculation algorithm” in this

work.

Numerous HLL tools have been developed to help application

scientists less acquainted with HDLs generate hardware designs

in HLLs like C and MATLAB. Ease-of-use and development

time are commonly considered in evaluating the efficiency of

HLL tools. Comparative studies of HLL tools on their

productivity and capabilities have been investigated in [9].

However, the extent of parallelism extracted from the algorithm

by an HLL tool and its ability to generate designs for multiple

platforms are also critical. In contrast to side-by-side

comparisons among HLLs, comparison to conventional HDLs

can provide a different perspective.

In [10], an RC Amenability Test (RAT) was proposed to

quickly predict performance in application design migration to

FPGAs with reasonable accuracies. RAT predicts performance

for a particular design on a specific platform by modeling the

algorithm and the platform in terms of a set of parameters. Since

it is based on simple analytical models, RAT also offers the

possibility to efficiently explore different architectures for a

specific algorithm. The RAT methodology is used in this work

to analyze the expected performance of the coordinate

calculation algorithm on multiple FPGA systems.

3. Application overview

Although LIDAR systems can be configured to operate in

different environments such as air, space, or land, the airborne

configurations are the most common for terrain mapping and are

considered here. In general, an airborne LIDAR system contains

the following major components:

� Pulsed laser

� Scanner and optics

� Receiver and receiver electronics

� Position and navigation systems

The laser emits laser pulses at a prescribed frequency into the

scanner optics, which governs the direction of the laser pulses as

they travel toward the targets. The receiver registers the laser

photons reflected from the terrain and targets of interest. The

distance between the aircraft and the target (range, ρ) can then be

obtained by measuring the travel time of the laser pulse and

multiplying it by the speed of light in the atmosphere. The scan

angle (θ) from the nadir direction underneath the aircraft is also

recorded. The IMUs (Inertial Measurement Units) typically used

update the aircraft attitude (roll φr, pitch φp, and yaw φy angles)

and integrate accelerations to determine position at many tens of

Hz, while the onboard GPS (Global Positioning System)

provides a better absolute solution for the aircraft position (Xac,

Yac, Zac) at a slower rate of 1–2 Hz. The GPS and IMU output are

combined to produce an improved estimate of the aircraft’s

trajectory. An illustration of an airborne LIDAR system is

shown in Fig. 1.

Fig. 1. Schematic illustration of an airborne LIDAR system

The fundamental computation in LIDAR processing is the

calculation of coordinates of the laser returns using the eight

LIDAR parameters, ρ, θ, φr, φp, φy, Xac, Yac, and Zac. Each

return’s coordinate (X, Y, Z) is obtained by the following steps:

� Determining the unit vector that points from the sensor to

the target for each laser pulse using scan angle (θ)

� Generating three rotation matrices that align the body-fixed

vectors of the aircraft with Earth-fixed GPS coordinates

using the respective angles (φr, φp, φy)

� Applying the three rotation matrices to the unit vector

� Scaling the rotated unit vector by the range value (ρ) to

produce a range vector

� Translating the range vector to the Earth-fixed GPS

coordinate frame using the GPS position (Xac, Yac, Zac) and

vector addition

Eq. 1 shows the resulting formula for coordinate calculation, in

which C and S abbreviate cosine and sine operations,

respectively.

()

()

()

 (1)

y r y r p y p ac

y r y r p y p ac

r r p ac

C C S C S C C S S C X
X

Y S C S S S C C C S C Y

Z
S S C C C Z

ρ ϕ ϕ θ ϕ ϕ ϕ θ ϕ ϕ θ

ρ ϕ ϕ θ ϕ ϕ ϕ θ ϕ ϕ θ

ρ ϕ θ ϕ ϕ θ

 − − +   
   

= − + +   
     − − +  

The LIDAR parameters in the calculations are “multi-rate,”

meaning that different parameters are updated at different

frequencies. In particular, IMU and GPS components update at

relatively slower frequencies compared to the laser pulse

frequency. This behavior mandates an interpolation operation on

the aircraft attitude and position values between their

consecutive updates before being used for coordinate

calculation.

Although laser returns are independent of one another and

thus can be processed in parallel, the LIDAR parameters

updated at higher frequencies need to be temporarily stored

while awaiting the next available parameter that is updated at the

slowest frequency. Fig. 2 illustrates the concept of how such

multi-rate parameters can be processed in parallel using FPGAs.

