
RAPID FPGA DESIGN PROTOTYPING THROUGH PRESERVATION OF SYSTEM LOGIC:
A CASE STUDY

Travis Haroldsen, Brent Nelson, and Brad White

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering

Brigham Young University, Provo, UT 84602
Email: trharoldsen@gmail.com, nelson@ee.byu.edu, brad.s.white@gmail.com

ABSTRACT

FPGA designs often contain significant amounts of logic
such as a board support package that remains unaltered through-
out the design process. However, during normal operation,
standard FPGA implementation tools re-implement the en-
tire system, including the unchanged logic, adding to the
turn around time of design iterations. Recently, FPGA im-
plementation flows have appeared that allow preserving parts
of a previously implemented design. In this study, we eval-
uate the potential speedups in implementation time achiev-
able through preserving the unchanging portion of a design’s
implementation. We perform these evaluations using Xilinx
Partitions, Xilinx SmartGuide, and the HMFlow rapid im-
plementation tool.

1. INTRODUCTION

In the design of FPGA-based applications there has been a
long standing desire for a rapid and interactive design im-
plementation flow. In software development we have come
to expect near-instant rapid compile/execute/debug cycles.
Once a design has been compiled, FPGAs can be immedi-
ately configured for execution and debug, but FPGA compi-
lation times are typically too slow to support a truly interac-
tive development process. Thus, design and debug iterations
for FPGA-based systems are often measured in hours rather
than seconds or minutes.

FPGA system designs can often be split into two parts
which we call the system logic and the user logic. The sys-
tem logic contains components of the design that are infre-
quently modified by the designer (if at all). Such compo-
nents may be cores such as soft-core processors, memory
controllers and standard communication interfaces and of-
ten may be part of a board support package. The user logic
portion of the design consists of the parts of the design that

This work was supported in part by the I/UCRC Program of the Na-
tional Science Foundation within the NSF Center for High-Performance
Reconfigurable Computing (CHREC), Grant No. 0801876.

are actively being developed or modified. In this way, there
is a rough analogy that can be drawn between software sys-
tem libraries vs. system logic and user programs vs. user
logic.

Importantly, the system logic portion of a design often
utilizes the majority of the FPGA resources. However, while
the system logic may be unchanged from a previous compi-
lation run, standard FPGA compilation flows typically do
not preserve information from previous tool runs. Other
studies have shown that using previously compiled compo-
nents can improve design productivity [1] [2] [3].

The goal of this study was to explore the potential pro-
ductivity improvements which could be achieved by pre-
compiling the system logic and then reusing it in later com-
pilations. In this study, we looked at three compilation flows
which can reuse previous results to potentially decrease run-
times. These included Xilinx Partitions, Xilinx SmartGuide,
and a hard macro-based design flow called HMFlow. For
each flow, we looked at the compilation speedups achieved
when preserving the system logic while making incremental
changes to the user logic.

The balance of this paper is as follows. Section 2 first
provides background on the three different design flows tested.
Section 2.4 follows with a discussion of related work. Sec-
tion 3 provides a discussion of the designs used for the ex-
periments and the presents experimental results. Finally,
Section 4 provides conclusions and suggestions for future
work.

2. BACKGROUND AND RELATED WORK

2.1. Background: Xilinx Partitions

Xilinx Partitions [4], or simply partitions, are hierarchical
divisions in a design. Typically, partitions are associated
with an area constraint to either localize the logic or to force
it to a certain area on the chip. Xilinx tools preserve the
partition divisions all the way through the implementation
process. A subsequent design implementation can then “im-

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

port” implemented partitions from a previous run into the
new design.

When importing a partition, the user can set the parti-
tion preservation level to synthesis, placement, or routing,
allowing control over how much of the partition’s previous
implementation should be reused. For example, when the
preservation level is set to routing, the implementation tools
will import a fully placed and routed partition, effectively
copying and pasting the partition to the same chip location in
the new design. When the preservation level is set to synthe-
sis, however, only the partition’s synthesis results are reused,
forcing the partition to be newly placed and routed into the
new design.

