
Efficient mapping of hardware tasks on reconfigurable
computers using libraries of architecture variants

Miaoqing Huang, Vikram K. Narayana, and Tarek El-Ghazawi
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, The George Washington University
mqhuang@gwmail.gwu.edu, {vikram,tarek}@gwu.edu

Abstract

Scheduling and partitioning of task graphs on recon-
figurable hardware needs to be carefully carried out in
order to achieve the best possible performance. In this
paper, we demonstrate that a significant improvement
to the total execution time is possible by incorporating
a library of hardware task implementations, which con-
tains multiple architectural variants for each hardware
task reflecting tradeoffs between the resources utiliza-
tion and the task execution throughput. We develop
a genetic algorithm based mapping approach, which
considers both task graph and target platform, and
present results for an N-body simulation application
using estimated numbers for resource utilization for
the constituent tasks and based on actual architectural
constraints from different reconfigurable platforms.
The results demonstrate improvements of up to 85.3%
in the execution time, compared to choosing a fixed
implementation variant for each task while keeping a
reasonable searching time.

1. Introduction

On state-of-the-art high-performance reconfigurable
computers (HPRC), the FPGA device is tightly coupled
to the microprocessor through a high-speed intercon-
nect and serves as a reconfigurable co-processor. To
achieve the best possible performance for the parts
of an application mapped to the reconfigurable de-
vice, the constituent task graph must be partitioned
across multiple FPGA configurations and appropriately
scheduled. Partitioning across configurations gives rise
to overheads, due to reconfiguration of the FPGA, as
well as transfer of intermediate data, which is required

This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. IIP-0706352.

before and after reconfiguration. Our previous work
addresses this problem by proposing the Reduced Data
Movement Scheduling (RDMS) algorithm that strives
to minimize the various overheads [1].

The RDMS algorithm achieves results close to the
optimal solution, but it considers the availability of
only a single implementation for each hardware task.
With only a fixed implementation variant, there would
be imbalances between the processing throughputs of
interacting tasks. This provides an opportunity for
optimization, if multiple implementation variants are
available. This paper describes the methodology that
may be adopted for task mapping, when multiple
implementation variants are available for each task, in
a common repository or hardware library∗. In order
to efficiently select the appropriate implementation
for each task, a generic algorithm based approach
is proposed. The assumptions used as part of this
work are: (1) all architecture variants have the same
input/output interfaces; (2) implementation of all tasks
are pipelined, allowing concurrent execution of tasks
within a configuration; (3) the data processed by each
configuration is large, allowing the initial latency to be
neglected; (4) FPGA supports only full configuration.

From assumptions 2 and 3, it follows that the
processing time of a particular FPGA configuration
simply equals the processing time of the slowest
task in the configuration. The time taken for off-chip
data transfer is computed based on the interconnect
bandwidth and the data volume transfer to/from the
task edges. Denoting TR as the full reconfiguration
time of FPGA, the execution time Thwe for the entire
computation consisting of n configurations is the sum
of n · TR, the processing time of the slowest task in
each configuration, and off-chip data transfer time for
each configuration.

∗. Inspired by the Telescoping Languages by Kennedy et al. [2]

2. Proposed Approach Using Architecture-
Variant Hardware Library

Given a function-level DAG and a hardware library
of the corresponding hardware modules for each task
node, optimization techniques are needed to (1) select
the proper implementation variant Fi,j for each task
Fi, which can be considered as a mapping between
the hardware tasks and the available implementa-
tions, and (2) schedule the hardware tasks efficiently
across multiple FPGA configurations C1, . . . , Ck, to
maximize the performance. Step (2) can conceptually
be carried out by using the RDMS algorithm [1].
However, both steps need to be carried out together,
since the choice of the implementation variant depends
on the selected set of tasks for each configuration
Ck; conversely, obtaining the best schedule and the
corresponding number of configurations, k, depends
on the implementation variant chosen.

The most straightforward approach to obtaining the
solution is by performing an exhaustive testing of
all possible combinations of implementation variants,
for each of the tasks in the DAG. However, the
computation time required for such an approach is
prohibitive. For example, if there are N tasks with each
of them having J possible implementation variants to
choose from, the search space consists of JN possible
combinations. Considering a 13-node task graph in
which each task has 4 different implementations, an
exhaustive search will take approximately 20.55 hours
on a 2.8GHz Linux box. Clearly, a better method is
required for exploring the various options.

2.1. Genetic Algorithm - Formulation

Genetic algorithms comprise a class of search meth-
ods inspired by biological genetic processes such as
mutation, crossover, selection of the fittest, etc. General
implementation strategies include the representation
of the solution as a bit string, generally called a
chromosome. Each chromosome consists of genes. In
our case, we choose to have a gene for each of the N
tasks in the task graph; each gene represents the choice
of a particular implementation variant for the task.
For example, if there are J possible implementation
variants for each task, then every gene would have
log2 J bits. Correspondingly, a chromosome, which is
basically one possible selection of variants for all tasks,
constitutes of N log2 J bits.