A pair of buffers is placed between the incoming stream of

LIDAR parameters and the LIDAR processor on the FPGA. In

an alternating fashion, one buffer receives data from the

incoming stream while the other feeds previously stored data to

the FPGA for processing. Switching between the two buffers

occurs when the receiving one is full and contains at least one

new value of the parameters that are updated at the slowest

frequency. In addition to coordinate calculation, the processing

procedure can potentially include additional stages before the

occurrence of buffer switching, assuming sufficient FPGA

resources are available. For example, interpolating the 3D points

from the terrain into a continuous elevation image, known as a

Digital Elevation Model (DEM), is commonly used for visual

interpretation and could be migrated to an FPGA

implementation in the future.

Fig. 2. Conceptual illustration of batch-processing of LIDAR data: Whether

streaming, multi-rate LIDAR parameters are stored in Buffer0 or Buffer1

depends on the two switches governed by time t. When t = t0, t2, …, Buffer0

receives data and Buffer1 processes data, and vice versa when t = t1, t3, ….

4. Design methodology

An emulation of onboard LIDAR processing was realized by

migrating a MATLAB-based LIDAR simulator to the FPGA.

The LIDAR parameter settings are listed as follows:

� Laser pulse rate: 33 kHz

� Scan angle reading rate: 33 kHz

� IMU update rate: 5 Hz

� GPS update rate: 1 Hz

The buffer size is assumed to be able to contain one second of

LIDAR parameters, which include 33,000 laser returns, 33,000

scan angle values, five sets of aircraft attitude values, and one

GPS position. Furthermore, pre-design analyses were performed

with respect to numeric precision and predicted performance.

First, several fixed-point configurations were tested to

determine whether a fixed-point implementation is suitable for

LIDAR processing by studying resulting errors in the coordinate

values. Second, RAT was used for estimating preliminary

performance and also aided in design progression in this work.

Precision analysis, RAT analysis, and the architecture designs

are described in detail in the following sub-sections.

4.1. Precision analysis

Using MATLAB’s fixed-point toolbox, a precision analysis

was performed on a set of LIDAR parameters for 33,000 laser

returns generated by the LIDAR simulator. Among LIDAR

parameters, angular values (θ, φr, φp, φy) require more fractional

precision than position values (ρ, Xac, Yac, Zac, X, Y, Z). Table I

shows several fixed-point configurations for LIDAR parameters

and the corresponding increase in error versus double-precision

floating point. The first pair of parentheses represents the

fixed-point configuration for angular values, and the second pair

represents position values. The two numbers inside the

parentheses denote the number of total bits and the number of

fractional bits, respectively. Errors caused by the conversion

from floating point to fixed point are measured in terms of

root-mean-squared error (RMSE) and maximum error (Max E),

all of which are less than an acceptable margin of one meter, thus

justifying the use of fixed-point precision in coordination

calculation for LIDAR processing.

TABLE I

ERRORS MEASURED IN PRECISION ANALYSIS

Precision RMSE (m) Max E. (m)

(16, 14) & (16, 5) 0.254 0.962

(31, 28) & (16, 5) 0.183 0.718

4.2. RAT analysis

RAT analysis is performed in the form of a worksheet, as

shown in Table II. An “element,” which corresponds to a laser

return in this application, is examined to estimate two

performance-indicative quantities: time taken to transfer data in

and out of the FPGA, termed as communication time (tcomm), and

time taken to perform all the algorithmic computations on the

transferred data, termed as computation time (tcomp). It is

common for application data to be significantly larger than the

available FPGA system memory, and thus the data set may need

to be broken into smaller blocks and processed on the FPGA.

Niter denotes the number of iterations required to process all

application data. The total time spent on the FPGA (tRC) is then

compared to a software baseline (tsoft) to obtain a predicted

speedup. The entries in Table II that are related to estimating

tcomm are (i) number of elements transferred per iteration

(Nelements), (ii) element size (Nbytes/element), and (iii) ideal

interconnect throughput with efficiency factors considered

(Throughputideal, αread, αwrite). The entries related to tcomp are (i)

Nelements, (ii) number of operations to be performed on each

element (Nops/element), (iii) number of operations that can be

performed within one clock cycle (Throughputproc), and (iv)

assumed FPGA working frequency (fclock). The set of formulae in

Eq. 2 highlights the relationship between the estimates and the

parameters considered.