To use partitions, the designer tags portions of the de-
sign hierarchy, each such portion forming a partition. An
optional area constraint can be attached to each of these.
The initial place and route then creates each partition’s im-
plementation. Instead of implementing each partition sep-
arately, it is recommended that all partitions in a design be
present for the initial implementation run. The advantage of
this is that the implementation tools can better optimize the
placement of ports connecting the different partitions and
achieve a better global routing result. Also, while in theory
one could envision assembing a design solely by importing
a collection of partitions from multiple designs, there are of-
ten routing conflicts between adjacent partitions, especially
if they are closely placed to one another. For this reason,
partitions are typically pulled from only a single previous
design run.

Xilinx guidelines recommend partitions principally for
preserving timing critical sections of a design or for dividing
a project so team members can work on individual sections
independently of one another. Using partitions for produc-
tivity improvements (the focus of this work) seems to only
be of secondary concern, but is possible if critical paths are
preserved [5].

2.2. Background: Xilinx SmartGuide

Xilinx SmartGuide is an alternative to partitions, such that
one or the other may be used in a design’s compilation, but
not both. SmartGuide, commonly known as “guide files,”
uses a previous implementation to guide a subsequent imple-
mentation. In other words, a previously technology-mapped,
placed, and/or routed NCD file may be input to either MAP
or PAR to guide technology-mapping, placement and/or rout-
ing. Specifically, SmartGuide compares the “guide” imple-
mentation to the new design and preserves previous deci-
sions made by the tools on unchanged portions of the de-
sign.

An advantage of using SmartGuide is that, unlike the
planning required on the part of the designer to use parti-
tions, there is no preparation required to use SmartGuide.
When re-implementing a design, the user need only supply

a reference to a previously implemented design to be used
as a guide for the new implementation.

Our experiments with various designs suggest that Smart-
Guide can do well with small incremental changes to a de-
sign such as changing the value of a constant, adding a reg-
ister, or even modifying a VHDL architecture, depending
on its size. While the re-implementation cost savings can
be significant, the time reduction seems to be quite design-
dependent in our experience. Xilinx suggests the use of
SmartGuide when changing less than 10% of a design [6].

2.3. Background: HMFlow

HMFlow [1] is a rapid FPGA implementation flow designed
to improve FPGA design implementation times through the
use of pre-assembled hardware modules called hard macros.
A hard macro is a fully synthesized/placed/routed subde-
sign, similar in some ways to a partition. However, a hard
macro can be relocated around the FPGA fabric by the HM-
Flow tool.

HMFlow is based on the RapidSmith tool set [7] [8] and
thus works outside the normal Xilinx tool flow. RapidSmith
operates on XDL files rather than .ncd files — the XDL lan-
guage [9] is an open design format provided by Xilinx in
the ISE tool suite and is a textual representation of much of
the information found in a .ncd file. Designs can be con-
verted between .ncd and XDL using the xdl command line
tool from the ISE tool suite.

A hard macro is created by running the conventional
Xilinx tool flow with appropriate constraints to control its
layout and shape [10]. It can thus be created from any ar-
bitrary RTL source (HMFlow currently supports the cre-
ation of hard macros from either VHDL or SystemGenera-
tor source). Once implemented by the Xilinx tools, the hard
macro design is then converted into the Xilinx XDL format
and further processed for use by HMFlow.

To compile a complete design composed of hard macros,
HMFlow first searches its cache for each hard macro re-
quired by a design. If the hard macro for a block does not
exist in the cache, HMFlow will generate it using the pro-
cess described above and store it in its macro cache. Next,
HMFlow assembles the hard macros required for the design
and then places and routes the resulting ensemble of blocks
using its own custom built placer and router. The result is
an XDL representation of the fully placed and routed design
which is then converted from XDL back to NCD and a bit-
stream is generated.

For this experiment, HMFlow was extended to include
support for “system macros” to contain all of the non-changing
system logic in a design. A system macro is similar to any
other hard macro in that is is a fully placed and routed cir-
cuit module. However, since it typically contains I/O sites it
will not be relocatable around the FPGA fabric. Thus, a sys-
tem macro-based design will consist of a statically-placed

system macro with an open area available in the fabric for
rapidly inserting various user design modules.

