
Virtualizing and Sharing Reconfigurable Resources
in High-Performance Reconfigurable Computing

Systems

Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi

NSF Center for High-Performance Reconfigurable Computing (CHREC),
ECE Department, The George Washington University

801 22nd Street NW, Washington, DC 20052, USA
{esam, ivangm, tarek}@gwu.edu

Abstract—High-Performance Reconfigurable Computers
(HPRCs) are parallel computers but with added FPGA chips.
Examples of such systems are the Cray XT5h and Cray XD1, the
SRC-7 and SRC-6, and the SGI Altix/RASC. The execution of
parallel applications on HPRCs mainly follows the Single-
Program Multiple-Data (SPMD) model, which is largely the case
in traditional High-Performance Computers (HPCs). In addition,
the prevailing usage of FPGAs in such systems has been as co-
processors. The overall system resources, however, are often
underutilized because of the asymmetric distribution of the
reconfigurable processors relative to the conventional processors.
This asymmetry is often a challenge for using the SPMD
programming model on these systems. In this work, we propose a
resource virtualization solution based on Partial Run-Time
Reconfiguration (PRTR). This technique will allow sharing the
reconfigurable processors among the underutilized processors.
We will present our virtualization infrastructure augmented with
an analytical investigation. We will verify our proposed concepts
with experimental implementations using the Cray XD1 as a
testbed. It will be shown that this approach is quite promising
and will allow full exploitation of the system resources with fair
sharing of the reconfigurable processors among the
microprocessors. Our approach is general and can be applied to
any of the available HPRC systems.

Index Terms—High Performance Computing, Field
Programmable Gate Arrays (FPGA), Reconfigurable
Computing, Dynamic Partial Reconfiguration

I. INTRODUCTION
Reconfigurable Computers (RCs) have recently evolved

This work was supported in part by the I/UCRC Program of the National
Science Foundation under the NSF Center for High-Performance
Reconfigurable Computing (CHREC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPRCTA'08, November 17, 2008, Austin, Texas, USA. Copyright 2008.
978-1-4244-2826-7/08/$25.00 ©2008 IEEE.

from accelerator boards to stand-alone general purpose RCs
and parallel (multi-node) reconfigurable supercomputers
called High-Performance Reconfigurable Computers
(HPRCs). Examples of such supercomputers are the SRC-7
and SRC-6 [1], the SGI Altix/RASC [2] and the Cray XT5h
and Cray XD1 [3]. In these systems, FPGAs are used to
implement coprocessors to accelerate in hardware the critical
functions causing the poor performance of the general purpose
processors, following HW/SW codesign approaches. Several
efforts have proved the significant speedups obtained by these
systems for many different applications [4 - 10].

The development of applications on HPRCs mainly follows
the same programming model for HPC platforms, i.e. the
Single-Program Multiple-Data (SPMD), which is the most
common style of parallel programming [11]. In SPMD [12],
multiple autonomous processors simultaneously execute the
same program at independent points. In other words, tasks can
be deployed and executed in parallel [12, 13] using either
shared memory and/or message passing techniques such as
MPI.

However, because current HPRC technology utilizes the
reconfigurable processors as coprocessors to the main host
processor, heterogeneity can be challenging to most accepted
SPMD programming paradigms. In particular, when the ratio
of microprocessors, reconfigurable processors, and their
communication channels differs from unity, SPMD programs,
which generally assume a unity ratio, might underutilize some
of the system processing resources, e.g. microprocessors [11].

In this work, we propose to share the reconfigurable
resources among the underutilized microprocessors by
providing a virtual SPMD view and thus improving the
overall system versatility. In other words, the pool of
reconfigurable resources will be virtually increased to
maintain the required symmetric view of SPMD, i.e. unity
ratio among the microprocessors, reconfigurable processors,
and their communication channels. The implementation of
these concepts will be based on Partial Run-Time
Reconfiguration (PRTR) from a practical perspective. We will
provide a formal analysis of the execution model supported by

experimental work. Our work utilizes PRTR on one of the
current HPRC systems, Cray XD1.