/

/

/

/
 (2)

()

elements bytes element

read write

read write ideal

comm read write

elements ops element

comp

clock proc

RC iter comm comp

soft

RC

N N
t

Throughput

t t t

N N
t

f Throughput

t N t t

t
Speedup

t

α

×
=

×

= +

×
=

×

= +

=

TABLE II

DESIGN PROGRESSION THROUGH RAT ANALYSIS

Data Set Parameters
Design 1

(Nallatech)

Design 1

(Cray)

Design 2

(Cray)

Nelements, input (elem.) 66000 66000 33018

Nelements, output (elem.) 33000 33000 33000

Nbytes/element (B/elem.) 8 8 8

Communication Parameters
Design 1

(Nallatech)

Design 1

(Cray)

Design 2

(Cray)

Throughputideal (MB/s) 1000 1638.4 1638.4

αread 0<α<1 0.25 0.5 0.5

αwrite 0<α<1 0.25 0.5 0.5

Computation Parameters
Design 1

(Nallatech)

Design 1

(Cray)

Design 2

(Cray)

Nelements, proc (elem.) 33000 33000 33000

Nops/element (ops/elem.) 9 9 10

Throughputproc (ops/cycle) 9 9 10

fclock (MHz) 125 125 125

Software Parameters
Design 1

(Nallatech)

Design 1

(Cray)

Design 2

(Cray)

tsoft (sec) 1.09E-02 1.09E-02 1.09E-02

Niter (iter.) 1 1 1

Calculated Metrics
Design 1

(Nallatech)

Design 1

(Cray)

Design 2

(Cray)

tcomm (sec) 3.16E-03 9.67E-04 6.45E-04

tcomp (sec) 2.64E-04 2.64E-04 2.64E-04

tRC (sec) 3.43E-03 1.23E-04 9.09E-04

Predicted Speedup 3.2 8.9 12.0

Table II also summarizes the design progression aided by

predictions made through RAT. Two platforms were considered

in RAT analysis: first, a 16-node Linux cluster with each node

configured with a 3.2 GHz Intel Xeon processor and a Nallatech

H101 PCI-X board featuring a Xilinx Virtex4 LX100 FPGA

(only one node was used for LIDAR designs) and second, a Cray

XD1 machine with six nodes in one chassis, each featuring two

2.4 GHz AMD Opteron processors and one Xilinx Virtex2 Pro

50 FPGA (only one node was used for LIDAR designs). For

Host-to-FPGA communication, the Nallatech board uses a

PCI-X bus, while the Cray XD1 is equipped with a RapidArray

interconnect. The baseline tsoft was computed from a baseline C

application executed on a 2.4 GHz AMD Opteron processor

with single-precision floating point. The FPGA working

frequency fclock is assumed to be 125 MHz.

Two designs, Design 1 and Design 2, were considered and

analyzed during this design progression. Design 1 assumes the

LIDAR parameters updated at slower rates are interpolated up to

33,000 times on the Host, and the computation on the FPGA

involves only coordinate calculation. A 16-bit fixed-point

configuration was chosen for LIDAR parameters and the

resulting coordinates. Although a total of 48 bits are sufficient to

represent one set of coordinates (X, Y, Z) for a laser return, these

values are byte-packed to 32 or 64 bits (Nbytes/element = 8) to match

the interconnect bandwidth (Nallatech: 32-bit; Cray XD1:

64-bit). Byte-packing was applied to LIDAR parameters as well.

Byte-packed LIDAR parameters require 128 bits per element,

while the resulting coordinates require 64 bits per element.

Therefore, Nelements for input is twice Nelements for output. Since

each laser return can be processed independently, a 9-cycle-long

pipeline was constructed based on Eq. 1 (Nops/element = 9).

Furthermore, the number of parallel pipelines is set to one in this

application due to the assumption that the FPGA may not have

sufficient bandwidth to support multiple pipelines and hence

determines the number of operations per cycle (Nops/cycle = 9).

FPGA memory is assumed to have capacity of one full buffer of

LIDAR parameters (Niter = 1), and Nelements for processing is the

same as Nelements for output as an element is referred to a laser

return in this application.