2.4. Background: Other Related Work

A variety of other research projects have looked at block-
based design techniques, specifically intended to reduce im-
plementation time. Here we describe two that deal with pre-
compiled circuit building blocks.

2.4.1. qFlow

qFlow, an incremental compilation technique developed at
Virginia Tech [3], also uses hard macros to realize compila-
tion speedups. Built on the TORC toolset [11], this flow is
similar to HMFlow in a number of ways. First, the user man-
ually partitions the design into invariant and evolving logic
sets. Then the invariant logic is placed and routed using
the Xilinx tools with placement constraints, leaving an open
area on the FPGA called the “sandbox.” The evolving logic
is then implemented as one or more macros (represented in
the Xilinx tools as .nmc files). Finally, both the invariant and
evolving logic are placed and routed together with the evolv-
ing logic being placed into the sandbox area. For subsequent
changes to the evolving logic, only the evolving logic needs
be re-implemented.

One key difference is qFlow’s use of the Xilinx tool
chain for placement and routing as well as its use of .nmc
files for representing hard macros. In contrast, HMFlow
does its design assembly outside the normal Xilinx tool flow
using the RapidSmith tool set and an XDL circuit represen-
tation. Also, HMFlow employs its own custom-built place
and route tools, injecting its finished designs back into the
Xilinx tool flow only for bitstream generation.

2.4.2. BPR

Block Place and Route (BPR), developed at the University
of Florida, constructs a design using coarse-grain cores [2].
Unlike HMFlow and qFlow, a given core is not turned into
a relocatable hard macro, but rather numerous versions of
each block are placed and routed (at different locations in
the FPGA fabric) and stored in a database. At assembly
time, one version of each block is selected to give the desired
system layout and then routed together.

2.4.3. Partial Reconfiguration Flows

A variety of design flows have been described to take ad-
vantage of the partial reconfiguration capabilities of FPGAs
[12] [13] [14], and which have some similarities with rapid
design flows. For example, GoAhead [13], divides a de-
sign into static and partially reconfigured modules and then
floorplans them into specific areas of the device. It provides

for the independent implementation of the static and partial
modules from one another. It also supports the relocation of
partial modules, the elimination of bus macros, and the cre-
ation of hierarchical PR regions. The key difference from
this work is that PR flows are optimized to support runtime
reconfiguration, while this work targets rapid development,
specifically the reduction of CAD tool runtime.

3. EXPERIMENTS

The system organization chosen for our experiments con-
sists of a design with two parts. The first is called the sys-
tem logic, contains the majority of the design, and rarely
changes. The second is called the user logic and contains the
part of the design which is changed regularly. The experi-
ments of this section were designed to analyze the FPGA
compilation runtime improvements that might result when
this design is processed using Xilinx Partitions, Xilinx Smart-
Guide, and HMFlow. For each flow, we created an initial
placement of the system logic, made a small design change
in the user logic (about 1% of the design), and rebuilt the de-
sign while re-using the placed and routed system logic from
before. All experimental times given are averages of 100
runs.

3.1. Example Design

Our benchmark for this study was a video filtering system
(see Figure 1). The user logic portion of the design consisted
of a set of video filters that could be pipelined together in any
combination. The base design we used contained four such
filters. The filters contained connections to a Processor Lo-
cal Bus found inside the system logic. The remainder of the
circuit was the system logic, a Xilinx EDK-generated design
which contained two Xilinx Microblaze Processors, a DDR2
Memory Controller, two large image rotation peripherals, as
well as other IO peripherals and busses.

The system was implemented on a Xilinx xc5vlx330 chip
(the largest Virtex 5 part). The system logic comprised 95%
of the design. Together, the system logic and user logic uti-
lized 55% of the chip’s resources (see Table 1). We pur-
posely chose this level of utilization since prototyping is fo-
cused more on implementation speed than device utilization.
The 55% utilization means the tools have ample area to work
within and makes meeting timing constraints easier.

