
SSC22-P5-27

Evaluation of Parameter-Scaling for
Efficient Deep Learning on Small Satellites

Calvin B. Gealy, Alan D. George
NSF Center for Space, High-performance, and Resilient Computing (SHREC) - University of Pittsburgh

4420 Bayard Street, Suite 560, Pittsburgh, PA; 412-624-9664
c.gealy@pitt.edu

ABSTRACT

Parameter-scaling techniques change the number of parameters in a machine-learning model in an effort
to make the network more amenable to different device types or accuracy requirements. This research
compares the performance of two such techniques. NeuralScale is a neural architecture search method which
claims to generate deep neural networks for devices that are resource-constrained. It shrinks a network to
a target number of parameters by adjusting the width of layers independently to achieve a higher accuracy
than previous methods. The novel NeuralScale algorithm is compared to the baseline uniform scaling of
MobileNet-style models, where the width of each layer in the model is scaled uniformly across the network.
Measurements of the latency and runtime memory required for inference were gathered on the NVIDIA Jetson
TX2 and Jetson AGX Xavier embedded GPUs using NVIDIA TensorRT. Measurements were also gathered
on the Raspberry Pi 4 embedded CPU featuring ARM Cortex-A72 cores using ONNX Runtime. VGG-11,
MobileNetV2, Pre-Activation ResNet-18, and ResNet-50 were all scaled to 0.25×, 0.50×, 0.75×, and 1.00×
the original number of parameters. On embedded GPUs, this research finds that NeuralScale models do offer
higher accuracy, but they run slower and consume much more runtime memory during inference than their
equivalent uniform-scaling models. On average, NeuralScale is 40% as efficient as uniform scaling in terms of
accuracy per megabyte of runtime memory, and NeuralScale uses 2.7× the runtime memory per parameter
as uniform scaling. On the embedded CPU, NeuralScale is slightly more efficient than uniform scaling in
terms of accuracy per megabyte of memory, using essentially the same amount of memory per parameter.
However, there is on average an over 2.5× increase in the latency for inference. Importantly, parameter
count does not guarantee performance in terms of runtime-memory usage between the scaling methods on
embedded GPUs, while latency grows significantly on embedded CPUs.

INTRODUCTION

With machine learning and computer vision be-
coming more ubiquitous, the desire to run computer-
vision models on resource-constrained systems such
as small satellites has grown. These systems lack the
significant computing resources that can be found
in larger-scale systems, such as high-performance
CPUs and GPUs. Therefore, extremely large and
deep networks that are present in current research
must be scaled for efficient and effective inference on
less powerful systems. Two such methods are Neu-
ralScale1 and the uniform scaling introduced in Mo-
bileNets.2 This research analyzes the performance
of networks created using NeuralScale and uniform
scaling on embedded GPUs and an embedded CPU.

The NeuralScale method aims to optimize the ac-
curacy of a network for a target number of param-
eters. The uniform-scaling method is simpler. It
scales the width of each layer uniformly across the

network, as is done in MobileNets.2 CIFAR-100 is
used as the target dataset in these comparisons.3 To
compare these two techniques, measurements of gen-
eral model statistics like floating-point operations
(FLOPs) and the Critical Datapath Length (CDL)4

were taken. This research presents:

1. Results when performing NeuralScale on
ResNet-50, a larger network than any previ-
ously tested

2. An analysis of the FLOPs and CDL model
metrics on both NeuralScale and uniform-scale
models

3. Latency and runtime memory measurements
and analysis on two embedded GPUs and one
embedded CPU

In Section 2, the broad trends in the research are
discussed. Next, details about NeuralScale are pre-
sented in Section 3. Section 4 explains specifics of

Gealy 1 36th Annual Small Satellite Conference



the methods used. The results are presented in Sec-
tion 5. Finally, a discussion of this research, conclu-
sions, and future research directions are presented in
Section 6, Section 7, and Section 8, respectively.

RELATED RESEARCH

This section is split into five subsections. First, an
overview of several neural architecture search meth-
ods is given. Next is a brief introduction to Mo-
bileNets. Then, Critical Datapath Length, a newer
metric used to quantify model computational com-
plexity, is reviewed. In the final two sections, an
overview of NVIDIA TensorRT and ONNX Runtime
is given.

Neural Architecture Search

Designing neural networks that perform well
on resource-constrained devices has become a re-
search topic of interest in the machine-learning and
computer-vision fields. Recently, there has been a
significant amount of interest in neural architecture
search (NAS), where a neural-network architecture
is evolved algorithmically to adapt to a specific prob-
lem. Within NAS, there is research interest in creat-
ing networks optimized for specific devices. Li et al.
introduced HW-NAS-Bench.5 HW-NAS-Bench is a
dataset assembled by gathering performance mea-
surements on real devices. Researchers can then use
the information in this dataset to guide their NAS al-
gorithms. By using this dataset, Li et al. found that
they could design efficient networks for their target
platforms. Other methods like EfficientNet,6 pub-
lished by Tan and Le, begin with a baseline model
determined algorithmically that can then be scaled
up or down to improve accuracy or performance, re-
spectively. The EfficientNet-B7 model, a scaled-up
version of EfficientNet-B0, achieved state-of-the-art
performance on ImageNet. The authors also show
that scaling the network’s depth, resolution, and
width uniformly with a compounding coefficient al-
lows the CNN to find more important regions in an
image than if the components had been scaled indi-
vidually.
Other forms of NAS focus on pruning larger net-

works. Cai et al. perform a proxyless NAS by gener-
ating an over-parameterized network and then con-
ducting path-level pruning to create a network that
is efficient for a given platform.7 This method is
done while avoiding simpler tasks that do not relate
to given network, dataset, or target platform. Cai
et al. demonstrate NAS by choosing a sub-network
from a supernet for deployment on a given device.8

They do this operation by training the supernet and
then fine-tuning subsets of the supernet. With this
method, they were able to achieve a new state of the
art on ImageNet. Another pruning method called
NeuralScale was proposed by Lee and Lee.1 This
method is the focus of this research. With Neu-
ralScale, only the width component of the network
is pruned and scaled. NeuralScale attempts to select
the best number of filters for each individual layer at
a given scaling factor rather than scaling uniformly
across layers. More on the exact method will be
explained in Section 3, but the authors showed ac-
curacy improvements over other scaling methods.1

MobileNets and Uniform Scaling

MobileNets are a structure of networks aimed at
making an efficient architecture for mobile devices.2

MobileNetV1 and MobileNetV2 use a depthwise-
separable convolution to reduce the computational
complexity of the model.2,9 Hyperparameters of the
network include the width multiplier and image res-
olution. The effect of the width multiplier on the
network is the same as the effect of the scaling ratio
with uniform scaling in this research.