As shown by the calculated metrics in Table II, most of tRC is

dominated by tcomm (~92% of tRC) when considering the

Nallatech board the target platform. RAT indicates that the

coordinate calculation stage in LIDAR processing is a

communication-bound process under Design 1, and therefore,

the Cray XD1 platform is better suited for this application

design. The higher effective throughput of the Cray XD1 (819.2

MB/s, as opposed to 250 MB/s of the Nallatech board) is

estimated to reduce tcomm significantly (~79% of tRC). Moreover,

an emerging trend in FPGA technologies is to architecturally

integrate CPU, memory, and FPGA resources at the system level

as opposed to traditional peripheral-bus interfaces [11]. The

Cray XD1 is representative of such systems and thereby an

appropriate choice for the purpose of prototyping embedded

applications like onboard LIDAR processing.

Migration of LIDAR processing algorithms was

re-investigated in order to further reduce tcomm. Design 2

attempts to balance communication and computation by

migrating interpolation for parameters updated at slower

frequencies to the FPGA. A linear interpolation method was

realized by accumulating pre-calculated increments to base

values comprised of un-interpolated parameters. The

pseudo-code shown in Fig. 3 illustrates the steps for

interpolating roll angles (φr) as an example. Similar steps are

applied to other un-interpolated parameters. In Design 2, there

are still 33,000 range and scan angle values (ρ, θ) being

transferred from the Host to the FPGA, but only five sets of (φr,

φp, φy) with their increments (∆φr, ∆φp, ∆φy) and one set of (Xac,

Yac, Zac) with (∆Xac, ∆Yac, ∆Zac) are sent to the FPGA. This

reduction in number of parameters to be transferred enables the

angular values (θ, φr, φp, φy) to increase the total bits used for

fixed-point configurations since this increase only fills up the

extra bits that would have been sent due to the interconnect

bandwidth and thus the precision errors are further reduced by

28% in RMSE and 25% in Max E, respectively. In particular, a

(31, 28) configuration was used in Design 2 for (θ, φr, φp, φy) and

(∆φr, ∆φp, ∆φy). After byte-packing for Cray XD1’s 64-bit

interconnect, (ρ, θ) requires 64 bits per element, and (φr, φp, φy,

Xac, Yac, Zac) along with their increments require 18 64-bit

transfers for all the elements. Therefore, compared to Design 1,

Nelements for input is reduced to 33,018, tcomm is decreased to

~71% of tRC, and both Nops/elements and Throughputproc are

increased by 1 since the pipeline is extended one extra cycle to

accommodate the accumulation of the increments. Given these

changes, executing Design 2 on Cray XD1 platform was

predicted to achieve a speedup factor of 12 over the baseline

executed on an Opteron processor.

Fig. 3. Pseudo-code illustrating the steps for interpolating the roll angles on the

Host side and the FPGA side

4.3. Architecture design

Both Design 1 and Design 2 contain a LIDAR processing core

that computes coordinates and a state machine that governs the

data flow, as shown in Fig. 4. The processing core is fully

pipelined by extracting the parallelism inherent in coordinate

calculation, including independent computation of the

coordinates (X, Y, Z) and simultaneous sinusoidal evaluations of

the angular values (θ, φr, φp, φy). The Cray XD1 system provides

several ways of bidirectional data transfer between the Host and

the FPGA [12]. One is Host-initiated transfer through the use of

API functions. Another is FPGA-initiated transfer involving the

use of both API functions and a DMA transfer module. The

former was found inefficient in transferring data from the FPGA

to the Host [13], and hence the latter was considered to exploit

the high throughput efficiency of the RapidArray interconnect.

Thus, data can be sent from the QDR-II SRAM on the FPGA to

the Host memory using a DMA transfer, bypassing the Host

processor.