Partition Slices % of Chip
System 27,221 52.5
User 1,215 2.3

Table 1. Chip Utilization of Large Design

All of our experiments used the Xilinx ISE 14.2 Tool
Suite. As a baseline, the design was compiled using the

Flow XST NGD MAP PAR Total
Standard Xilinx Flow 0:19:22 0:01:33 0:24:22 0:09:40 0:54:56
Incremental Synthesis 0:02:20 0:01:52 0:25:24 0:10:10 0:39:45

Table 2. Standard Xilinx Flat Flow Runtimes (H:MM:SS)

ʅBlaze ʅBlaze

Image
Rotate

Image
Rotate

IIC

UART

GPIO

DDR
Controller

Video IO

Bridge

System Logic DMA

PLB

VGA

Video
Filter

Video
Filter

Video
Filter

User Logic

Fig. 1. Frame Buffer Benchmark System

standard Xilinx flow which flattens and completely rebuilds
the design for each implementation run. Table 2 shows the
runtimes of the standard Xilinx tool flow for this design as
well as a re-implementation that uses an incremental syn-
thesis flow to bypass resynthesizing the system logic. All
speedups in the remainder of this paper are in comparison to
the Standard Xilinx Flow runtimes (row 1).

3.2. Design Considerations

Early experiments building the system logic of Figure 1 pointed
out two considerations when partitioning and floorplanning
the design. The first consideration was the floorplanning of
the IO. An early floorplan contained IO that was placed at
locations dictated by the targeted PC board. The result was
that IO was scattered across the chip making floorplanning
of the system partition difficult and resulting in cross-chip
routes. This highlighted the importance of properly locating
IO. For this experiment, it was assumed that the board IO
placement was determined with the rapid-prototyping flow
in mind and IO pin locations were limited to the area allo-
cated for the system logic.

The next consideration was ensuring connections between
the system and user logic could meet timing, even when the
system logic was built without knowing where the connect-
ing user logic would ultimately be located. To mitigate the
resulting issue of long wiring delays, registers were placed
on all signals crossing boundary between the system and

user logic. An alternative would be a careful floorplanning
of pin locations on both the system and user logic to mini-
mize wire length (an interesting topic for future work).

3.3. Experiments With Partitions

3.3.1. Procedure

System
Logic

User Logic
Compile

Initial
System

Start
Import

System Logic

Alter
User Logic

(HDL)
Done System

Logic

User Logic

Fig. 2. Partition-based System Incremental Flow

Figure 2 shows the partitioned-based incremental flow
we used. The first step of the flow was floorplanning, the
goal being to leave enough space for user logic to maximize
the possibility of being able to rapidly implement that user
logic while still meeting timing.

In our floorplan, the system logic occupied the lower
75% of the chip and the user logic resided in the remain-
ing upper 25% of the chip. This gave the system logic about
a 75% utilization rate within its boundaries (within the Xil-
inx suggested guidelines) and a relatively large area for the
user logic. We also explored allowing the user logic to over-
lap the system logic space, but this had little impact on the
results.

After the design was floorplanned, it was ready for its
initial implementation run. The purpose of the initial im-
plementation was to build the system logic partition. Dur-
ing this run, the user logic was also implemented into its
own partition to hopefully provide representative locations
for the signals connecting the system logic to the user logic.
The subsequent implementations described below, however,
only reused the system partition.

The remaining experiments focused on the iterative loop
of Figure 2. These experiments consisted of rebuilding the
design while reusing some previously implemented parti-
tions and re-implementing other partitions.

3.3.2. Results

The runtimes of our experiments are shown in Table 3. The
times for the initial build only include runs that met timing
constraints — when using partitions only 49% successfully
met the design’s timing constraints as opposed to 100% of
the builds meeting timing constraints when partition were

Flow XST NGD MAP PAR Total Speedup
Initial Build 0:21:15 0:02:05 2:39:20 0:22:44 3:05:21 0.29x
Import System 0:02:20 0:02:05 0:19:29 0:09:21 0:33:15 1.65x
Import All Partitions - - 0:17:40 0:09:17 0:26:57 2.04x