Critical Datapath Length

Critical Datapath Length (CDL) was proposed
by Langerman et al.4 As noted in their research,
the standard metric of floating-point operations
(FLOPs), often used to estimate the performance
of a network, does not necessarily translate well to
massively parallel devices like GPUs. CDL has been
shown to be a much more useful metric for perfor-
mance on parallel devices than FLOPs. CDL is in-
cluded in this research as it is another metric that
has been introduced to try to better understand and
predict model performance. A larger CDL indicates
that there is a longer serial path that the data must
flow through and, therefore, likely longer execution
time on a highly parallel system.

NVIDIA TensorRT

NVIDIA TensorRT is a tool used for high-
performance inference on NVIDIA GPUs.10 It al-
lows for several performance optimizations such as
mixed precision, fusing layers, automatically select-
ing the best kernel for a platform, and others. It can
input an Open Neural Network Exchange (ONNX)
model and create the appropriate TensorRT engine
automatically.11,12

Gealy 2 36th Annual Small Satellite Conference



ONNX Runtime

ONNX Runtime is designed for efficient inference
with ONNX models. It is an open-source project
backed by Microsoft. It includes a Python API
which allows for optimized execution of ONNX mod-
els on different accelerator types as well as standard
CPU inference. For more information, the reader is
directed to the ONNX Runtime documentation.13

BACKGROUND

This background section is broken into several
subsections. First, the NeuralScale method is de-
scribed. Then, embedded-device constraints are
quantified. Finally, statistics about the test plat-
forms are given.

NeuralScale

To target a specific number of parameters, Neu-
ralScale first performs an iterative pruning method
to determine the importance of each filter in the net-
work.1 The importance is defined as a measurement
of the increase in error caused by the removal of that
filter. When removing a filter causes a large decrease
in the accuracy, the filter is considered to be more
important. This metric of importance is explained
in the research of Molchanov et al.14

As the pruning method is performed across many
iterations, the change in the number of filters per
layer compared to the number of parameters in the
network is learned. With this knowledge, a model
of the number of filters in a layer given the total
number of parameters can be generated using power
functions. Now, an approximation of the number of
filters per layer can be set for a target number of
parameters, which is further refined using stochastic
gradient descent. An in-depth, mathematical expla-
nation can be found in the NeuralScale paper.1 The
steps of iteratively pruning the model, searching for
the parameters for the power function, and then gen-
erating the network with stochastic gradient descent
represent one iteration of what the authors define as
architecture descent. Architecture descent can then
be run iteratively for a set number of steps or until
convergence. The authors of NeuralScale find that
multiple iterations of architecture descent generate
a more accurate model than one single iteration.

Embedded-Device Constraints

With small satellites, the performance of com-
puter vision applications is often limited by the

Size, Weight, and Power - Cost (SWaP-C) con-
straints. These constraints can lead to heavy limita-
tions on target apps in terms of energy consumption
or memory usage. Therefore, it is critical to know
the processing limitations when selecting a machine-
learning model.

An example of a critical application for small
satellites is space debris collision avoidance. If a
collision avoidance system is based on a computer-
vision model, the speed at which that model oper-
ates dictates how quickly the system can respond.
Analyzing collision avoidance can be simplified by
considering a self-driving car rather than a satellite
orbiting the Earth. Consider a car moving at 80 mph
(117 feet per second). If an obstruction suddenly en-
ters the roadway 20 feet ahead of the vehicle, and
it takes 100 milliseconds to process the first frame
where the obstruction is in the field of view, the car
will have already traversed half of the distance to
the object before it even recognizes that there is an
obstruction. Therefore, it can be important that low
latency is achievable on embedded devices. Further-
more, the high-resolution vision necessary for detect-
ing small obstructions will be even slower due to the
added computational cost from the increase in the
number of pixels and limited memory bandwidth on
the embedded devices. This problem only becomes
more challenging when considering a satellite mov-
ing in more dimensions and at higher speeds.

The runtime memory of a model is an additional
constraint in embedded and space computing plat-
forms. NVIDIA’s Jetson embedded GPUs have
memories in the range from 2 GB15 to 32 GB.16

However, on these systems, the memory is shared
between the CPU cores and the GPU. Therefore,
in a safety-critical situation like a self-driving car,
the amount of memory required by all applications
on the device must be optimized. Similarly, with a
general-purpose CPU architecture like on the Rasp-
berry Pi 4, memory is once again limited and shared
by all the processes running on the system.

Test Platforms

The specifications for the two embedded GPU
platforms tested in this research are listed in Ta-
ble 1. For reference to a desktop-class GPU, the
specifications of a GTX 1080 Ti are also listed. The
GTX 1080 Ti was used in the original NeuralScale
research.1 Note the significant limits to the core
count, thermal profile, and memory bandwidth on
the embedded devices. Also note that while the Jet-
son AGX does have more memory than the GTX
1080 Ti, this memory must be shared across the

Gealy 3 36th Annual Small Satellite Conference



Table 1: Specifications of the embedded
GPUs17,18 and GTX 1080 Ti.17,19

Jetson Jetson GTX
Metric TX2 AGX 1080 Ti

Architecture Pascal Volta Pascal
Perf. (TFLOPs) 1.3 1.4 11.3
CUDA Cores 256 512 3584
TDP (W) 15 30 250
Memory (GB) 8 16 11
Mem. BW (GB/s) 59.7 136.5 484

GPU and CPU cores.

