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Abstract 

High-Level Languages (HLLs) for FPGAs (Field-

Programmable Gate Arrays) facilitate the use of 

reconfigurable computing resources for application 

developers by using familiar, higher-level syntax, 

semantics, and abstractions, typically enabling faster 

development times than with traditional Hardware 

Description Languages (HDLs).  However, this 

abstraction is typically accompanied by some loss of 

performance as well as reduced transparency of 

application behavior, making it difficult to understand 

and improve application performance.  While runtime 

tools for performance analysis are often featured in 

development with traditional HLLs for serial and 

parallel programming, HLL-based applications for 

FPGAs have an equal or greater need yet lack these 

tools.  This paper presents a novel and portable 

framework for runtime performance analysis of HLL 

applications for FPGAs, including a prototype tool for 

performance analysis with Impulse C, a commercial 

HLL for FPGAs.  As a case study, this tool is used to 

locate performance bottlenecks in a molecular dynamics 

application. 
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1. Introduction 

Today’s application mappers (i.e. compilers that 

translate High-Level Languages (HLLs) to hardware 

configurations on FPGAs, such as Impulse C [1] or 

Carte [2]) simplify software developers’ transition to 

reconfigurable computing and its performance 

advantages without the steep learning curve associated 

with traditional Hardware Description Languages 

(HDLs).  While HDL developers have become 

accustomed to debugging their code via simulators, 

software developers typically rely heavily upon 

debugging and performance analysis tools.  In order to 

accommodate the typical software development process, 

application mappers support debug of HLL source code 

on a traditional microprocessor rather than relying upon 

HDL simulators and logic analyzers.  However, current 

commercial application mappers provide few (if any) 

runtime tools to debug or analyze application 

performance at the HLL source-code level while 

executing on one or more FPGAs.  While methods and 

tools for debugging FPGAs have been well researched 

and even developed, such as for the Sea Cucumber HLL 

which has tool support for runtime debugging [3], 

research is currently lacking in runtime performance 

analysis tools for FPGAs, especially when HLLs are 

featured. 

Without performance tools to assist in analyzing 

application behavior on the FPGA, potential 

performance gains of reconfigurable computing may be 

lost. A major advantage of reconfigurable computing is 

performance increase obtained from application-specific 

hardware optimizations.  Application mappers attempt to 

create optimized hardware by extracting parallelism out 

of amenable HLL statements (e.g. performing the 

iterations of a loop in parallel or in a pipeline if 

possible).  However, the amount of parallelism 

extracted, and the overall structure of the design in 

hardware, can depend heavily upon the way in which the 

algorithm is expressed as well as the techniques used by 

the application mapper to translate source code to 

hardware.   

Runtime performance analysis (hereafter the 

“runtime” is assumed) allows the application developer 

to better understand application behavior in terms of 

both computation and communication, aiding the 

developer in locating and removing performance 

bottlenecks in each.  Complex or dynamic data 

dependencies during computation, shared 

communication channels, and load balancing among 

parallelized components can be very difficult to predict 
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and yet significantly affect performance.  Performance 

analysis tools for HLL codes must allow the developer 

to monitor these types of areas while presenting analysis 

from the perspective of the HLL source code.  

Unfortunately, many well-researched debugging 

techniques may not be suited for runtime performance 

analysis.  For example, halting an FPGA to read back its 

state may not be viable due to the unacceptable level of 

disturbance caused to the application’s behavior and 

timing since the FPGA will be temporarily inaccessible 

to the CPU, causing performance problems that did not 

exist before. 

Alternatively, performance can be analyzed through 

simulation.  However, cycle-accurate simulations of 

complex designs on an FPGA are slow and increase in 

complexity as additional system components are added 

to the simulation.  Most (if not all) cycle-accurate 

simulators for FPGAs focus upon signal analysis and do 

not present the results at the HLL source-code level for a 

software developer. 