With this formulation of the solution space, the
adopted genetic algorithm is shown in Algorithm 1.
The fitness function is application specific. In our
case, it basically gives a high score to individuals

Algorithm 1: Genetic Algorithm Pseudocode
Input: Random initial population of Q chromosomes
Output: New population after genetic evolution
repeat1.1

Evaluate fitness of each chromosome in population;1.2
repeat1.3

Select two chromosomes from the current population;1.4
Crossover based on crossover rate, generate two offsprings;1.5
Step through all the bits in the offsprings, flip them based1.6
on mutation rate;

until a new generation has been created ;1.7
until K generations have been evaluated ;1.8

Table 1. The Characteristics of RC Platforms

SGI RC100 SRC-6 Cray XD1
FPGA Device XC4VLX200XC2V6000XC2VP50

Full Configuration Time (ms) 966 130 1,824
Interconnect Bandwidth (GB/s) 2.1 1.4 1.4

(chromosomes) that result in a low execution time,
after obtaining the scheduling using the RDMS al-
gorithm. If Tmin hwe denotes the minimum execution
time exhibited in the current generation of chromo-
somes, the fitness score of individual chromosome is
1/(Thwe − Tmin hwe) if Thwe 6= Tmin hwe. Otherwise,
the score is set to a constant, i.e., 10,000.

Another version of the fitness function is also used,
which happens to result in a faster convergence to the
solution. This version basically uses 1/(Thwe - Tthwe)
as the fitness function for all chromosomes, where
Tthwe is the so called target execution time and can
be a dummy value.

With respect to the selection step in Line 1.4 of Al-
gorithm 1, the chance of being selected is proportional
to the chromosome fitness. Roulette wheel selection is
a method we have adopted, which generally selects the
fittest members to go through to the next generation,
although it is not guaranteed.

3. Results

The target application we intend to implement is a
part of the astrophysical N-Body simulation, in which
the so called gas dynamical effects are simulated using
a smoothed particle hydrodynamics (SPH) method,
with the corresponding task graph as shown in Fig-
ure 1, which consists of a total of 18 tasks. For the
detailed description about the equations used in the
SPH pressure force calculation, please refer to [1].

3.1. Testbed and Hardware Library Setup

We emulate the SPH pressure force calculation on
three different RC platforms as shown in Table 1.
In this work, we assume that each module in the

#1
Difference Vector
vij_x = vi_x – vj_x
vij_y = vi_y – vj_y
vij_z = vi_z – vj_z

#2
Difference Vector
rij_x = ri_x – rj_x
rij_y = ri_y – rj_y
rij_z = ri_z – rj_z

#3
Mean Value

hij = (hi + hj) / 2

#5
Mean Value

cij = (ci + cj) / 2

#6
Mean Value

rhoij = (rhoi + rhoj) / 2

#4
Mean Value
fij = (fi + fj) / 2

#7
p/rho2

prhoi2 = pi / (rhoi × rhoi) or
prhoj2 = pj / (rhoj × rhoj)

#8
Scalarprod

vrij = (vij_x × rij_x) +
(vij_y × rij_y) + (vij_z × rij_z)

#9
Scalarprod

rij2 = (rij_x × rij_x) +
(rij_y × rij_y) + (rij_z × rij_z)

#11
muij

muij = hij × vrij × fij /
(rij2 + eta × hij × hij)

#12
Squareroot
rij = sqrt rij2

#10
ihij = 1 / hij

#13
ihij5 = ihij^5

#15
piij

if vrij > 0 then
piij = 0

else
piij = (-alpha × cij × muij +

beta × muij × muij) / rhoij

#14
rh = rij × ihij

#16
Gradient of W

if 0 < rh ≤ 1 then
dW = (9 × rh / 4 - 3) × ihij5

else if 1 < rh ≤ 2 then
dW = (-3 × rh /4 + 3 – 3 / rh) × ihij5

else
dW = 0

#17
Scalar Factor dvs

dvs = mj × (prhoi2 + prhoj2 + piij) × dW

#18
Build dv vector

dv_x = dv_x + rij_x × dvs
dv_y = dv_y + rij_y × dvs
dv_z = dv_z + rij_z × dvs

Input Data
ri_x, ri_y, ri_z, rj_x, rj_y, rj_z,

vi_x, vi_y, vi_z, vj_x, vj_y, vj_z,
hi, hj, fi, fj, ci, cj, pi, pj, rhoi, rhoj,

mj

prhoi2
88

1688

24 24
8 8

8 8 8

8

24

8
8

8

8

8

24 24

24 8

8
Inter-task communication

volume in byte for processing
one neighbor particle

8

8

8

8

8

8

8

Figure 1. Data Flow Graph of SPH Pressure Force
Calculation (with Assigned Node Number in Each Box)

architecture-variants hardware library consists of four
implementations, imp 1 to imp 4. Imp 1 is the high
performance version, which also consumes the most
logic resources, so called “fully pipelined version”.
Imp 2, imp 3 and imp 4 occupy 50%, 25% and 12.5%
of resources as imp 1 does. The throughput of the four
implementations of the same hardware module share
the same pattern as resource utilization.