Table 3. Partition-based Incremental Flow Runtimes (H:MM:SS)

Changes XST NGD MAP PAR Total Speedup
Add a filter 0:03:40 0:01:47 0:15:31 0:07:26 0:27:56 1.97x
Remove a filter 0:01:50 0:01:52 0:15:18 0:07:17 0:26:18 2.09x
Replace a filter 0:01:50 0:01:52 0:15:18 0:07:17 0:26:18 2.09x
No change 0:02:28 0:01:46 0:14:40 0:06:57 0:25:51 2.13x

Table 4. Xilinx SmartGuide Flow Runtimes (H:MM:SS)

not used. The successful initial builds shown in row 1 of Ta-
ble 3 also took 3.4 times longer to implement than the stan-
dard flow implementation. In our experience, this is not an
uncommon occurence with partitions and seems more to do
with the addition of area constraints to the partitions rather
than the creation of partitions themselves. However, this
slowdown may be of minor consequence since the objective
of this system-based incremental flow is to only run the ini-
tial build once.

The second row of Table 3 (Import System) shows the
runtimes for iterations through the inner loop of Figure 2
where the previously implemented system partition was im-
ported into the design but a change was made to the user
logic forcing a rebuild of the user partition. Inside this loop,
the pre-implemented system partition is imported into the
new design, the new user logic is built (synthesized, placed
and routed) and the system and user partitions are routed to-
gether. In our benchmark, we saw a 65% improvement over
the standard Xilinx flow in these experiments.

The third row of Table 3 (Import All Partitions) shows
the runtime when both the user and system logic were im-
ported from previous runs. This can be viewed as a lower-
bound on the tool runtime for partitioned designs of this
size since the tools need only route the nets crossing the
system/user partition boundary. As shown in the table, this
gives a 2× speedup over the standard tool flow.

3.4. Experiments With SmartGuide

3.4.1. Procedure

System
Logic

User Logic
Compile

Initial
System

Start
Alter

User Logic
(HDL)

Done System
Logic

User Logic

Fig. 3. SmartGuide-based System Incremental Flow

Unlike partitions and HMFlow, SmartGuide requires no

additional floorplanning of a design – the only change to the
standard toolflow is the inclusion of a previously routed de-
sign, its associated guide (.ngm) file, and the “-smartguide”
flag when calling MAP or PAR in the standard tools.

To measure improvement with SmartGuide, our experi-
ments consisted of making a change to the original design
and re-implementing the changed design using SmartGuide.
Because Smartguide modifies a pre-placed and routed de-
sign as opposed to rebuilding the design as in Partition flow,
different types of changes may have a wider effect on the
implementation runtime than occur in partitions and HM-
Flow. To address the greater variability, we tested Smart-
guide with a set of changes that we felt addressed common
modifications that might be made to a design.

The list of changes included: (1) Adding an image filter,
(2) Removing an image filter, (3) Replacing one filter with
another, and (4) No change. Each of these changes except
for “No change” affected about 1% of the total design.

3.4.2. Results

Table 4 shows the runtimes for each change based on ap-
proximately 100 runs. Incremental synthesis (see row 2 of
Table 2) was used to avoid resynthesizing the sytem logic
reducing the XST time. The speedup values given are with
respect to the Standard Xilinx Flow row from Table 2. All
runs for each modification successfully met the design tim-
ing constraint.

Interestingly, there was little variation between the av-
erage run times – it would seem that re-implementing the
design with no changes takes about as long as any of the
changes we tried. This suggests that for this particular de-
sign there is a 25 minute overhead when using SmartGuide.
Still, for this design SmartGuide provides about a 2x im-
provement over a standard tool run, of the same order as the
improvements provided by partitions.