The Raspberry Pi 4 is a popular single-board com-
puter which features a quad-core ARM Cortex-A72
processor.20 It is used as an embedded CPU base-
line as it is simple to use and has a lot of devel-
opment support among the open-source and hobby-
ist communities as well as uses for rapid prototyp-
ing. The NXP i.MX 8QuadMax uses the A72 and
is being considered for near-term space computing
applications, thus performance results from this ar-
chitecture are considered valuable in a small satel-
lite context.21 The board used in this research fea-
tures 4 GB of RAM. A 64-bit version of the Ubuntu
GNU/Linux operating system was used.

APPROACH

The PyTorch code distributed with the Neu-
ralScale paper1 was used for this research. The re-
sults of the architecture-descent operation are in-
cluded for the models from the original paper.
Therefore, testing was done with VGG-11,22 PreAct
ResNet-18,23,24 and MobileNetV2.9 PreAct ResNet-
18 model24 was used in the original NeuralScale pa-
per.1 For simplicity in labeling, this network will be
referred to as PResNet-18.

To expand upon the originally published models
of NeuralScale, a scaled version of ResNet-50 was
also tested for this research. The models in the
original NeuralScale paper are small compared to
many modern models, potentially making it harder
to optimize. Therefore, a larger model like ResNet-
50 was chosen to provide insight to how the Neu-
ralScale method performs on larger networks. The
ResNet-50 model was scaled using PyTorch version
1.8.1. Due to the time-consuming step of pruning,
a batch size of 64 was chosen, which allowed the
parameters to be pruned in fewer epochs. CIFAR-
1003 was used as the dataset for comparing the mod-
els in this research. This dataset features 32× 32-

pixel RGB images. Measurements were taken at pa-
rameter scalings of 0.25×, 0.50×, 0.75×, and 1.00×.
These values were chosen as they allow for interpola-
tion between the points without generating so much
data that analysis would be prohibitive. They also
match the original scaling values from the original
NerualScale paper.1

Uniform scaling, a different name for the opera-
tion of the width multiplier found in MobileNets,
is the other parameter scaling method investigated
in this research.2 In uniform scaling, each layer is
scaled by the same scaling factor. For example, if
a layer normally has a width of 64, and the goal is
to generate a network with 50% of the original num-
ber of parameters, then that layer will have 32 filters
after being scaled.

The number of FLOPs and the CDL of the net-
work were measured using the models from both
uniform scaling and the models generated after 15
iterations of the NeuralScale architecture-descent
method. Then, for each model, five fine-tuned ver-
sions were created to determine an average test ac-
curacy of the networks. FLOPs were found by mea-
suring the multiply accumulates (MACs) using a
PyTorch tool25 and multiplying the MACs by two.
While this method is not a perfect way to calculate
FLOPs, it does provide an estimate.

After collecting these general model statistics,
device-specific measurements were taken on a Jetson
TX2 with a GPU maximum frequency of 1122 MHz
and a Jetson AGX with a GPU maximum frequency
of 1377 MHz. In the NeuralScale paper,1 the authors
note that NeuralScale is a tool designed for making
models more efficient on “resource-constrained” sys-
tems. Therefore, this research tests this claim on the
Jetson embedded GPUs and the Arm Cortex-A72
embedded CPU cores. To measure the performance
on these systems, all of the networks were exported
to ONNX from PyTorch with the ONNX opset ver-
sion 9. In Python, each ONNX model was loaded
into a temporary TensorRT engine. Next, an im-
age from CIFAR-100 was input to both the original
PyTorch model and the TensorRT engine. The out-
puts from the final layers of both models were then
compared using the cosine distance. The cosine dis-
tance allows for the difference between the two high-
dimensional tensors to be compared. The maximum
cosine distance from 100 samples of CIFAR-100 was
confirmed to be less than 10−4. By checking that
the distance is small, it is confirmed that the Ten-
sorRT engine is functionally the same as the original
PyTorch network while allowing for small implemen-
tation discrepancies.

With the ONNX models saved, they were then

Gealy 4 36th Annual Small Satellite Conference



individually loaded into NVIDIA’s trtexec program.
This program is capable of loading an ONNX model,
creating a TensorRT engine, and running sample in-
ferences. Average latency measurements for infer-
ence were gathered for every model using this pro-
gram. Inferences were performed with a batch size
of one to represent the case where an embedded sys-
tem would be processing one frame at a time from a
camera.

Then, runtime-memory measurements were taken
as memory usage on embedded devices can be criti-
cal. In the TensorRT documentation,10 NVIDIA es-
timates the runtime memory required by the model
to be the sum of the persistent memory, the size of
the serial engine, and the memory needed for the
activations. The host and device persistent mem-
ory usage can be found in the verbose outputs of
the trtexec program. The size of the serial engine
can be easily found by saving the engine and query-
ing the operating system for the file size. Finally,
a custom version of trtexec was created to print the
activation memory required by the network as ex-
plained by the NVIDIA TensorRT documentation.10

An average was taken across 50 different generations
of the TensorRT engine for each model. This aver-
aging was done because there are slight variations
in the TensorRT engines since the tool may opti-
mize the network differently depending on the de-
vice’s resource utilization at the time of inference.
An adapted version of the Docker container from an
NVIDIA Jetson developer26 with PyTorch version
1.9.0 and TensorRT version 7.1.3 was used on the
embedded GPU platforms.