Primitive operators, e.g., adder/subtractor and mul-
tiplier, are used to construct the functionality of nodes.
In general, multiple primitive operators are used to
build a pipelined hardware node. For instance, the
fully-pipelined implementation of node #11 needs 1
adder, 4 multipliers and 1 divider. The resource uti-
lization of pipelined double-precision (64-bit) floating-
point operators based on the available literature are
listed as follows, +/−(1,640 slices), ×(2,085 slices),
÷(4,173 slices), √ (2,700 slices). Table 2 lists the
resource utilization of fully-pipelined version of each
node composed by the primitive operators. The amount
of slices occupied by each node is simply the summa-
tion of the slices of the primitive operators.

3.2. Experimental Setup and Results

In the implementation to emulate SPH pressure force
calculation on three RC platforms, we assume all the
calculations are carried out in double-precision (64-bit)
floating-point format. As shown in Figure 1, the data
of every particle consists of 13 scalar variables, i.e.,
104 bytes. If we assume the number of particles to be
emulated is N and the number of neighbors of each

Table 2. Resource Utilization and Throughput of
Fully-pipelined Task Nodes

Node Operator∗ Slices % of Device Utilization†Throughput
No. Combination SGI SRC-6 Cray (GB/s)
1,2 3A 4,920 6.50 17.13 24.51 2.4

3,4,5,6 1A 1,640 2.17 5.71 8.17 0.8
7 1M,1D 6,258 8.26 21.79 31.17 1.6

8,9 2A,3M 9,535 12.59 33.20 47.50 4.8
10 1D 4,173 5.51 14.53 20.79 0.8

11,15 1A,4M,1D 14,153 18.69 49.27 70.50 3.2
12 1S 2,700 3.57 9.40 13.45 0.8
13 4M 8,340 11.01 29.04 41.55 0.8
14 1M 2,085 2.75 7.26 10.39 1.6
16 3A,4M,1D 17,433 23.02 60.69 86.84 1.6
17 2A,2M 7,450 9.84 25.94 37.11 3.2
18 3A,3M 11,175 14.76 38.91 55.67 3.2

Overall24A,29M,5D,1S123,390162.94429.59 614.68

∗. A: adder/subtractor, M: multiplier, D: divider, S: square root.
†. Assume 15% of slices in device are reserved for vendor service logic.

Table 3. Configuration Time of Fully-pipelined
Task Nodes on Three Platforms (ms)

Node Platform Node Platform
No. SGI SRC-6 Cray XD1 No. SGI SRC-6 Cray XD1
1,2 62.76 22.27 447.05 12 34.44 12.22 245.33

3,4,5,6 20.92 7.42 149.02 13 106.39 37.75 757.80
7 79.83 28.32 568.63 14 26.60 9.44 189.45

8,9 121.63 43.16 866.39 16 222.39 78.90 1584.03
10 53.23 18.89 379.17 17 95.04 33.72 676.94

11,15 180.55 64.06 1286.00 18 142.56 50.58 1015.40

particle is 100, then the original storage requirement
is 104N bytes and the pipeline in Figure 1 needs
to perform 100N iterations. In the emulation carried
out on three platforms, the number of particles is set
to 16,000. Based on the input data volume and the
throughput given in Table 2, the fastest implementation
of all modules needs 16 ms to process the data. Corre-
spondingly, the slowest implementation needs 128 ms
to process the same amount of data.

The “task configuration time” (a fictitious value pro-
portional to the task resource utilization) of the fully-
pipelined task nodes and the inter-task communication
time used for the RDMS algorithm are listed in Table 3
and Table 4 respectively.

While obtaining results using the proposed ap-
proach, the chromosome population of the genetic
algorithm in Algorithm 1 is set to Q = 100; crossover
and mutation rates are respectively taken to be 0.7 and
0.005. Since the number of implementation variants
for each task is J = 4, two bits are used per gene, or
36 bits per chromosome.