Flow Macro Stitch Place Route Total SpeedupGeneration/Load
Initial Build 3:04:40 0:00:18 0:00:00 0:01:20 3:06:18 0.29x
Import System 0:05:57 0:00:18 0:00:00 0:01:20 0:07:35 7.24x
All Macros Prebuilt 0:00:08 0:00:18 0:00:00 0:01:20 0:01:46 31.09x

Table 5. HMFlow: Single User Hard Macro Runtimes (H:MM:SS)

Flow Macro Stitch Place Route Total SpeedupGeneration/Load
Initial Build 3:15:41 0:00:38 0:00:00 0:00:59 3:17:18 0.28x
Import System 0:04:58 0:00:38 0:00:00 0:00:59 0:06:35 8.34x
All Macros Prebuilt 0:00:08 0:00:38 0:00:00 0:00:59 0:01:45 31.39x

Table 6. HMFlow: Four User Hard Macro Runtimes (H:MM:SS)

3.4.3. Observations on SmartGuide vs. Partitions

A unique aspect of SmartGuide is that it does not distinguish
between user and system logic. This means that with Smart-
Guide, changes can be made anywhere in the design without
necessarily requiring a long re-implementation. In contrast,
our use model for partitions above assumes a static collec-
tion of system logic with changes being made principally to
the user logic. With our partitions experiment, a change to
the system partition would require a long re-implementation
(close to 3 hours for our example).

3.5. Experiments With HMFlow

3.5.1. Procedure

Hard
Macro Hard

Macro Hard
Macro Hard

Macro

Alter
User Logic

(HDL)

Start

Compile User
Hard Macros

Compile
System Macro

Merge User and
System Macros

System
Logic

System
Logic

User Logic

Done

Fig. 4. HMFlow-based System Incremental Flow

For the HMFlow experiments, we used the same floor-
plan used in the partition flow, with the bottom 75% of the
chip allocated for the system logic and the remaining 25%
for user logic. Figure 4 shows the steps used in the HMFlow
experiment. The first step was to generate the hard macros,
including both the system logic macro as well as the user
logic macro(s), shown in the upper left of the figure. The
resulting macros, shown in the figure as the blocks labelled
“System Logic” and “Hard Macro” were all then cached for
later reuse. The next step was to place and route the system
macro and user hard macros into a finished layout (right side
of figure). Then, for repeated design iterations around the

loop of Figure 4, the user logic was modified, the required
hard macros were either loaded from the cache or generated
(if needed), and the new collection of macros placed and
routed into a design.

3.5.2. Results

In our experiments, we evaluated both creating a separate
hard macro for each of the four filters used in the testing and
placing all user logic into a single hard macro. The results
are presented in Tables 5 and 6 respectively. The speedup
values given are with respect to the Standard Xilinx Flow
row from Table 2.

Row 1 of the tables (Initial Build) shows the runtime
for generating both the system macro and all needed hard
macros as well as assembling an initial design from them.
As with the partition flow above, a portion of the initial sys-
tem macro builds failed to meet timing and the runtimes of
those implementations have been excluded. Additionally, as
with the Xilinx partitions initial build, this step should be a
one time occurence.

Row 2 of the tables (Import System) assumes one filter
was modified and had to be regenerated while the previously
implemented system macro was simply imported into the
design. In the case of the single user hard macro tests, this
meant the entire user hard macro had to be regenerated. In
the case of the tests with four individual user hard macros,
this meant only one of the macros had to be rebuilt.

Finally, in row 3 of the tables (All Macros Prebuilt), all
of the required macros already existed in the cache and so
only final design assembly (placement of the user macro(s)
and routing to the system macro) was required. This can
be considered a lower bound on implementation time for
HMFlow. For designs constructed solely from pre-defined
building blocks it does represent an achievable speedup.

HMFlow performed well in our experiments. When hard
macros needed to be generated we saw runtimes for place-
ment and routing of 6-7 minutes or 2 minutes when all macros

previously existed. This shows that significant speedups are
possible with a system macro-based flow.

4. CONCLUSION

For this particular design and iterative design flow, our ex-
periments showed modest improvements with Xilinx Parti-
tions and Xilinx SmartGuide tool runs time while custom
assembly approaches such as HMFlow showed great poten-
tial for speeding up implementation time. This work sug-
gests a number of avenues for future work. Different rela-
tive sizes of the system vs. user logic sections of a design
will undoubtedly result in different speedups. Also, as was
mentioned in Section 3, the I/O pin placement within a sys-
tem macro affects the resulting design implementation. Fu-
ture work could explore the interactions between FPGA and
PC board I/O pin placement for such a flow since differ-
ent I/O placement will lead to different feasible floorplans
for a system+user logic structure as described here. Finally,
as described in Section 2.4, a variety of custom flows that
operate both inside and outside the vendor tools have been
proposed, and new vendor tools such as Vivado promise to
provide new possibilities for rapid design flows. These all
represent fruitful areas for further investigation.