This paper focuses upon performance analysis of an 

HLL application on a reconfigurable system by 

monitoring the application at runtime.  We have gained 

the majority of our insight about performance analysis 

with application mappers from a prototype performance 

analysis tool that we have developed in this research for 

Impulse C.  Impulse C, a product of Impulse Accelerated 

Technologies, maps a reduced set of C statements to 

HDL for use on a variety of platforms.  In addition, 

examination here of Carte, a product of SRC Computers, 

provides an alternate example of how C code can be 

mapped to an FPGA along with initial ramifications 

found for a performance analysis tool supporting Carte. 

The remainder of this paper is organized as follows.  

Section 2 discusses related work while Section 3 

provides background information in runtime 

performance analysis.  Next, Section 4 covers the 

challenges of performance analysis for HLLs targeting 

FPGAs.  Section 5 then presents a case study using a 

molecular dynamics application written in Impulse C.  

Finally, Section 6 concludes and presents ideas for 

future work. 

2. Related Work 

To the best of our knowledge from a comprehensive 

literature search, little previous work exists concerning 

performance analysis for FPGAs.  Hardware 

performance measurement modules have been integrated 

into FPGAs before; however, they were designed 

specifically for monitoring the execution of soft-core 

processors [4].  The Owl framework, which provides 

performance analysis of system interconnects, uses 

FPGAs for performance analysis, but does not actually 

monitor the performance of hardware inside the FPGA 

itself [5].  This paper significantly extends our previous 

work on performance analysis for HDL applications [6], 

which discusses a framework for monitoring 

performance inside the FPGA called the Hardware 

Measurement Module (HMM), by expanding this 

framework to support the challenges of HLL mappers. 

 

 

Figure 1. Performance Analysis Steps 

3. Background 

Performance analysis can be divided into six steps 

(derived from Maloney’s work on the TAU performance 

analysis framework for traditional processors [7]) whose 

end goal is to produce an optimized application.  These 

steps are Instrument, Measure, Execute, Analyze, 

Present, and Optimize (see Figure 1).  The 

instrumentation step inserts the necessary code (i.e. for 

additional hardware in the FPGA’s case) to access and 

record application data at runtime, such as variables or 

signals to capture performance indicators.  Measurement 

is the process of recording and storing the performance 

data at runtime while the application is executing.  After 

execution, analysis of performance data to identify 

potential bottlenecks can be performed in one of two 

ways. Some tools can automatically analyze the 

measured data, while other tools rely solely upon the 

developer to analyze the results.  In either case, data is 

typically presented to the user via text, charts, or other 

visualizations to allow for further analysis.  Finally, 

optimization is performed by modifying the 

application’s code based upon insights gained via the 

previous steps.  Since automated optimization is an open 

area of research, optimization at present is typically a 

manual process.  Finally, these steps may be repeated as 
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many times as the developer deems necessary, resulting 

in an optimized application.  This methodology is 

employed by a number of existing tools for parallel 

performance analysis including TAU [7], PPW [8] 

KOJAK [9] and HPCToolkit [10].  

4. HLL Performance Analysis Challenges 

While all stages of performance analysis mentioned 

above are of interest for application mappers, we limit 

our discussion to the challenges of instrumentation, 

measurement, and analysis for the remainder of this 

paper.  The challenges associated with presenting 

optimal visualizations for application mappers will be 

saved for future work. Thus, Section 4.1 covers the 

challenges of instrumenting an application, Section 4.2 

explains the challenges associated with measuring 

performance data from an application, and Section 4.3 

discusses the challenges of analyzing that performance 

data. 

4.1. HLL Instrumentation Challenges 

Instrumentation enables access to application data at 

runtime.  For application mappers, this step raises two 

key issues: at what level of abstraction should 

modifications be made, and how to best select what 

should be accessed to gain a clear yet unobtrusive view 

of the application’s performance.  Tradeoffs concerning 

the level of abstraction are discussed in Section 4.1.1, 

while the selection of what to monitor is covered in 

Section 4.1.2. 