This paper is organized such that section II provides a
discussion of related work in context of run-time
reconfiguration and hardware virtualization. Section III
describes our analytical model and explains the formulation
steps of this model. Section IV shows the experimental work
and presents the implementation of a partially reconfigurable
architecture in Cray XD1. Section IV also includes the
implementation of an Operating System (OS) virtualization
infrastructure for sharing reconfigurable resources. Finally,
section V summarizes and concludes the paper.

II. RELATED WORK
The objective of this work is to share the reconfigurable

resources in HPRCs among all system microprocessors in a
SPMD view regardless of the system physical
limitations/configuration. In other words, we will try to
maintain a virtual 1:1 correspondence among the
microprocessors and the reconfigurable resources irrespective
of the actual ratio in the system. In achieving this objective,
our approach is based on leveraging previous work and
concepts that were introduced for solving similar and related
problems, namely hardware virtualization. For example, we
will adopt the concept of virtual FPGA (VFPGA) as proposed
in [14]. In addition, we will maintain ideas and considerations
related to hardware virtualization on generic HPC
architectures [15] and leverage them to HPRCs.

Most of the proposed solutions in many previous research
work [17, 18] are to reproduce the same strategies adopted in
Operating Systems to support virtual memory such as dynamic
loading, partitioning, overlaying, segmentation, and paging,
etc. The basic idea behind these techniques is to virtually
enlarge the size of the FPGA from the point of view of the
applications. Therefore, the concept of “virtual hardware” is
an effective and efficient technique to increase the availability
of hardware resources, implement larger circuits or reduce the
costs by adopting smaller FPGA when the performance can
still be satisfied. The possibility to apply this concept requires
using special capabilities of the FPGAs namely Full Run-
Time Reconfiguration (FRTR) and/or Partial Run-Time
Reconfiguration (PRTR) [16]. However, all these proposed
techniques assume that the applications and related hardware
functions are known previously and FRTR and/or PRTR are
well supported on the system. Currently, this is true for FRTR
while it is not the case for PRTR. Also, they do not take into
consideration the architectural limitation of using partial
reconfiguration on current HPRCs. To the end user, HPRC
systems when compared to embedded systems are “closed
black box” systems. Users do not have the possibility to
modify the system nor have access to the FPGA configuration
ports. They can only use the API functions provided by the
vendor. With this regard, most of previous work is based on
simulations rather than investigating such practical issues.
Therefore, we approach the problem from a practical

perspective by utilizing and building on the techniques and
methodologies introduced in [16] by providing a virtualization
infrastructure consisting of an OS Run-Time layer augmented
with another layer of user APIs. The API layer abstracts the
interactions between the user and the Run-Time layer in a
transparent way. Furthermore, we extend the execution model
to include this virtualization infrastructure for sharing the
reconfigurable processors, and their communication channels.

III. EXECUTION MODEL FORMULATION
In order to investigate the performance potential of our

techniques on HPRCs before conducting our experimental
work, we will derive a formal analysis of the execution model.
This analysis would provide us with theoretical expectations
which would serve as a frame of reference against which we
can project our experimental results. In addition, it will help
us gain in-depth insight about the boundaries and/or
conditions for performance gain. In achieving this objective,
we will follow an approach in the derivation of the model
similar to what has been proposed in [16, 19, 20, 21, 22, 23].

A. Analysis
In our analysis we assume an HPRC architecture with

asymmetric heterogeneity at the node level [11] with a SPMD
view in which the system receives some applications as input.
These applications require on the average a few hardware
functions (tasks) that need to be executed on dedicated
reconfigurable resources. The physical reconfigurable
resources (FPGAs) will be virtualized and split into multiple
virtual FPGAs (VFPGAs) to accommodate the requirements
of the SPMD model, see Fig. 1.

Fig. 1. SPMD view of reconfigurable resources on HPRCs

Each VFPGA will be located in a separate partially

reconfigured region (PRR) on the physical FPGA. The
application tasks can then be distributed across the VFPGAs
maintaining a 1:1 correspondence among the tasks and their
dedicated resources (VFPGAs) and hence providing a SPMD
view to the application. The required tasks by applications,
Ntasks, are assumed to be equal to or less than the maximum
number of VFPGAs/PRRs, Nregions. This condition, i.e. Ntasks ≤
Nregions, is necessary for providing SPMD behavior. In other
words, the maximum number of VFPGAs/PRRs should not
exceed the number of microprocessors per node, see Fig. 1.