Fig. 4. Data flow of onboard LIDAR processing on Cray XD1 with DMA

Fig. 5. State machine diagram (Design 1: states with solid lines; Design 2: states

with solid lines and states with dashed lines)

The design progression from Design 1 to Design 2 incurs no

architectural changes to the processing core but a modification

on the state machine. The state machine in Design 1 is composed

of three states: S_Idle, S_Process, and S_Done. At S_Idle the

FPGA is reset and awaits a “start” signal (“GO = 1” in Fig. 5)

from the Host. At S_Process the coordinates of laser returns are

computed until all the transferred data are processed (“CNT_ρ >

33000” in Fig. 5). At S_Done the FPGA awaits an “end” signal

(“GO = 0” in Fig. 5) from the Host. The state machine in Design

2 consists of the same states as in Design 1 and three additional

states: S_Interp1, S_Interp2, and S_Interp3, taking the

parameter interpolation into account. As shown in Fig. 5, solid

circles represent the common states while dashed circles

represent the additional states. The three components of the

aircraft attitude are stored sequentially in consecutive entries of

the same bank of SRAM and thus need to be interpolated

individually since the FPGA can only access one entry of the

/* The Host side */

for i = 1 to 5
 () [(1) ()]/[33000 / 5]; /* pre-calculate () */

r r r r
i i i iϕ ϕ ϕ ϕ∆ = + − ∆

end

/* The FPGA side */

for i = 1 to 5
 (); /* load new base value */

r r
iϕ ϕ=%

 for j = 1 to (33000/5)
 (); /* accumulate increment to base value */

r r r
iϕ ϕ ϕ= + ∆% %

 (, ,) (..., ,...); /* coordinate calculation using */
r r

X Y Z f ϕ ϕ← % %

 end

end

same bank of SRAM per clock cycle. The same interpolation

procedure and state transitions apply to the components of the

GPS position. Whenever a base value and its increment need to

be updated (“CNT_φ = 5 OR CNT_ac = 1” in Fig. 5), the state

machine transitions from S_Process to S_Interp1, goes through

S_Interp2 and S_Interp3 sequentially, and then transitions back

to S_Process.

5. Results

After a suitable architecture was determined, both Design 1

and Design 2 were developed and mapped to an FPGA on the

Cray XD1 for analysis and verification of performance factors.

Moreover, each design had two versions of its processing core

developed, one using a MATLAB-based HLL tool (AccelDSP)

and the other using conventional VHDL. These two versions of

cores were encapsulated by the state machine and platform

wrapper (developed in VHDL) in each design. All designs were

synthesized in Xilinx ISE 9.1 to generate the final bitstream.

Speedup and FPGA resource utilization are reported and

discussed, followed by a comparison of performance between

the two versions for each design.

5.1. Speedup and resource utilization

One primary goal of this work is to achieve performance

improvements in terms of shorter processing time. With the

FPGA running at a clock frequency of 125 MHz, which was the

highest frequency obtained after repeated Synthesis and PAR

procedure, speedups were obtained using the formula shown in

Eq. 2 with the same software baseline and tRC experimentally

measured on the Cray XD1 system. Selected resource utilization

values and obtained speedups are shown in Table III. Speedups

of approximately 10× and 13× were achieved by Design 1 and

Design 2, respectively, both deviating from the RAT predictions

by less than 15%. The measured tcomm (Design 1: 0.659 ms;

Design 2: 0.565 ms) was less than the RAT-projected tcomm

because a conservative interconnect efficiency factor was

considered in RAT. Thus, there was a slight increase in actual

speedup values over their respective RAT projections. Design 2

involved more computation and a larger state machine than

Design 1 and hence consumed more slices. As reported in Table

I, the values obtained by executing Design 1 with fixed-point

configurations of (16, 14) & (16, 5) and Design 2 with (31, 28)

& (16, 5), respectively, on the Cray XD1 result in an RMSE less

than 0.3 meters. In other words, it represents less than 3% error

for a DEM over an area with 10 meters of topographic relief, or

less than 0.3% error for a 100-meter relief. While some

applications can require greater precision, that is an acceptable

level for many applications.

TABLE III

SPEEDUP & DEVICE UTILIZATION OF DESIGNS 1 AND 2 ON CRAY XD1

Design 1 Design 2
Description

HLL HDL HLL HDL

Slices (%) 38 31 45 42

MULT18x18s (%) 5 5 5 5

Actual Speedup 9.9 10.2 13.1 13.8

5.2. HLL vs. HDL comparison

Shorter development time is one of the most attractive

advantages in using HLL tools for application scientists who are

less experienced in HDL programming. In particular, HLL tools

that aid in developing hardware designs by translating

MATLAB codes to HDLs draw attention to researchers in signal

processing fields, where MATLAB is one of the more popularly

used programming languages. In this work, two researchers

participated in developing application designs. One of them was

a signal processing researcher and used AccelDSP to assist with

design development, whereas the other was more familiar with

hardware designs and developed the application in VHDL. The

development time using VHDL, including the researcher’s

algorithm-acquaintance period, was roughly three times longer

than using AccelDSP.