 
4.1.1. Instrumentation Levels. Instrumentation can be 

added to an application at several levels ranging from 

HLL source code down to FPGA bitstreams.  Each 

instrumentation level offers advantages to a performance 

analysis tool for HLL-based applications. 

The most obvious choice for instrumentation is to 

directly modify the HLL source code.  The main 

advantage of this method is simplicity; code is added to 

record data at runtime, and this data can be easily 

correlated with the source line that was modified.  

Unfortunately, application mappers typically lack 

generic hardware timing functions, severely limiting the 

accuracy of any performance data obtained as the CPU 

clock must now be used to measure events on the FPGA 

across the interconnect.  Carte is an exception in that it 

allows the developer to manually control and retrieve 

cycle counters, which, along with the FPGA’s clock 

frequency and some adjustment for skew, provides 

accurate timing information between the CPU and 

FPGA. 

Instrumentation can also be inserted after the 

application has been mapped from HLL to HDL.  

Instrumentation of VHDL or Verilog provides the most 

flexibility since measurement hardware can be fully 

customized to the application’s needs, rather than 

depending upon built-in HLL timing functions.  

However, using instrumentation below the HLL source 

level does require additional effort to map information 

gathered at the HDL level back to the source level.  This 

process is problematic due to the diversity of mapping 

schemes and translation techniques employed by various 

application mappers and even among different versions 

of the same mapper.  For example, if a performance tool 

relies upon HLL variables and HDL signals being 

textually related, then the performance tool would fail if 

this naming scheme was modified in a subsequent 

release of the application mapper.      

Instrumentation can also be added at the bitstream 

level after place and route, as discussed at length in 

Graham et al. [11].  Instrumentation at the bitstream 

level can be inserted, manipulated, and reinserted in 

seconds to minutes.  In contrast, HLL and HDL 

instrumentation requires a new place and route of the 

application which can take hours to days.  Beyond the 

obvious time savings, bitstream-level instrumentation 

permits the application developer to include minimal 

performance hardware, knowing that it can be modified 

in minutes if necessary.  However, the instrumentation 

must now be aware of the target FPGA type.  In 

addition, some flexibility is lost as the design is mostly 

fixed after place and route, making some signals 

inefficient to access or inaccessible due to the current 

routing plan. 

Other intermediate levels exist between the HLL 

source level and the bitstream level.  Some HLL 

mappers have intermediate levels during translation 

between the HLL and HDL levels.  Still more 

intermediate levels exist between the various stages used 

to generate bitstreams for Altera and Xilinx FPGAs.  

However, as [11] concludes, these levels suffer from 

insufficient documentation or inadequate tool support 

for modifying the design at that level, and thus are 

beyond the scope of this paper. 

We choose to insert instrumentation at the HDL 

level for its flexibility, since it is not limited by available 

HLL functions.  HDL is also portable across FPGAs, 

making our prototype performance analysis tool useful 

on a broader range of platforms. 

 

4.1.2. Instrumentation Selection. Application 

performance can generally be considered in terms of 

communication and computation.  Many application 

mappers, such as Impulse C and Carte, provide built-in 

functions for communication.  Communication functions 

normally have associated status signals at the HDL level 
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that can be instrumented to determine usage statistics 

such as transfer rate or idle time.  Instrumenting 

computation is more complex due to the various ways 

that computation can be mapped to hardware.  Impulse 

C maps computation onto (possibly multi-level) state 

machines, and thus monitoring these state machines is 

crucial to understanding computational performance.  As 

an example, the CO PIPELINE pragma is used in 

Impulse C to pipeline computation within a loop.  When 

this function is invoked, Impulse C generates a state 

machine to control the pipeline that can be in one of four 

states: idle, initialize, run, or flush.  Initialize and flush 

states indicate pipelining overhead and thus can provide 

indicators of lost performance.  For Carte, computation 

is represented as a dataflow graph connecting hardware 

units.  Thus, monitoring the status signals of these units, 

such as completion signals, can provide insight into how 

computation progresses in the application. 