The execution cycle for any task on an HPRC consists of
the computations time, the total I/O time and the configuration
time [16, 19, 20], as shown in Fig. 2. The I/O time is the time
necessary to transfer data between the microprocessor and the
FPGA.

Fig. 2. Task execution time on an HPRC

The baseline for our analysis is FRTR. In other words, we

will consider the performance gain (speedup) of the system
when using our methodology based on PRTR compared to the
performance using conventional techniques based on FRTR.
This will focus our discussions on applications that are broken
down into hardware tasks only. Software tasks are excluded
from our analysis because, we think, that would add
unnecessary complications to model the partitioning schemes
as well as the profiles of scheduling among software and
hardware tasks. In addition, we assume that each task is fully
characterized by its time requirement, Ttask, as shown in Fig. 2.
The I/O and computations of each task can be overlapped to
further enhance the overall execution time as proposed in [19,
20].

The following notation will be used in our mathematical
model:

• Nregions is the maximum number of VFPGAs that can
be provided based on the available microprocessors

• Ntasks is the total number of hardware tasks
• Tin is the average input transfer time from any

microprocessor to its dedicated VFPGA
• Tcomp is the average task computation time

• Tout is the average output transfer time from any
VFPGA to its associated microprocessor

• Tconfig = TFRTR is the full configuration time for FRTR
• TPRTR is the average partial configuration time for

PRTR
• TFRTR

total is the total execution time of FRTR
• TPRTR

total is the total execution time of PRTR
• S is the speedup or performance gain of using PRTR

relative to FRTR
The execution model of FRTR on each node, see Fig. 3, is

sequential among tasks. This is because the reconfigurable
resource, assuming one per node, is not sharable among the
node microprocessors rendering some microprocessors
unused. The total execution time for the case of FRTR, as
shown in Fig. 3, can be derived as follows:

()outcompinFRTRtasks
FRTR

total TTTTNT +++= (1)
The execution model of our proposed virtualization

technique and sharing mechanism can be viewed as a
combination of three traffic (queueing) processes, namely
entry/birth, computation, and exit/death processes. The
entry/birth process is when tasks at the beginning of their
execution life-cycle request configuration and data transfer
from the microprocessors into the VFPGAs. The exit/death
process is when tasks at the end of their execution life-cycle
request data transfer from the VFPGA back to the
microprocessors. The computation process represents the
actual processing performed by tasks on their VFPGAs. In our
model tasks can continue their computations in parallel while
others are entering into and/or exiting from the system.
Several different traffic scenarios occur depending on the
relative speed rates among the three different processes. Fig. 4
shows the different execution profiles of tasks when sharing
the reconfigurable resources.

Fig. 3. Typical task execution using FRTR on HPRC

(4a) Faster entry than computation, with slower exit than entry

(4b) Faster entry than computation, with faster exit than entry

(4c) Slower entry than computation, with slower exit than computation

(4d) Slower entry than computation, with faster exit than computation

Fig. 4. Execution profile for sharing virtual reconfigurable resources

Combining the necessary condition for SPMD behavior, i.e.
Ntasks, ≤ Nregions, with the entry and exit conditions as shown in
Fig. 4, we can derive the following expression for the total
execution time:

() ()()[]
() ()(){ }[]

exitentry
PRTR

total

outcompinPRTRtasksouttasksexit

compinPRTRtasksinPRTRentry

regionstasks

TTT

TTTTNMINTNMAXT

TTTNMAXTTT

NNconditionSPMD

+=

++−−=

+−++=

≤

,1,1

,1

:

(2)

The performance gain (speedup) of PRTR in reference to
FRTR can be expressed as follows by combining equations
(1) and (2):

()
() ()()[]