When measuring performance with ONNX Run-
time on the Raspberry Pi 4, the generated ONNX
models were directly loaded using the Python API
for the runtime. ONNX Runtime version 1.9.0 was
used for testing. The execution provider was set to
be the CPU with ONNX Runtime being allowed to
choose the optimal number of threads to use. The
Raspberry Pi 4 default maximum clock rate of 1.5
GHz was used for testing. To find the latency of the
model inference, 20 rounds of inference were run to
prime the caches. Then, the latency was averaged
over 80 single-image batches. This whole process
was further averaged over another 50 executions of
this sequence. To measure the runtime memory of
the model, the Python memory profiler27 was used.
This profiler queries the OS to determine the amount
of memory used by the code. It also can report the
specific amount of memory used by a specific line of
Python code. This was used to record the amount
of memory used for the ONNX Runtime Inference-
Session generation. This value was averaged over 50

separate InferenceSession generations to account for
variances caused by the operating system.

RESULTS

The results section is split into three subsections.
In the first subsection, purely model-based statis-
tics are presented. In the second subsection, results
based on running the models on the Jetson TX2 and
Jetson AGX are shown. In the final subsection, re-
sults from running the models on the Raspberry Pi
4 are noted. Due to space constraints, the models
VGG-11, MobileNetV2, PResNet-18, and ResNet-
50 are abbreviated as VGG11, MNV2, PRN18, and
RN50, respectively. Accuracy measurements for
VGG-11, MobileNetV2, and PResNet-18 are from
the original NeuralScale paper.1 Note that compar-
isons should only be drawn between scaling meth-
ods and not between different model architectures.
Due to constraints on the training of ResNet-50, a
smaller batch size was used, which is suspected to
cause the resulting lower accuracies. However, a fair
comparison can still be drawn between NeuralScale
and uniform scaling as the training hyperparameters
were held constant between the two.

Model Analysis Results

106 107
50%

60%

70%

80%

Number of Parameters

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 1: Accuracy versus number of
parameters for all scaled models. Log scale

on x-axis. Accuracy measurements for
VGG11, MNV2, and PRN18 are from

NeuralScale paper.1

Gealy 5 36th Annual Small Satellite Conference



NeuralScale is designed to increase the accuracy
of a model while using the same number of param-
eters. The accuracy results from the NeuralScale
paper1 are presented along with the new results for
ResNet-50 in Fig. 1. Note that the y-axis on the
figure shows the accuracy range of 50% to 80% in
order to make the differences more discernible. The
series of four points for each line represents the four
scaling values of 0.25×, 0.50×, 0.75×, and 1.00× in
order. The NeuralScale models are able to achieve
a better accuracy for the same scaling in all tests
of this study. Each scaling has approximately the
same number of parameters. Therefore, NeuralScale
is achieving its goal of improving accuracy over the
more naive uniform-scaling method.

101 102 103
50%

60%

70%

80%

MFLOPs

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 2: Accuracy versus million FLOPs
for the models. Log scale on x-axis.

Accuracy measurements for VGG11, MNV2,
and PRN18 are from NeuralScale paper.1

Another insightful perspective on the scaling
methods is to view the accuracy versus million
FLOPs (MFLOPs) shown in Fig. 2. Here, Neu-
ralScale’s dominance in terms of accuracy is less
clear. When the points are no longer constrained
by the number of parameters, but rather the num-
ber of FLOPs, it can be seen that the gains in ac-
curacy achieved by NeuralScale over uniform scaling
are not necessarily surprising. For the same scaling
ratios, the NeuralScale points use significantly more
MFLOPs, which allows for the gains in accuracy.

The other model-based metric studied is CDL. As
NeuralScale only adjusts the widths of the networks
and not the number of layers, the CDL of every net-

Table 2: CDL of the models tested
compared with the range of MFLOPs for the

scaling methods.

Uniform Scaling NeuralScale
Model CDL MFLOPs range MFLOPs range

VGG-11 39 20.01-306.54 85.33-860.13
MobileNetV2 162 5.26-57.03 44.57-297.25
PResNet-18 61 70.68-1113.18 272.38-2495.02
ResNet-50 167 11.66-168.15 125.31-1589.02

work within the same model class is the same. The
CDL values are displayed in Table 2. As noted in the
paper proposing CDL,4 CDL is a more appropriate
metric for memory-bound devices, while FLOPs are
more appropriate on compute-bound devices. An
analysis of these results will follow in Section 6.

GPU-Specific Results

100 101 102
50%

60%

70%

80%

Runtime Memory (MB)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 3: Accuracy versus MB of runtime
memory for Jetson TX2. Log scale on x-axis.
Accuracy measurements for VGG11, MNV2,
and PRN18 are from NeuralScale paper.1

One of the important additions of this research is
the analysis of uniform scaling and, specifically, Neu-
ralScale on resource-constrained devices. As such,
it is important to consider the amount of runtime
memory required to perform inference on the de-
vice. A valuable perspective is to view the accuracy
of the models versus the amount of runtime memory
required. While networks of the same model and
scaling ratio may use a similar number of parame-
ters, the arrangement of the parameters has a cost in

Gealy 6 36th Annual Small Satellite Conference



100 101 102
50%

60%

70%

80%

Runtime Memory (MB)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 4: Accuracy versus MB of runtime
memory for Jetson AGX. Log scale on

x-axis. Accuracy measurements for VGG11,
MNV2, and PRN18 are from NeuralScale

paper.1

terms of runtime-memory usage and computational
complexity. Fig. 3 presents the results collected on
the Jetson TX2, and Fig. 4 depicts the results col-
lected on the Jetson AGX.

The results are similar on both the Jetson TX2
and the Jetson AGX. For the same scaling ratio,
NeuralScale does increase the accuracy but also
causes a very large increase in the runtime memory
(note the log scale of the x-axes). When the results
are plotted as a line, it is evident that NeuralScale
produces models than often do have a higher accu-
racy for the same amount of memory as is shown
by the MobileNetV2 and ResNet-50 models. How-
ever, for the VGG-11 and PResNet-18 models, the
NeuralScale results show that for essentially the
same amount of runtime memory, the same result
is achieved, though they still do use fewer parame-
ters.

