
17th International Conference on Field Programmable Logic and Applications (FPL 2007), 27-29 August 2007, Amsterdam, Netherlands

Automatic Software Hardware Co-Design for Reconfigurable Computing Systems
Proshanta Saha

NSF Center for High-Performance Reconfigurable Computing (CHREC)
ECE Department, The George Washington University

sahap@gwu.edu

1. INTRODUCTION
A formal methodology for automatic hardware-

software partitioning and co-scheduling between the µP
and the field programmable gate array (FPGA) has not yet
been established. Current work in automatic task
partitioning and scheduling for the reconfigurable systems
strictly addresses the FPGA hardware, and does not take
advantage of the synergy between the microprocessor and
the FPGA [1][2]. In this research, we consider the
problem of formalizing a co-scheduling methodology and
develop a set of intuitive tools to assist users in realizing
the full potential of an RC architecture.

Scheduling is critical for efficient resource utilization
and achieving speedup in high performance
reconfigurable computers (HPRC). The primary targets
of this research are reconfigurable computing (RC)
systems that have both microprocessors and FPGAs.

2. SCHEDULING REQUIREMENTS
Scheduling algorithms for RC systems have to

consider the resource constraints on the reconfigurable
hardware such as the number of FFs, LUTs, MULTs,
CLBs, the reconfiguration overhead, communication
overhead, routing overhead, size constraints, throughput,
and power constraints before selecting a task to map on to
the FPGA. In addition, the scheduling algorithms have to
consider multiple implementations of a task depending on
the objective function. Unlike reconfigurable hardware
only scheduling algorithms, RC systems need to schedule
tasks between the µP and the FPGA to take full advantage
of the architecture.

3. RECOS ALGORITHM
In our work we investigated scheduling algorithms

from related fields such as Embedded Computing (EC),
Heterogeneous Computing (HC), and Reconfigurable
Hardware (RH) to adapt and leverage existing scheduling
algorithms and techniques. The result from our
investigation showed that simply adapting existing
scheduling algorithms would not be sufficient [8][10].
The Reconfigurable-computing Co-Scheduling (ReCoS)
algorithm was proposed to address the concerns [9][11].

Figure 1 shows the various objective functions serve
as input to the ReCoS algorithm including communication
overhead, resource constraints, reconfiguration overhead,
routing overhead, and application task graph. The
objective functions are used to find a suitable schedule for

the tasks. The output is then further optimized to ensure
that all resources are utilized to its full potential. The
result is a task graph assigned to its corresponding
processing element (PE).

T1

T2

T4 T5

T3

T6

System
Overhead /

Context
Switching

Resource
ConstraintsI/O

Bandwidth
and Latency

Objective
Function

T1

T2 T3

T5T4 T6

FPGAµP

Figure 1: Objective Functions of the ReCoS Algorithm

The proposed algorithm combines the strengths of the
HC and RH scheduling algorithms namely in speed and
scheduling capabilities and pays special attention to load
balancing issues and lack of co-design constraint
satisfaction.

4. RESULTS
The ReCoS algorithm is compared against three EC

algorithms, Hou [4], Yen [5], and Oh [6] algorithms on an
SRC6 platform. These scheduling algorithms were chosen
as they are representative of the typical algorithms
available for embedded design, ie. critical path reduction,
exhaustive search, and penalty reduction. All subtasks
targeting the μP are written in C (ISO-C99), while all
subtasks targeting the FPGA are written in Verilog
(Verilog 2001) along with the necessary wrappers to
interface with the SRC6 system written in Carte’s MAP-C
language [7]. The scheduling algorithms assume a 2 PE
model (μP and FPGA). The test bed includes four
applications JPEG IDCT, MPEG IDCT, DES encryption,
and IDEA encryption.

In [11] the benefit of using the ReCoS algorithm is
shown. Despite then enhanced Yen, Hou, and Oh
algorithms’ [8] effort to reduce the number of PEs, in this
case resulting in the best case scenario of a single PE and
thus similar execution times as shown in figure 2, they
exploit neither the inherent parallelism of FPGAs nor the

17th International Conference on Field Programmable Logic and Applications (FPL 2007), 27-29 August 2007, Amsterdam, Netherlands

I/O capabilities of the μP. The ReCoS algorithm is able to
exploit the space remaining on a FPGA to add more
implementations of the tasks onto the chip without
violating the area constraint ∑AR≤.75.

0.1

1

10

100

Yen* Hou* Oh* ReCoS

JPEG-IDCT

MPEG-IDCT

DES

IDEA

Execution time

s

Algorithms
Figure 2: ReCoS algorithm execution time compared
against enhanced reconfigurable aware Yen, Hou, and Oh
algorithms on 1M blocks of data.