The primary parallelism inherent in coordinate calculation

was automatically extracted and pipelined by AccelDSP in the

HLL version and manually exploited in the HDL version. The

resulting clock frequency, pipeline length, and selected resource

utilization of the processing cores between the two versions are

shown in Table IV. As expected, the HDL version has higher

achievable core frequency because the automated procedure of

translating HLL to HDL creates overhead that increases

critical-path delays and thus results in a sub-optimal design.

However, the actual board frequencies were limited by the state

machine and the platform wrapper so that similar speedup values

and negligible degradation were observed in comparison with

the HDL design. The same number of multipliers used in both

versions demonstrates that AccelDSP was able to match the

efficiency of a hand-coded design with respect to these relatively

scarce and expensive resources. Two essential techniques were

useful for extracting parallelism inherent in the algorithm of

coordinate calculation: loop-unrolling of matrix multiplications

and pipelining for underlying data flow, both of which are

frequently used for optimizing hardware designs. As both

designs resulted in similar pipeline length, AccelDSP exhibited

potential for exploiting parallelism through pipelining.

TABLE IV

HLL VERSUS HDL COMPARISONS IN CORE DESIGN

Design 1 Design 2
Core Design

HLL HDL HLL HDL

Core Freq. (MHz) 140 180 150 200

Pipeline Len. (cycle) 31 34 31 34

MULT18x18s (%) 5 5 5 5

Slices (%) 18 17 20 17

HLLs are generally considered less efficient in manipulating

bit-level operations than HDLs, but AccelDSP compensates for

this efficiency loss by providing convenient constructs for

performing such manipulations on components in designs while

developing them using MATLAB [14]. Vendor-supported IP is

also useful in accelerating HLL hardware designs. In this work,

several essential sinusoidal evaluations were developed using

such IPs [15]. AccelDSP also supports features for common

parallelism-extracting techniques with a user-friendly interface.

For instance, pipeline registers can be explicitly inserted before

and/or after any operations to shorten long propagation delays.

Another beneficial feature of AccelDSP is its automated and

flexible floating-to-fixed-point conversion, which can be

inefficient and time-consuming to approach manually. This

feature was frequently employed for result verification in this

work since the default data format in MATLAB is

double-precision floating point.

A common drawback of HLL tools is their requirement of a

specific programming style to allow efficient extraction of

parallelism and generation of optimized designs. AccelDSP

requires the design function call (the core function being

translated to HDL) to be positioned inside a loop in a script file

that governs the data sent in and out of the core [16]. Although

this restriction significantly increases AccelDSP’s capability of

optimizing pipelined designs, such as the core design for

coordinate calculation in this work, it also limits the flexibility of

modifying the top-level data flow, such as occurred with the

addition of parameter interpolation in Design 2.

Although HLL tools like AccelDSP are helpful in developing

application cores, platform wrappers still play an unavoidable

role in the completion of a hardware design. They are usually

available in conventional HDL and may not appeal to

application scientists. It is a rising trend in the evolution of HLL

tools that platform wrappers continue to provide more abstract

interfaces so that developing a hardware design would entail

much less knowledge of hardware details and HDL coding.

However, the underlying non-conventional HLLs used in such

tools may incur extra language-acquaintance effort.

6. Conclusions

Two different designs of hardware architecture were

developed, mapped, and analyzed on the Cray XD1 system with

Xilinx Virtex2 Pro 50 FPGAs. A final speedup factor close to 14

was achieved. RAT was used to examine application designs and

predicted performance with variation less than 15%. RAT also

indicated that coordinate calculation in LIDAR processing is a

communication-bound process and thus motivated design

progression in terms of choosing a suitable platform and

modifying the algorithm for greater speedups. In addition, both

HLL tools and HDL were used for the development of the

processing cores, and the performance and productivity of the

two versions were analyzed and compared. Minimal

performance degradation from the HLL version was

experienced because the final FPGA clock frequency was

limited by the top-level state machine and the platform wrapper.

HLL tools, which have a variety of convenient features, enable

efficient migration of applications to hardware by reducing time

and effort for development. Restrictions in programming style of

HLLs may aid automated design optimization but also limit

design flexibility.