() ()(){ }[] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−

++−+++

+++
=⇒

=≡

compinPRTRtasksouttasks

compinPRTRtasksoutinPRTR

outcompinFRTRtasks

PRTR
total

FRTR
total

TTTNMINTNMAX

TTTNMAXTTT

TTTTN
S

T
TSpeedupS

,1,1

,1

(3)

In order to estimate the upper bound for the performance
gain (speedup) using our techniques, we take the limit of
equation (3) as the number of tasks increases indefinitely, i.e.
(Ntasks=Nregions) ∞. This will help us estimate the asymptotic
behavior with respect to FRTR as follows:

outinOI

OIPRTR

compOIFRTR

outinPRTR

outcompinFRTR

N

TTTwhere
TT

TTT
TTT

TTTT
S

SS
tasks

+=
+

++
=

++

+++
=⇒

≡

∞

∞→∞

/

/

/

lim

(4)

It can be seen from equation (4) that the asymptotic
performance gain increases linearly with the task computation
requirement, i.e. Tcomp. This is due to the fact that our
proposed technique overlaps the computation of tasks with
other tasks entry and/or exit which significantly reduces the
total execution time. It can also be seen from equation (4) that
for I/O intensive applications characterized by minimal
computational workloads, i.e. Tcomp≅0, there is always a
performance gain, i.e. S∞ ≥ 1. This is due to the fact that our
techniques utilize PRTR rather than FRTR.

IV. EXPERIMENTAL WORK
Our experiments have been performed on one of the current

HPRC systems, Cray XD1 [3]. The Cray XD1 is a multi-
chassis system. Each chassis contains up to six nodes (blades).
Each blade consists of two 64-bit AMD Opteron processors at
2.4 GHz, one Rapid Array Processor (RAP) that handles the
communication, an optional second RAP, and an optional
Application Accelerator Processor (AAP). The AAP is a
Xilinx Virtex-II Pro XC2VP50-7 FPGA with a local memory
of 16MB QDR-II SRAM [3].

A. Virtualization Infrastructure
In order to implement our concepts, we started by laying

out an infrastructure based on two main techniques. The first
technique, as proposed and explained in details in [16], is
enabling the support for PRTR on HPRC systems. Because
PRTR is not natively supported on Cray XD1, our work-
around approach was to use the Internal Configuration Access
Port (ICAP) and develop a new configuration API.
Additionally, we define an FPGA layout that supports single
and dual Partially Reconfigurable Regions (PRRs) in addition
to the static region. In dual PRRs, each region has access to
two memory banks, one for input and the other for output
transfers as shown in Fig. 5. Finally, it is worth mentioning
that the interface services block, i.e. RT core provided by
Cray, and the reconfiguration control unit are included in the
static region.

After establishing/enabling the low-level physical layer of
partitioning/splitting the reconfigurable resources into
multiple virtual reconfigurable resources through PRTR, we
continue to provide a general infrastructure that manages these
resources. This infrastructure, which is the main concern of
this effort, is implemented as two layers. The first layer is an
Operating System (OS) Run-Time Services layer on top of
which lies the second layer which is an API layer.

As shown in Fig. 5, the Run-Time virtualization layer
consists of three major components: a virtualization manager
(VM), a request queue, and a virtual memory space. The VM
is responsible for partitioning the physical resource, i.e.

Fig. 5. Run-Time virtualization layer using PRTR

FPGA, into multiple virtual resources, i.e. VFPGAs, and
providing a coherent access to these resources as being
physical in a balanced SPMD view. It also manages all
interactions among applications and their required resources
by handling the traffic of application requests for
reconfigurable resources, memory, and/or I/O channels, as
previously explained in section III and shown in Fig. 4. The
queue helps in streaming the requests from the μPs to the VM
as well as in providing synchronization, e.g. hand shaking,
mechanisms. The queue has priorities to avoid contention
problems, e.g. one task taking all the resources, and to ensure
that all parallel tasks are executed as fast as possible. Finally,
the virtual space allows a coherent access of the virtual
resources to the user. This space is implemented as a Run-
Time OS shared memory such that there is one memory
space/region per VPGA. This space is used to exchange data
between tasks and the VM, i.e. (re)configuration bitstreams,
input data, and output data.