In general, the HDL structure and hardware 

statements generated by an application mapper will need 

to be analyzed in order to find state machines, status 

signals, or other information that can be instrumented to 

provide relevant performance data.  By finding the 

specific performance indicators for HDL code generated 

by an application mapper, automated instrumentation is 

feasible.  It may also be beneficial to monitor application 

data directly (i.e., an HLL variable) to gain a better 

understanding of application performance and behavior.  

However, selection of an application variable is, in 

general, not automatable due to the need for high-level, 

application-specific knowledge to understand the 

variable’s purpose and expected value. 

4.2. HLL Measurement Challenges 

After instrumentation has been inserted into the 

developer’s application, monitored values must be 

recorded (measured) and sent back to the host processor.  

Section 4.2.1 presents standard techniques for measuring 

application data, Section 4.2.2 then describes the 

hardware used to make these measurements, and finally 

Section 4.2.3 addresses how the measurement hardware 

communicates performance data to software. 

 
4.2.1. Measurement Techniques. The two common 

modes for measuring performance data are profiling and 

tracing.  Profiling records the number of times that an 

event has occurred, often using simple counters.  To 

conserve the logic resources of an FPGA, it is possible 

to store a larger number of counters in block RAM if it 

can be guaranteed that only one counter within a block 

RAM will be updated each cycle (e.g., this technique is 

useful for large state machines, since they can only be in 

one state at any given clock cycle).  Profiling data can be 

collected either when the program is finished (post-

mortem) or sampled (collected periodically) during 

execution.  At the cost of communication overhead, 

sampling can provide snapshots of profile data at various 

stages of execution that would otherwise be lost by a 

post-mortem retrieval of performance data. 

In contrast, tracing records timestamps indicating 

when individual events occurred and, optionally, any 

data associated with each event.  Due to the potential for 

generating large amounts of data, trace records typically 

require a buffer for temporary storage until they can be 

offloaded to a larger memory, such as the host 

processor’s main memory.  To complicate matters, an 

HLL communication function may have built-in 

buffering as well.  Assuming no built-in buffering exists, 

block RAMs can be used to temporarily store trace data 

on-chip.  While logic resources on the FPGA can also be 

used for trace data storage, this resource is scarce and of 

lower density than block RAM, making logic resources 

ill-suited for general trace data.  If available, other 

memory resources such as larger, preferably on-board 

SRAM or DRAM can be used to store trace data as well 

before it is sent to the host processor.  Tracing does 

provide a more complete picture of application behavior, 

capturing the sequence and timing of events.  Thus, 

when needed, tracing can be justified despite the often 

high memory and communication overhead. 

 

4.2.2. Measurement Hardware. Due to the limitations 

of hardware timing functions in many application 

mappers, as discussed in Section 4.1.1, customized 

hardware with profiling and tracing capabilities is 

critical in obtaining accurate performance data.  For this 

reason, we extend the Hardware Measurement Module 

(see Figure 2), or HMM, presented in [6]. 
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Figure 2. Hardware Measurement Module 
 

The HMM allows HDL signals to be used in 

arbitrary expressions that define events such as “buffer 

is full” or “component is idle.”  These events are used to 
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trigger custom profile counters or trace buffers 

depending upon the type and level of detail of 

performance data required.  A cycle counter is also 

provided for synchronization and timing information.  

The module control provides the interface to software 

for transferring data back to the host processor at 

runtime as well as clearing or stopping the module 

during execution. 