As an extension of this work, subsequent signal processing

components in LIDAR processing after the coordinate

calculation stage could increase the amount of computation

performed on the FPGA so long as FPGA resources are

available. If a single FPGA does not contain sufficient resources,

the use of multiple FPGAs should be investigated, along with the

current design’s scalability and the associated performance

prediction techniques needed for multi-FPGA analysis.

Moreover, the additional effort required for porting an

AccelDSP-generated core to other platforms to perform the

same computation could be an evaluating factor of its

productivity as an HLL tool.

7. Acknowledgements

This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No. EEC-0642422.

The authors gratefully acknowledge vendor equipment and/or

tools provided by Xilinx, Cray, Nallatech, Aldec, and Synplicity

that helped make this work possible.

8. References

[1] W. Carter, R. Shrestha, and C. Slatton, “Geodetic laser scanning,” Physics

Today, Dec., 2007, pp. 41–47.

[2] C. Slatton, W. Carter, R. Shrestha, and W. Dietrich, “Airborne laser swath

mapping: achieving the resolution and accuracy required for geosurficial

research,” Geophysical Research Letters, vol. 34, L23S10,

doi:10.1029/2007GL031939, 2007.

[3] M. Mutlu, S. Popescu, C. Stripling, and T. Spencer, “Mapping surface

fuel models using LIDAR and multispectral data fusion for fire behavior,”

Remote Sensing of Environment, vol. 112, 2008, pp. 274–285.

[4] Optech, “ALTM Gemini 167 brochure,” 2006, http://www.optech.ca/

pdf/Gemini167.pdf.

[5] C. Slatton, M. Coleman, W. Carter, R. Shrestha, and M. Sartori, “Control

methods for merging ALSM and Ground-based laser point clouds

acquired under forest canopies,” Proc. SPIE, 4th International

Asia-Pacific Environmental Remote Sensing Symposium, Honolulu,

Hawaii, Nov., 2004, vol. 5661, pp. 96–103.

[6] J. Blair and M. Hofton, “Modeling laser altimeter return waveforms over

complex vegetation using high-resolution elevation data,” Geophysical

Research Letters, vol. 26, 1999, pp. 2509–2512.

[7] W. Carter, R. Shrestha, and C. Slatton, “Photon-counting airborne laser

swath mapping (PC-ALSM),” Proc. SPIE, 4th International Asia-Pacific

Environmental Remote Sensing Symposium, Honolulu, Hawaii, Nov.,

2004, vol. 5661, pp. 78–85.

[8] W. Powell, E. Hicks, M. Pinchinat, P. Dabney, J. McGarry, and P.

Murray, “Reconfigurable computing as an enabling technology for

single-photon-counting laser altimetry,” Proc. IEEE Aerospace

Conference, Big Sky, MT, Mar. 6–13, 2004, pp. 2327–2339.

[9] E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, and G. Newby,

“Comparative analysis of high level programming for reconfigurable

computers: methodology and empirical study,” Proc. IEEE III Southern

Conference on Programmable Logic (SPL2007), Mar del Plata,

Argentina, Feb. 26–28, 2007.

[10] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. George, “RAT: A

methodology for predicting performance in application design migration

to FPGAs,” Proc. High-Performance Reconfigurable Computing

Technology and Applications Workshop (HPRCTA 2007), SC’07, Reno,

NV, Nov. 11, 2007.

[11] P. Leong, “Recent trends in FPGA architectures and applications,” Proc.

4th IEEE Symposium on Electronic Design, Test and Applications

(DELTA 2008), Hong Kong, SAR, China, Jan. 23–25, 2008, pp. 137–141.

[12] Cray, “Cray XD1 FPGA development,” May, 2006.

[13] D. Chavarría-Miranda and A. Márquez, “Assessing the potential of hybrid

HPC systems for scientific applications: a case study,” Proc. ACM

International Conference on Computing Frontiers (CF’07), Ischia, Italy,

May 7–9, 2007.

[14] Xilinx, “AccelDSP synthesis tool user guide,” Sep., 2006.

[15] Xilinx, “AccelWare™ DSP IP toolkits user guide,” Sep., 2006.

[16] Xilinx, “MATLAB for synthesis style guide,” Sep., 2006.