The API layer abstracts the interactions between the user
and the Run-Time System in a transparent way. The APIs are
designed in a way such that they cover all possible task
profiles that were described earlier in Figs. 2, 3, and 4. More
specifically, the APIs are categorized as Setup APIs,
Configuration APIs, Transfer of Control APIs, and Execution
APIs (where execution includes data transfer among μPs and
VFPGAs).

B. Experimental Results
A set of experiments were conducted in order to verify the

proposed techniques of our infrastructure. For our
experiments we selected the application of image feature
extraction. In this particular application object edges were of
interest and were extracted after first reducing high-frequency
noise components. Two different algorithms were used for
noise reduction. The final images were transferred back to the

microprocessor for quality checks. More specifically, this
application required the execution of a sequence of image
processing functions, namely median filtering followed by
sobel edge detection as well as smoothing filtering also
followed by sobel edge detection. From those experiments we
extracted the needed parameters, see Table I, for our model
explained in section III. Table I shows data transfer times,
configuration times as well as the bitstream size associated
with the layout configuration that we considered.

TABLE I EXPERIMENTAL VALUES FOR MODEL PARAMETERS

 Data Size
(Bytes) Time (msec)

Full Configuration 2381764 1678.04
Dual PRR 404168 19.77

Input Transfer 4194304 2.991
Output Transfer 4194304 641.092

It is worth mentioning that the SPMD condition, i.e. Ntasks, ≤
Nregions, on Cray XD1 suggests that the maximum number of
PRRs should not exceed the number of microprocessors per
node which is two in this case. Therefore, we conducted the
experiments on Cray XD1 using dual VFPGAs scenario.
However, for the sake of completeness we developed an
emulator that uses XD1 in as close to real setups as possible to
emulate scenarios for larger number of VFPGAs (PRRs).
Although the emulator accepts a minimum set of parameters
for XD1 since it is running on the machine itself, it however
can emulate any platform given its parameters. These
parameters include full configuration time, partial
reconfiguration time (calculated based on the size of
bitsreams), I/O transfer bandwidth, and different computation
time to emulate different tasks, etc.

(6a) Behavior of I/O intensive applications

(6b) Behavior of computational intensive applications

 (6c) Speedup achieved using multiple PRRs (VFPGAs)

Fig. 6. Performance of applications using virtual resources

Results collected were compared to the actual runs on XD1

as well as to the expected by the mathematical model
presented in section III and were found in good agreement.
Fig. 6 shows some of these experimental findings for different
types of applications as well as for large number of VFPGAs
versus conventional execution based on FRTR. Fig. 6(a) and
6(b) show the efficiency of our virtualization layer shown in
Fig. 5. It introduces a minimal overhead to the total execution
time as the number of PRRs increases. The accuracy of our
analytical model can be seen by applying equation (4) to the
case of I/O intensive applications, i.e. Tcomp≅ 0, and comparing

the experimental results shown in Fig. 6(c). The parameters
collected from our experiments as shown in Table I are TFRTR=
1678.040 ms, TPRTR= 19.771 ms, Tin=2.991 ms, and Tout=
641.092 ms. Equation (4) suggests that the speedup value
should be 3.49, which is consistent with the value measured
and shown in Fig. 6(c). Fig. 6(c) also proves the potential of
virtualizing reconfigurable resources using our technique
based on PRTR. It can be seen from Fig. 6(c), as also
expected by equation (4) and discussed in section III, that the
performance reaches a linear increase as the number of
VFPGAs increases.

V. CONCLUSIONS
In this paper we presented an effort of virtualizing and

sharing reconfigurable resources based on Partial Run-Time
Reconfiguration (PRTR) for High-Performance
Reconfigurable Computing (HPRC). We investigated the
performance potential of our proposed virtualization
techniques on HPRCs from both theoretical and practical
perspectives. In doing so, we derived a formal and an
analytical model of SPMD execution on HPRC systems
relative to the baseline of Full Run-Time Reconfiguration
(FRTR). The model provided us with theoretical expectations
which served as a frame of reference against which we
projected our experimental results. In addition, it helped us
gain in-depth insight about the boundaries and/or conditions
for possibilities of performance gain using PRTR for resource
sharing and virtualization. In achieving this objective, our
approach was based on leveraging previous work and concepts
that were introduced for solving similar and related problems.