 

4.2.3. Measurement Data Transfer. In order to transfer 

measurement data from the FPGA to the host processor, 

a communication interface must be connected to the 

HMM.  Fortunately, many HLL mappers have built-in 

communication functions, making the addition of a 

logical communication channel trivial.  However, the 

process of connecting this communication interface to 

the HMM is not as straightforward, since the HMM is 

written in VHDL.  To address this problem, a temporary 

loopback communication channel and hardware are 

inserted into the HLL source code of the application 

(dark arrows in Figure 3).  Once the application is 

mapped to an HDL, the loopback HDL code is removed 

(cross-hatched arrow in Figure 3) and replaced by the 

HMM.  Instrumentation now progresses as it would for 

an HDL application; application signals are brought out 

and connected to the HMM for measurement (thin black 

arrow in Figure 3), completing the process.  This 

technique has been used with our case study in Impulse 

C, and has also shown promise for Carte. 
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Figure 3. HLL communication loopback is 
added.  The function’s HDL is replaced by the 

HMM, which monitors the application’s signals. 
 

Communication overhead can depend upon several 

factors.  One major factor concerns how much data is 

generated.  Profile counters and trace buffers should be 

sized according to the number of events expected (with 

some margin of safety).  Events should also be defined 

frugally to minimize the amount of data recorded while 

still obtaining the information needed to analyze 

performance.  For example, while it may be ideal to 

monitor the exact time and number of cycles for all 

writes, it may be sufficient to know the number of writes 

exceeding a certain number of cycles.    

Another source of overhead comes from the 

application mapper’s communication interface, as the 

HMM is designed to work best with high-throughput 

channels.  The bandwidth of streaming and memory-

mapped communication interfaces can vary significantly 

between application mappers as well as between FPGA 

platforms using the same application mapper, depending 

upon implementation.  Therefore, it is important for 

performance analysis tools to support as many 

communication interfaces as possible to provide 

flexibility and achieve the lowest overhead. 

4.3. HLL Analysis Challenges  

While analysis has historically been very difficult to 

automate, automatic analysis can improve developer 

productivity by quickly locating performance 

bottlenecks.  Automatic analysis typically focuses upon 

recognizing common performance problems such as 

potentially slow communication functions or idle 

hardware.  For example, replicated functions can be 

monitored to determine which are idle and for what 

length of time, giving pertinent load-balancing 

information to the developer.  Application mappers can 

also pipeline sections of code, either automatically (e.g. 

Carte) or explicitly via directed pragmas (e.g. Impulse 

C).  In this case, automatic analysis determines how 

many cycles in the pipeline were unproductive and the 

cause of these problems (e.g., data not available, 

flushing of pipeline, etc.). 

Performance analysis can also be useful in 

determining communication characteristics that may 

cause bottlenecks, such as the rate or change in rate of 

communication.  For example, streams that receive 

communication bursts may require larger buffers, or an 

application may be ill-suited for a specific platform due 

to lack of bandwidth.  The timing of communication can 

also be important; shared communication resources such 

as SRAMs often experience contention and should, in 

general, be monitored.  Monitoring for these 

communication characteristics can aid in the design of a 

network that keeps pipelines at peak performance. 

5. Molecular-Dynamics Case Study 

To demonstrate the benefits of HLL performance 

analysis and explore its associated overhead, we analyze 

a Molecular-Dynamics (MD) application written in 
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Impulse C.  MD simulates interactions between atoms 

and molecules over discrete time intervals.  The 

simulation takes into account standard physics, Van Der 

Walls forces, and other interactions to calculate the 

movement of molecules over time.  The simulation 

keeps track of 16,384 molecules, each of which uses 36 

bytes (4 bytes to store its position, velocity and 

acceleration in each of the X, Y and Z directions).    

Alam et al. [12] provides a more in depth overview of 

MD simulations.       