Figures 2 show the progress of the estimated hard-
ware execution time Tmin hwe during the iterations (or
generations) of the genetic algorithm in the first 100

Table 4. Inter-task Communication Time (ms)

Communicating-Node Pairs Platform
SGI RC100 SRC/Cray

Category I∗ 6.10 9.14
Category II (0,7) 12.19 18.29

Category III† 18.29 27.43

∗. (0,3),(0,4),(0,5),(0,6),(0,17),(3,11),(3,10),(4,11),(5,15),(6,15),(7,17),(8,15),(8,11),(9,11),(9,12),(10,14),
(10,13),(11,15),(12,14),(13,16),(14,16),(15,17),(16,17),(17,18);

†. (0,1),(0,2),(1,8),(2,18),(2,8),(2,9).

0 2 0 4 0 6 0 8 0 1 0 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

Ha
rdw

are
 Ex

ec
uti

on
 Ti

me
 (s

)

I t e r a t i o n #

 C r a y X D 1
 S G I R C 1 0 0
 S R C - 6

(a) Without Target Value

0 2 0 4 0 6 0 8 0 1 0 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

Ha
rdw

are
 Ex

ec
uti

on
 Ti

me
 (s

)

I t e r a t i o n #

 C r a y X D 1
 S G I R C 1 0 0
 S R C - 6

(b) With Target Value

Figure 2. Simulation of Hardware Execution Time

generations, for both versions of the fitness function.
In both cases, the genetic algorithm manages to put
all hardware tasks into one single configuration. This
is primarily due to the large reconfiguration overhead,
i.e., a reduction in the execution time by avoiding one
extra configuration offsets the increase in execution
time due to the choice of slower (and smaller) task
variants. The algorithm will give more configurations if
the reconfiguration time is relatively smaller to the task
processing time, as demonstrated later in Section 3.3.

From Figure 2(b), it is observed that the searching
on Cray XD1 platform converges more quickly if a
target hardware execution time is given even if it is
nowhere near the final target value.

Table 5 shows the hardware execution time for the
cases when a fixed implementation variant is chosen
for all tasks; a comparison with the genetic algorithm
(GA) based approach shows that our approach results
in a performance improvement by as much as 85.3%.

The genetic algorithm has been executed on the
same Linux box used for the exhaustive approach.
The time to finish the first 100 iterations of genetic
algorithm is a little less than 30 seconds for all cases.

3.3. Use of more than one configuration

The use of a single configuration in previous section
is mainly due to the large configuration time of the
three platforms considered. If the configuration time

Table 5. Comparison between Fixed
Implementation and Genetic Algorithm

Platform Number of Configurations Hardware Execution Time (s)
imp 1 imp 2 imp 3 imp 4 GA imp 1 imp 2 imp 3 imp 4 GA

SGI 2 1 1 1 1 2.098 0.998 1.030 1.094 1.030
SRC-6 5 3 2 1 1 1.059 0.724 0.516 0.258 0.258
Cray 7 4 2 1 1 13.264 7.698 3.959 1.952 1.952

SRC-X 5 3 2 1 2 1.229 0.928 0.788 0.930 0.688

is lower, or conversely, if the task processing time
is larger compared to the reconfiguration time, the
final mapping would have more configurations because
reconfiguration no longer introduces a high overhead.
To illustrate this fact, the developed mapping approach
was used with larger task processing times for the
SRC-6 case, termed as SRC-X. The hardware process-
ing time of imp 1 to imp 4 are taken to be 50 ms, 100
ms, 200 ms and 800 ms respectively. As the results in
Table 5 show, two FPGA configurations are used in this
case, as against the single configuration used earlier.

4. Conclusion

In this paper, we have proposed a new methodology
for hardware task mapping, based on the availability of
multiple architectural variants for each hardware task.
It is shown that the proposed approach significantly
improves the the total execution time, by the use of
tradeoffs in resource consumption and data throughput
for each hardware task. In order to select the suitable
task implementation variants in a reasonable time
duration, a genetic algorithm approach is used. Results
for the N-body simulation on three representative RC
platforms show not only the effectiveness of the map-
ping approach, but also the efficiency of the process in
finding the appropriate mapping.

Acknowledgment

The authors are grateful to Dr. Harald Simmler, Dr.
Mohamed Bakhouya, and Olivier Serres for the help on
RDMS algorithm and the genetic algorithm approach.

References

[1] M. Huang, H. Simmler, O. Serres, and T. El-Ghazawi,
“RDMS: A hardware task scheduling algorithm for re-
configurable computing,” in Proc. the 16th Reconfig-
urable Architectures Workshop (RAW 2009), May 2009.

[2] K. Kennedy, B. Broom, A. Chauhan, R. J. Fowler,
J. Garvin, C. Koelbel, C. McCosh, and J. Mellor-
Crummey, “Telescoping languages: a system for auto-
matic generation of domain languages,” Proceedings of
the IEEE, vol. 93, no. 2, pp. 387–408, Feb. 2005.