Continuing, viewing the amount of runtime mem-
ory required per parameter helps for better anal-
ysis of how different the runtime-memory usage is
between NeuralScale and uniform scaling. Fig. 5
shows the results from the Jetson TX2, and Fig. 6
gives the results on the Jetson AGX. The x-axes of
the bar plots contain the scaling values of 0.25×,
0.50×, 0.75×, and 1.00× for each of the different
models. These plots show how vastly different the
runtime-memory usage of the models is when scaled

0
.2
5

0
.5
0

0
.7
5

1
.0
0

0
.2
5

0
.5
0

0
.7
5

1
.0
0

0
.2
5

0
.5
0

0
.7
5

1
.0
0

0
.2
5

0
.5
0

0
.7
5

1
.0
0

101

101.5

M
B

of
R
u
n
ti
m
e
M
em

o
ry

/
M
P
ar
am

et
er
s

Uniform NeuralScale

VGG11 MNV2 PRN18 RN50
Model

Figure 5: MB of runtime memory per
million parameters for Jetson TX2. Log

scale on y-axis.

to the same number of parameters. NeuralScale con-
sistently uses more runtime memory per parameter
than uniform scaling.

Next, the drop in latency for inference, or relative
speed, is shown in Fig. 7 and Fig. 8 for the Jetson
TX2 and Jetson AGX, respectively. The relative
speed is calculated by dividing the uniform-scaling
latency by the NeuralScale latency. A value closer to
100% represents a NerualScale model who’s latency
is closer to the uniform-scaling model. There is al-
ways a decrease in relative speed when using Neu-
ralScale versus the equivalent uniform-scaling net-
work. However, all relative speeds are around 60%
or larger.

Viewing the results as accuracy versus latency
shows that for all but the ResNet-50 models, the
NeuralScale and uniform-scaling lines essentially
overlap. Therefore, with the same base model, they
achieve close to the same accuracy for a set latency.
Fig. 9 and Fig. 10 display this metric on the Jetson
TX2 and Jetson AGX, respectively.

CPU-Specific Results

Again, the first perspective on the CPU results
from the ARM Cortex-A72 is to view the accu-
racy versus megabyte of runtime memory as seen
in Fig. 11. Here, there is essentially no memory in-
crease for the gain in accuracy. NeuralScale models
consistently perform better with the same memory
utilization as their uniform-scaling counterparts.

On the ARM Cortex-A72, there is not a large
change in the memory usage per parameter between

Gealy 7 36th Annual Small Satellite Conference



0.
25

0.
50

0
.7
5

1.
00

0
.2
5

0.
50

0.
75

1.
00

0
.2
5

0.
50

0.
75

1
.0
0

0.
25

0.
50

0.
75

1.
00

101

101.5

M
B

o
f
R
u
n
ti
m
e
M
em

or
y
/
M
P
a
ra
m
et
er
s

Uniform NeuralScale

VGG11 MNV2 PRN18 RN50
Model

Figure 6: MB of runtime memory per
million parameters for Jetson AGX. Log

scale on y-axis.

uniform scaling and NeuralScale. Fig. 12 shows how
many megabytes of runtime memory per million pa-
rameters are used. This trend differs from that seen
on the GPUs where there was a larger difference in
memory efficiency between the scaling methods.
The relative speed of the NeuralScale models com-

pared to the uniform scaling models on the ARM
Cortex-A72 is shown in Fig. 13. Here, all values
are below 60%. Again, this differs from the GPU
where all values were around or above 60%. This
demonstrates a large latency penalty for using Neu-
ralScale models instead of uniform-scaling models on
general-purpose CPU architectures.
The final view of the data for the ARM Cortex-

A72 is in terms of the accuracy versus millisecond
of latency. Here, for all but ResNet-50, the Neu-
ralScale and uniform-scaling lines essentially lie on
top of each other for the same base model. This in-
dicates that with a set latency requirement, the ac-
curacy will be relatively consistent when using the
same model type. This trend is different for ResNet-
50 where NeuralScale consistently provides better
accuracy for the same latency.

DISCUSSION

This section is broken into several subsections.
First, a presentation of the effect of NeuralScale on
the network layout is given. Next, an analysis of la-
tency compared to the predictive metrics of FLOPs
and CDL is performed. Finally, an analysis of why
parameters are a poor metric for scaling a model for
a resource-constrained device is presented.

0.
25

0.
50

0.
75

1.
00

0
.2
5

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
2
5

0
.5
0

0
.7
5

1
.0
0

0 %

20%

40%

60%

80%

100%

R
el
at
iv
e
S
p
ee
d

NeuralScale Relative Speed

VGG11 MNV2 PRN18 RN50
Model

Figure 7: NeuralScale relative speed
(uniform latency / NeuralScale latency) for

Jetson TX2. Higher is better.

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
2
5

0
.5
0

0
.7
5

1
.0
0

0 %

20%

40%

60%

80%

100%

R
el
at
iv
e
S
p
ee
d

NeuralScale Relative Speed

VGG11 MNV2 PRN18 RN50
Model

Figure 8: NeuralScale relative speed
(uniform latency / NeuralScale latency) for

Jetson AGX. Higher is better.

Model Layout in NeuralScale

One of the interesting aspects of the NeuralScale
method is how it adjusts the widths of the layers.
The widths of the layers in the networks are repre-
sented in Fig. 15. In this figure, the y-axis repre-
sents the width of a layer, while the x-axis repre-
sents the layer number in the network. The layer
widths are shown for a scaling ratio of 1.00× as it
shows model layout with the same number of param-
eters as chosen by the original model designers. As
the parameter scaling is 1.00×, the uniform-scaling
method simply returns the original network layout.