We obtained serial MD code optimized for 

traditional processors from Oak Ridge National Lab 

(ORNL).  We redesigned the MD code in Impulse C 

2.20 using an XD1000 as the target platform.  The 

XD1000 is a reconfigurable system from Xtreme Data 

Inc. containing a dual-processor motherboard with an 

Altera Stratix-II EP2S180 FPGA on a module in one of 

the two Opteron sockets.  The HyperTransport 

interconnect provides a sustained bandwidth of about 

500 MB/s between the FPGA and host processor with 

Impulse-C.  Using this platform, a speedup of 6.2 times 

was obtained versus the serial baseline running on the 

2.2 GHz Opteron processor in the XD1000 server.  

Using our prototype performance analysis tool, we 

analyzed the performance of our MD code to determine 

if further speedup could be obtained.    

The Impulse C compiler translates our MD code 

into a Quartus-II HDL design tailored for the XD1000.  

Impulse C relies upon state machines in the HDL code 

generated to preserve the structure of the original C 

code.  The state machine structure is primarily 

determined by statements that represent a branch in 

execution, such as if, while, for, etc.  Impulse C handles 

C statements within a branch by placing them either in a 

single state or in multiple sequential states depending 

upon their aggregated delay.  However, a loop that is 

pipelined is always represented as one state within the 

state machine.  After viewing the performance of a 

hardware subroutine via its state machine, more detailed 

analysis can be performed via tracing and profiling of 

application variables or other Impulse C constructs.    

To present the data gathered by the HMM in a more 

intuitive fashion, the HDL code is reverse-mapped to 

HLL source code via variable name-matching (since 

similar names are used in both C and the generated 

HDL) and by observing scope and other patterns implicit 

in the HLL-to-HDL mapping.  Overcoming this 

challenge allows performance data to be obtained and 

correlated directly to the HLL source code, removing the 

need for the application developer to understand HDL 

source code.  While data from our performance analysis 

tool is currently exported in CSV (comma-separated 

values) format, this data could be integrated into 

visualizations from existing performance analysis tools 

to aid the developer in quickly locating performance 

bottlenecks. 
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Figure 4. MD Hardware Subroutine 
 

There are three hardware functions defined in the 

MD hardware subroutine (see Figure 4).  The two 

functions named Collector and Distributor are used to 

transfer data to and from SRAM, respectively, in order 

to provide a stream of data running through the third 

function, MD kernel.    MD kernel calculates the 

position, velocity, and acceleration values of molecules 

and is pipelined using Impulse C pragmas.  The function 

is then replicated 16 times, so that FPGA resources are 

nearly exhausted, so as to increase performance. 

 

void MD_kernal (co_stream in, co_stream out)

{

…
for(t=0;t<16384;t++){

co_stream_read(in, &x, …);

co_stream_read(in, &y, …);

co_stream_read(in, &z, …);

…
for(i=0;i<1024;i++)

{//Perform MD calculations

#pragma CO PIPELINE

…
}

co_stream_write(out, &x, …);

co_stream_write(out, &y, …);

co_stream_write(out, &z, …);

}

…
}
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Runtime
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Figure 5. Profiling the MD Kernel 

 
 We instrumented and analyzed the MD application, 

with a focus on understanding the behavior of the state 

machine inside each MD kernel.  The number of cycles 

spent in each state was recorded by the HMM and sent 
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back to the host processor post-mortem.  Upon 

examination, three groups of states in the main loop of 

the MD kernel hardware function were of particular 

interest.  The first group keeps track of the total number 

of cycles used by the input stream (arrows pointing to 
MD kernels in Figure 4) of the MD kernel.  The second 

group of states keeps track of the total number of cycles 

used by the pipeline inside of the MD kernel.  Finally, 

the third group of states keeps track of the total number 

of cycles used by the output stream (arrows pointing to 

the Collector in Figure 4) in the MD kernel.  Tracing 

was used to find the start and stop times of the FPGA 

and all MD kernels.  The cycle counts from these three 

groups were then converted into a percentage of MD 

Kernel runtime (Figure 5) by dividing by the total 

number of cycles used by the MD hardware subroutine 

(i.e. FPGA runtime).  Since the state groups vary by less 

than a third of a percent when compared across all 16 

MD kernels, we only present data from one kernel.     
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Figure 6. MD Kernel Runtime 

 
Our performance analysis tool successfully 

identified a bottleneck in the MD hardware subroutine.  