5. REFERENCES

[1] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “HMFlow: Accelerating FPGA Compi-
lation with Hard Macros for Rapid Prototyping,” in Field-
Programmable Custom Computing Machines (FCCM), 2011
IEEE 19th Annual International Symposium on, May 2011,
pp. 117 –124.

[2] J. Coole and G. Stitt, “BPR: Fast FPGA Place-
ment and Routing Using Macroblocks,” in Proceed-
ings of the Eighth IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System
Synthesis, ser. CODES+ISSS ’12. New York, NY,
USA: ACM, 2012, pp. 275–284. [Online]. Available:
http://doi.acm.org/10.1145/2380445.2380491

[3] T. Frangieh, “A Design Assembly Technique for FPGA
Back-End Acceleration,” Ph.D. dissertation, Virginia Poly-
technic Institute, Blacksburg, Sep. 2012. [Online]. Avail-
able: http://scholar.lib.vt.edu/theses/available/etd10082012-
021855/unrestricted/Frangieh T D 2012.pdf

[4] Xilinx. (2001, Mar.) Hierarchical De-
sign Methodology Guide. [Online]. Available:
http://www.xilinx.com/support/documentation/sw manuals/
xilinx13 1/Hierarchical Design Methodology Guide.pdf

[5] K. Kelley. (2011, Feb.) Hierarchical Design Using Synopsys
and Xilinx FPGAs. White Paper. Xilinx. [Online]. Available:
http://www.xilinx.com/support/documentation/white papers/
wp386 Hierarchical Design Synopsys Xilinx.pdf

[6] Xilinx. (2007, Jun.) Incremental Design
Reuse with Partitions. [Online]. Available:
http://www.xilinx.com/support/documentation/
application notes/xapp918.pdf

[7] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “RapidSmith: Do-It-Yourself CAD Tools
for Xilinx FPGAs,” in Proceedings of the 2011 21st
International Conference on Field Programmable Logic and
Applications, ser. FPL ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 349–355. [Online]. Available:
http://dx.doi.org/10.1109/FPL.2011.69

[8] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutch-
ings, “Rapid prototyping tools for FPGA designs: Rapid-
Smith,” in Field-Programmable Technology (FPT), 2010 In-
ternational Conference on, Dec. 2010, pp. 353–356.

[9] C. Beckhoff, D. Koch, and J. Torresen, “The Xilinx Design
Language (XDL): Tutorial and use cases,” in Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011
6th International Workshop on, Jun. 2011, pp. 1 –8.

[10] J. Lamprecht and B. Hutchings, “Profiling FPGA Floor-
Planning Effects on Timing Closure,” in Field Programmable
Logic and Applications (FPL), 2012 22nd International Con-
ference on, Aug. 2012, pp. 151–156.

[11] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas,
and M. French, “Torc: towards an open-source tool
flow,” in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 41–44. [Online].
Available: http://doi.acm.org/10.1145/1950413.1950425

[12] A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood,
“OpenPR: An Open-Source Partial-Reconfiguration Toolkit
for Xilinx FPGAs,” in Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE Interna-
tional Symposium on, 2011, pp. 228–235.

[13] C. Beckhoff, D. Koch, and J. Torresen, “GoAhead: A Partial
Reconfiguration Framework,” in Field-Programmable Cus-
tom Computing Machines (FCCM), 2012 IEEE 20th Annual
International Symposium on, 2012, pp. 37–44.

[14] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder - A
novel tool and technique to build statically and dynamically
reconfigurable systems for FPGAS,” in Field Programmable
Logic and Applications, 2008. FPL 2008. International Con-
ference on, 2008, pp. 119–124.