Fig. 15 is insightful because it shows the structure
for a more efficient architecture, in terms of accu-
racy per parameters, as determined by NeuralScale.
NeuralScale tends to shift the parameters from the
end of the network to the beginning or middle. In

Gealy 8 36th Annual Small Satellite Conference



100 101
50%

60%

70%

80%

Latency (ms)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 9: Accuracy versus latency (ms) for
Jetson TX2. Log scale on x-axis. Accuracy
measurements for VGG11, MNV2, and
PRN18 are from NeuralScale paper.1

CNNs, earlier layers capture more general features
like textures while later layers capture more specific
details.28 Fig. 15 displays how NeuralScale infers
that general features are more useful on CIFAR-100.
This result is interesting because most of the mod-
els as designed by the original sources tend to place
more parameters near the end of the network.

For the NeuralScale models, there is an observed
large increase in FLOPs for the same parameter
count as uniform scaling. This result can be ex-
plained by the relationship between FLOPs and the
model layout. As shown by Fig. 15, NeuralScale
shifts parameters earlier in the network. Earlier in
the network, there is also a larger spatial dimension.
The relationship of FLOPs is on the order of O(n2)
to the spatial dimension due to the height and width
of the image factoring into the FLOPs calculation.
Therefore, there is a large increase in the number of
floating-point operations to be performed when more
of the parameters are used for these earlier filters.

Runtime and Predictive Metrics

FLOPs and CDL are compared against the la-
tency measurements on the devices. The CDL is the
same for all networks with a common base model.
Therefore, on a highly parallel device like a GPU,
the runtime of the models should be about the same
no matter how the width of the networks is scaled.

10−0.5 100 100.5
50%

60%

70%

80%

Latency (ms)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 10: Accuracy versus latency (ms) for
Jetson AGX. Log scale on x-axis. Accuracy

measurements for VGG11, MNV2, and
PRN18 are from NeuralScale paper.1

The latencies between networks with the same base
model and same scaling method but different scal-
ing ratios are vastly different even though the CDL is
the same. From this research and as is noted by the
original CDL paper,4 it is evident that CDL alone
is not a perfect prediction metric, especially when
focusing on these parameter scaling. For example,
VGG-11 at 0.25× scaling with uniform scaling has
15× fewer MFLOPs than VGG-11 at 1.00× scaling,
but it is only 3× faster on the Jetson TX2, while
still having the same CDL. It is a balance between
these two metrics that can be used to understand
and predict the performance.

FLOPs, on the other hand, predicts that Neu-
ralScale networks will perform significantly worse
than uniform-scaling networks. However, this pre-
diction is not accurate. The FLOP count on ResNet-
50 at ratio 0.25× was over 10.74× higher for Neu-
ralScale than for uniform scaling. However, the in-
crease in latency on the TX2 was only around 4%
and around 49% on the AGX.

The ARM Cortex-A72 is able to realize much
less parallelism than that of the embedded GPUs.
Therefore, the more serial nature of the FLOPs mea-
surement is more indicative of latency performance
than CDL. With more filters earlier in the network,
and therefore more FLOPs, the serial throughput
of the NeuralScale models is more limited than the
uniform-scaling models on the CPU. In the worst

Gealy 9 36th Annual Small Satellite Conference



101 102
50%

60%

70%

80%

Runtime Memory (MB)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 11: Accuracy versus MB of runtime
memory for ARM Cortex-A72. Log scale on
x-axis. Accuracy measurements for VGG11,
MNV2, and PRN18 are from NeuralScale

paper.1

case, the MobileNetV2 model at 0.25× scaling is
over 3.2× slower for NeuralScale than for uniform
scaling while having 3.9× the number of FLOPs.

Clearly, neither FLOPs nor CDL tell the whole
story. However, by seeing that there is an increase
in FLOPs for NeuralScale and by assuming that no
parallelization is perfect, it can be correctly pre-
dicted that NeuralScale will be slower than uniform
scaling. This latency increase may be acceptable on
the GPU depending on the application, especially
since the accuracy versus latency can be more effi-
cient in some cases using NeuralScale as shown in
Fig. 9 and Fig. 10. However, with already long run-
times, the relative speed on the CPU for NeuralScale
models has a potentially larger effect on model se-
lection. It too has similar performance in terms of
accuracy versus latency as seen in Fig. 14, but the
latency values are simply much larger than those on
the embedded GPUs.

Parameter Scaling versus Runtime-Memory
Usage

One of the results found in this research is that
the number of parameters in a network does not nec-
essarily represent an important metric during infer-
ence for embedded GPUs using TensorRT. The Neu-
ralScale method assumes that parameters are a use-

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
25

0.
50

0.
75

1.
00

0.
25

0.
5
0

0
.7
5

1
.0
0

101

101.5

M
B

o
f
R
u
n
ti
m
e
M
em

or
y
/
M
P
a
ra
m
et
er
s

Uniform NeuralScale

VGG11 MNV2 PRN18 RN50
Model

Figure 12: MB of runtime memory per
million parameters for ARM Cortex-A72.

Log scale on y-axis.

ful scaling metric.1 However, the number of param-
eters in a network does not scale with the runtime-
memory usage of the models. As shown by Fig. 5 and
Fig. 6, even with a similar number of parameters
between two models, the NeuralScale method uses
significantly more runtime memory during inference
than the uniform-scaling method. As the Neu-
ralScale models contain more parallelism through-
out the network shown by Fig. 15, it likely needs
more runtime memory to handle processing of the
increased parallelism on the GPUs. With large vari-
ations in runtime-memory usage across the models
tested on the embedded GPUs using TensorRT, this
research concludes that the assumption that scaling
the parameters makes a model more efficient for a
resource-constrained system does not hold true.

Continuing, the points between NeuralScale and
uniform scaling tend to be close in terms of accu-
racy for a similar amount of runtime memory. This
indicates that while the parameter selection in Neu-
ralScale may be more intelligent, it does not result
in gains in accuracy. The accuracy gains are coun-
teracted by extra memory requirements for a similar
number of parameters. Essentially, parameter scal-
ing can help reduce the model size, but its overall ef-
fect on memory requirements is not straightforward.
Therefore, choosing a scaling ratio is non-trivial and
would require testing with the desired device.