In the MD kernels, almost half of the execution time 

was used by the output stream to send data to the 

Collector hardware function (Figure 5).  An optimal 

communication network would allow the pipeline 

performing molecular dynamics operations to execute 

for nearly 100% of the FPGA runtime minimizing the 

number of cycles spent blocking for a transfer to 

complete.  This trait is an indicator that the stream 

buffers which hold 32-bit integers are becoming full and 

causing the pipeline to stall.  Increasing the buffer size 

of the streams by 32 times (Figure 6) only required a 

change of one constant in the program.  The larger 

stream buffers reduced the number of idle cycles 

generated by the output stream while the pipeline’s 

runtime remained the same thus reducing the FPGA 

runtime.  This simple change increased the speedup of 

the application from 6.2 to 7.8 versus the serial baseline. 

 
EP2S180 Original Modified Difference 

Logic used 

(143520) 

126252 

(87.97%) 

131851 

(91.87%) 

+5599 

(+3.90%) 

Comb. ALUT 

(143520) 

100344 

(69.92%) 

104262 

(72.65%) 

+3918 

(+2.73%) 

Registers 

(143520) 

104882 

(73.08%) 

110188 

(76.78%) 

+5306 

(+3.70%) 

Block memory 

(9383040 bits) 

3437568 

(36.64%) 

3557376 

(37.91%) 

+119808 

(+1.27%) 

Frequency 

(MHz) 

80.57 78.44 

 

-2.13 

(-2.64%) 

Table 1. Performance Analysis Overhead 
 

The overhead caused by instrumentation and 

measurement of the MD kernel with a stream buffer 
size of 4096 bytes on the XD1000 is shown in Table 1.  

Instrumentation and measurement hardware increased 

FPGA logic utilization by 3.90%.  Profile counters and 

timers used an additional 3.70% of the FPGA’s logic 

registers, whereas tracing buffers required 1.27% 

additional block memory implementation bits.  An 

additional 2.73% of combinational Adaptive Look-Up 

Tables (ALUT) was also needed.  Finally, the FPGA 

experienced a slight frequency reduction of 2.64% due 

to instrumentation.  Overall, the overhead for 

performance analysis was found to be quite modest. 

6. Conclusions 

Many of the challenges for performance analysis of 

HLL-based FPGA applications have been identified in 

this paper.  Instrumentation at the HDL level was chosen 

for its portability between application mappers and 

platforms, while communication was instrumented at the 

HLL level to leverage the simplicity of using HLL 

communication channels.  We also discussed 

instrumenting common HLL structures such as pipelines 

and communication channels, which could provide 

automated instrumentation as well as application-

independent performance data.  In addition, we 

employed techniques to map HDL performance data 

back to HLL source code for Impulse C, greatly 

reducing the effort and knowledge needed by the 

application developer.  We also commented on the use 

of measured performance data for automatic bottleneck 

detection at the HLL source-code level to increase 

developer productivity. 

A case study was presented to demonstrate the 

utility of profiling and tracing application behavior in 

hardware, allowing the developer to gain an 

understanding of where time was spent on the 
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reconfigurable processor.  We also observed low 

overhead (in terms of FPGA resources) when adding 

instrumentation and measurement hardware, 

demonstrating the ability to analyze applications that use 

a large portion of the FPGA.  In addition, we noted that 

a slight reduction in frequency (less than 3%) resulted 

from instrumentation.  Since data was gathered after 

execution completed, there was no communication 

overhead. 

Although instrumentation is currently added 

manually, it is planned in the future to automate this 

process via Perl scripts.  Additional future work includes 

presenting performance data to the developer by 

leveraging existing visualization techniques from 

traditional (i.e. non-FPGA) performance analysis tools 

and expanding the performance analysis tool to support 

Carte. 
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