5. AUTOMATING CO-DESIGN
Automation of the co-design process is underway,

along with work to present users with an intuitive user
interface (UI) that will assist users in examining their
application and the possible areas in which hardware
acceleration can be beneficial. The UI consists of an
integrated development environment (IDE) that provides
a visualization of the user’s application and the various
results from the tools which includes an intermediate
compiler that will tag user source code for parallelism
analysis; A software profiler that can identify the hot
zones, loops, and bottlenecks in the application; A
hardware profiler that provides an estimate of the resource
requirements; The ReCoS co-scheduling algorithm that
provides a suitable task graph; and finally a dynamic load
balancing analysis tool to provide feedback in regards to
the actual load and reconsider PE assignments if
necessary.

6. CONCLUSIONS
To the best of our knowledge there are no automatic

hardware/software co-schedulers for reconfigurable
computing systems that take advantage of the synergy
between the µP and the FGPA available today. Related
work either focuses solely on the reconfigurable hardware
or exists in related fields such as HC and EC. Manual
partitioning efforts are currently the only means of co-
scheduling on an RC system, and are often tedious for
large applications. In our work we investigated scheduling
algorithms that can aid developers in identifying an
optimal co-schedule that takes advantage of the synergy
between the μP and the FPGA quickly and efficiently
[8][9][10][11]. This dissertation [12] aims to provide

compiler writers, tool developers, and application
scientists a methodology for efficient and automated
partitioning between software and hardware.

7. ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC

Program of the National Science Foundation under the
NSF Center for High-Performance Reconfigurable
Computing (CHREC).

8. REFERENCES
[1] Danne, K.; Platzner, M.; A heuristic approach to schedule

periodic real-time tasks on reconfigurable hardware;
International Conference on Field Programmable Logic and
Applications, 2005; 24-26 Aug. 2005 Page(s):568 – 573

[2] Katherine Compton, Zhiyuan Li, James Cooley Stephen Knol,
Scott Hauck; Configuration relocation and defragmentation for
run-time reconfigurable computing; IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 10, No. 3,
June 2002

[3] Howard Jay Siegel, Shoukat Ali; Techniques for mapping
tasks to machines in heterogeneous computing systems;
Journal of Systems Architecture Volume 46 Page(s): 627-639.

[4] Junwei Hou; Wolf, W.; Process partitioning for distributed
embedded systems; Fourth International Workshop on
Hardware/Software Co-Design, 1996. (Codes/CASHE '96),
Proceedings., 18-20 March 1996 Page(s):70 - 76

[5] Yen, T.-Y.; Wolf, W., Sensitivity-Driven Co-Synthesis of
Distributed Embedded Systems, Proceedings of the Eighth
International Symposium on System Synthesis, 1995., 13-15
Sept. 1995 Page(s):4 – 9

[6] Hyunok Oh, Soonhoi Ha; A Hardware-Software Cosynthesis
Technique Based on Heterogeneous Multiprocessor
Scheduling; Proceedings of the Seventh International
Workshop on Hardware/Software Codesign, 1999. (CODES
'99), 3-5 May 1999 Page(s):183 – 187

[7] Carte-C Programming Environment,
http://www.srccomputers.com/CarteProgEnv.htm

[8] Saha, P., El-Ghazawi, T.; “Extending Embedded Computing
Scheduling Algorithms for Reconfigurable Computing
Systems”; 3rd Annual IEEE Southern Conference on
Programmable Logic 2007; February 26-28, 2007

[9] Saha, P., El-Ghazawi, T.; “Software/Hardware Co-Scheduling
for Reconfigurable Computing Systems”; International
Symposium on Field-Programmable Custom Computing
Machines(FCCM2007); 23-25 April 2007

[10] Saha, P., El-Ghazawi, T.; “Applications of Heterogeneous
Computing in Hardware/Software Co-Scheduling ”;
ACS/IEEE International Conference on Computer Systems and
Applications 2007; May 13-16, 2007

[11] Saha, P., El-Ghazawi, T.; “A Methodology for Automating
Co-Scheduling for Reconfigurable Computing Systems”; Fifth
ACM/IEEE International Conference on Formal Methods and
Models for Codesign 2007, May 30-June 1 2007

[12] Saha, P.; “Application Hardware Software Co-Design for
Reconfigurable Computing Systems”; The George Washington
University Dissertation Proposal; November 8 2006 (Electrical
and Computer Engineering Department Internal Document)

	1. INTRODUCTION
	2. SCHEDULING REQUIREMENTS
	3. RECOS ALGORITHM
	4. RESULTS
	5. AUTOMATING CO-DESIGN
	6. CONCLUSIONS
	To the best of our knowledge there are no automatic hardware/software co-schedulers for reconfigurable computing systems that take advantage of the synergy between the µP and the FGPA available today. Related work either focuses solely on the reconfigurable hardware or exists in related fields such as HC and EC. Manual partitioning efforts are currently the only means of co-scheduling on an RC system, and are often tedious for large applications. In our work we investigated scheduling algorithms that can aid developers in identifying an optimal co-schedule that takes advantage of the synergy between the μP and the FPGA quickly and efficiently [8][9][10][11]. This dissertation [12] aims to provide compiler writers, tool developers, and application scientists a methodology for efficient and automated partitioning between software and hardware.
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