It could be useful to scale the network based on
the amount of runtime memory used for inference
rather than the number of parameters. However,
this change would add significant cost to the Neu-
ralScale architecture descent method. Since the Ten-

Gealy 10 36th Annual Small Satellite Conference



0.
25

0.
50

0.
75

1.
00

0
.2
5

0.
50

0
.7
5

1.
00

0.
25

0.
50

0
.7
5

1.
00

0.
25

0.
50

0.
75

1.
00

0 %

20%

40%

60%

80%

100%

R
el
at
iv
e
S
p
ee
d

NeuralScale Relative Speed

VGG11 MNV2 PRN18 RN50
Model

Figure 13: NeuralScale relative speed
(uniform latency / NeuralScale latency) for

ARM Cortex-A72.

sorRT engines used are created on-device, the mea-
surement of runtime memory is not an easy metric
to collect during model design in NAS without run-
ning every model on the target device. Of course,
TensorRT has a significant effect on how these mod-
els perform, but it represents a common framework
that is likely to be used on these embedded GPUs
and is recommended by NVIDIA due to its inference
speed.29

On the CPU side, when using ONNX Runtime
with the ARM Cortex-A72, there was essentially
no difference between the runtime memory required
to operate a NeuralScale model versus its uniform-
scaling model equivalent. This is interesting since
the trend contrasts from that of the GPUs with Ten-
sorRT. The main TensorRT code is proprietary, so
it is challenging to pick out the specific cause of the
increase in memory usage on the embedded GPUs.

CONCLUSION

As computer-vision applications move towards
embedded systems while models continue to
grow, creating networks appropriate for resource-
constrained systems is becoming increasingly im-
portant. Much research has been done into using
NAS to create models rather than developing purely
human-designed networks. Within NAS, methods
like NeuralScale aim to take a pre-designed network
and scale it for a target system. NeuralScale does
this scaling by changing the width of network layers
to optimize accuracy for a given number of param-
eters. NeuralScale can be compared to more simple
methods like uniform scaling.

When using an embedded GPU with TensorRT,

101 102
50%

60%

70%

80%

Latency (ms)

A
cc
u
ra
cy

VGG11 Uniform VGG11 NeuralScale
MNV2 Uniform MNV2 NeuralScale
PRN18 Uniform PRN18 NeuralScale
RN50 Uniform RN50 NeuralScale

Figure 14: Accuracy versus latency (ms) for
ARM Cortex-A72. Log scale on x-axis.

Accuracy measurements for VGG11, MNV2,
and PRN18 are from NeuralScale paper.1

this research finds that parameter scaling does not
have a strong analog in terms of model performance.
Models scaled with NeuralScale use significantly
more runtime memory than their uniform-scaling
counterparts. They also run slower and the gains
in accuracy are smaller than the growth in runtime-
memory usage. When averaged over the tested mod-
els on the GPUs, NeuralScale creates models that
are only 40% as efficient in terms of accuracy per
megabyte of runtime memory as the uniform-scaling
method. This drop in efficiency is mostly caused by
the fact that NeuralScale uses on average 2.7× the
runtime memory per parameter as uniform scaling,
a major increase for a method targeting resource-
constrained systems. NeuralScale can be used when
runtime-memory usage is not a concern. Uniform
scaling is a safer choice when runtime memory is a
limiting factor.

On the embedded CPU, scaling the number of
parameters does not have an adverse effect on the
runtime memory. However, the models run signif-
icantly slower. Averaged over the tested models,
NeuralScale models take over 2.5× longer than their
uniform scaling counterpart. For the CPU, Neu-
ralScale can be used when latency is not a concern.
Uniform scaling is a safer choice when latency is a
limiting factor. However, as demonstrated by this
research, simply designing or scaling a model for
a set number of parameters does not bring perfor-

Gealy 11 36th Annual Small Satellite Conference



U
ni

fo
rm

VGG11 MobileNetV2 PResNet-18 ResNet-50

N
eu

ra
lS

ca
le

Figure 15: Layer widths at 1.00× scaling.

mance guarantees in terms of runtime memory for
embedded GPUs with TensorRT and in terms of la-
tency for embedded CPUs with ONNX Runtime.

FUTURE RESEARCH

This research is limited by the number of mod-
els tested and by the comparison of scaling meth-
ods. Further comparisons should be performed to
other scaling methods. Additionally, further re-
search can be done into the runtime-memory us-
age and memory-access trends of the networks. A
dataset with larger images should be tested to mea-
sure possible effects due to limited memory band-
width. Finally, these methods should be tested with
other inference tools to determine their effect on per-
formance.

ACKNOWLEDGMENT

This research was supported by the NSF Center
for Space, High-performance, and Resilient Comput-
ing (SHREC) industry and agency members and by
the IUCRC Program of the National Science Foun-
dation under Grant No. CNS-1738783. This re-
search was supported in part by the University of
Pittsburgh Center for Research Computing through
GPU cluster resources provided for model training.
We would like to thank the students of NSF-SHREC.
Specifically, we thank David Langerman and Evan
Gretok for their guidance and assistance in this re-
search.

REFERENCES

[1] Eugene Lee and Chen Yi Lee. NeuralScale: Effi-
cient scaling of neurons for resource-constrained
deep neural networks. In Proceedings of the
IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages
1475–1484. IEEE Computer Society, 2020.

[2] Andrew G. Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig
Adam. MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applica-
tions. arXiv:1704.04861 [cs], April 2017. URL
http://arxiv.org/abs/1704.04861. arXiv:
1704.04861.

[3] Alex Krizhevsky. Learning Multiple Layers of
Features from Tiny Images. Technical Report,
University of Toronto, 2009. ISSN 1098-6596.

[4] David Langerman, Alex Johnson, Kyle Buet-
tner, and Alan D. George. Beyond Floating-
Point Ops: CNN Performance Prediction with
Critical Datapath Length. In Proceedings of
the 2020 IEEE High Performance Extreme
Computing Conference, HPEC 2020. Institute
of Electrical and Electronics Engineers Inc.,
September 2020.

[5] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan
Zhang, Yang Zhao, Haoran You, Qixuan Yu,
Yue Wang, and Yingyan Lin. HW-NAS-Bench:
Hardware-Aware Neural Architecture Search
Benchmark. In Proceedings of the International
Conference on Learning Representations. Inter-
national Conference on Learning Representa-
tions, ICLR, 2021. URL https://github.com/

RICE-EIC/HW-NAS-Bench.. arXiv: 2103.10584.

[6] Mingxing Tan and Quoc V. Le. EfficientNet:
Rethinking model scaling for convolutional neu-
ral networks. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML
2019, volume 2019-June. ICML, Long Beach,
California, USA, 2019.

[7] Han Cai, Ligeng Zhu, and Song Han. Prox-
ylessnas: Direct neural architecture search on
target task and hardware. In Proceedings of
the 7th International Conference on Learning

Gealy 12 36th Annual Small Satellite Conference



Representations, ICLR 2019, pages 1–13. In-
ternational Conference on Learning Represen-
tations, ICLR, New Orleans, Louisiana, USA,
2019. arXiv: 1812.00332.

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai
Zhang, and Song Han. Once-for-All: Train One
Network and Specialize it for Efficient Deploy-
ment. In Proceedings of the International Con-
ference on Learning Representations, pages 1–
15. International Conference on Learning Rep-
resentations, ICLR, Addis Ababa, Ethiopia,
2020. URL https://github.com/mit-han-

lab/once-for-all.. arXiv: 1908.09791.

[9] Mark Sandler, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang Chieh Chen.
MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision
and Pattern Recognition. IEEE Computer So-
ciety, Salt Lake City, Utah, USA, 2018. ISSN:
10636919.

[10] NVIDIA. Developer Guide :: NVIDIA Deep
Learning TensorRT Documentation. URL
https://docs.nvidia.com/deeplearning/

tensorrt/archives/tensorrt-723/

developer-guide/index.html.

[11] Junjie Bai, Fang Lu, Ke Zhang, and others.
ONNX: Open Neural Network Exchange, 2019.
URL https://github.com/onnx/onnx. Publi-
cation Title: GitHub repository.

[12] NVIDIA. ONNX-TensorRT: TensorRT Back-
end For ONNX. URL https://github.

com/onnx/onnx-tensorrt. Publication Title:
GitHub repository.

[13] ONNX Runtime developers. ONNX Runtime,
2021. URL https://onnxruntime.ai/.

[14] Pavlo Molchanov, Arun Mallya, Stephen Tyree,
Iuri Frosio, and Jan Kautz. Importance esti-
mation for neural network pruning. In Pro-
ceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recog-
nition, volume 2019-June, pages 11256–11264.
IEEE Computer Society, Long Beach, Califor-
nia, USA, June 2019.

[15] NVIDIA. Jetson Nano 2GB Developer Kit.
URL https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/

jetson-nano/education-projects/.

[16] NVIDIA. Jetson Modules. URL https://

developer.nvidia.com/embedded/jetson-

modules.

[17] NVIDIA. GeForce GTX 1080 Ti Graphics
Cards. URL https://www.nvidia.com/en-

in/geforce/products/10series/geforce-

gtx-1080-ti/.

[18] TechPowerUp. NVIDIA Jetson AGX Xavier
GPU Specs. URL https://www.techpowerup.

com/gpu-specs/jetson-agx-xavier-gpu.

c3232.

[19] TechPowerUp. NVIDIA GeForce GTX 1080 Ti
Specs. URL https://www.techpowerup.com/

gpu-specs/geforce-gtx-1080-ti.c2877.

[20] Raspberry Pi Foundation. Raspberry Pi 4
Model B specifications – Raspberry Pi. URL
https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/specifications/.

[21] NXP Semiconductors. NXP i.MX 8QuadMax
MIMX8QM6AVUFFAB. URL https://www.

nxp.com/part/MIMX8QM6AVUFFAB.

[22] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale im-
age recognition. In Proceedings of the 3rd In-
ternational Conference on Learning Represen-
tations, ICLR 2015. International Conference
on Learning Representations, ICLR, San Diego,
California, USA, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision
and Pattern Recognition, volume 2016-Decem,
pages 770–778. IEEE Computer Society, Las
Vegas, Nevada, USA, 2016. ISSN: 10636919.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Identity mappings in deep resid-
ual networks. In Lecture Notes in Computer
Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9908 LNCS, pages
630–645. Springer International Publishing,
Amsterdam, The Netherlands, 2016. ISBN
978-3-319-46492-3. arXiv: 1603.05027 ISSN:
16113349.

[25] Ligeng Zhu. PyTorch-OpCounter. URL https:

//github.com/Lyken17/pytorch-OpCounter.

Gealy 13 36th Annual Small Satellite Conference



[26] Dustin Franklin. jetson-containers: Machine
Learning Containers for NVIDIA Jetson and
JetPack-L4T, 2020. URL https://github.

com/dusty-nv/jetson-containers.

[27] Fabian Pedregosa and Philippe Gervais. mem-
ory profiler: Monitor Memory usage of
Python code. URL https://github.com/

pythonprofilers/memory_profiler.

[28] Matthew D. Zeiler and Rob Fergus. Visu-
alizing and Understanding Convolutional Net-
works. In Proceedings of the European Con-
ference on Computer Vision. Springer Interna-
tional Publishing, Zurich, Switzerland, 2014.

[29] NVIDIA. NVIDIA TensorRT. URL https://

developer.nvidia.com/tensorrt.

Gealy 14 36th Annual Small Satellite Conference