In conducting the experimental work, we utilized one of the
current HPRC systems, Cray XD1. We also discussed the
requirements and setups for PRTR-based resource
virtualization on Cray XD1. Our setup included the design of a
special configuration control unit managing the configuration
of different layouts of Partially Reconfigured Regions (PRRs).
In addition, we implemented an OS virtualization layer that
manages the shared resources and the virtualization process.
The experimental results showed good agreement with the
analytical model expectations. Sharing reconfigurable
resources among the underutilized microprocessors by
providing a virtual SPMD view allows improving the overall
system versatility and application performance. The approach
we followed for Cray XD1 is general and can be applied to any
of the available HPRC systems.

REFERENCES
[1] SRC Computers, Inc., “SRC CarteTM C Programming Environment v2.2

Guide (SRC-007-18)”, August 2006.

[2] Silicon Graphics Inc., “Reconfigurable Application-Specific Computing
User’s Guide (007-4718-005)”, January 2007.

[3] Cray Inc., “Cray XD1TM FPGA Development (S-6400-14)”, 2006.

[4] T. V. Court, and M. C. Herbordt, "Families of FPGA-Based Accelerators
for Approximate String Matching", ACM Microprocessors &
Microsystems, v. 31, Issue 2, March 2007, pp. 135-145.

[5] V. Kindratenko, and D. Pointer, “A case study in porting a production
scientific supercomputing application to a reconfigurable computer”, in
Proc. IEEE Symposium on Field-Programmable Custom Computing
Machines - FCCM'06, 2006. pp. 13-22.

[6] V. Aggarwal, A. D. George, K. C. Slatton, "Reconfigurable Computing
with Multiscale Data Fusion for Remote Sensing", Proceedings of the
2006 ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays (FPGA 2006), Monterey, California, USA.

[7] D. A. Buell, J. P. Davis, G. Quan, S. Akella, S. Devarkal, P. Kancharla,
E. A. Michalski, and H. A. Wake, "Experiences with a reconfigurable
computer," Proceedings, Engineering of Reconfigurable Systems and
Algorithms, Las Vegas, Nevada, 21-24 June 2004.

[8] D. A. Buell and R. Sandhu, "Identity management," IEEE Internet
Computing, v. 7, no. 6, November/December 2003, pp. 26-28 (guest
editors' introduction).

[9] A. Michalski, K. Gaj, T. El-Ghazawi, “An Implementation Comparison
of an IDEA Encryption Cryptosystem on Two General-Purpose
Reconfigurable Computers”, Proc. FPL 2003, Lisbon, Sept. 2003, pp.
204-219.

[10] O. O. Storaasli, “Scientific Applications on a NASA Reconfigurable
Hypercomputer”, 5th MAPLD International Conference, Washington,
DC, USA, September, 2002.

[11] Tarek El-Ghazawi, Esam El-Araby, Miaoqing Huang, Kris Gaj,
Volodymyr Kindratenko, and Duncan Buell, "The Promise of High-
Performance Reconfigurable Computing," IEEE Computer, vol. 41, no.
2, pp. 69-76, February 2008.

[12] Algorithms and Theory of Computation Handbook, CRC Press LLC,
1999, “Single Program Multiple Data”, in Dictionary of Algorithms and
Data Structures, Paul E. Black, ed., U.S. National Institute of Standards
and Technology. Available from:
http://www.nist.gov/dads/HTML/singleprogrm.html

[13] F. Darema, SPMD model: past, present and future, Recent Advances in
Parallel Virtual Machine and Message Passing Interface: 8th European
PVM/MPI Users' Group Meeting, Santorini/Thera, Greece, September
23-26, 2001. Lecture Notes in Computer Science 2131, p. 1, 2001.

[14] Fornaciari, W., and Piuri, V., “General methodologies to virtualize
FPGAs in Hw/Sw systems”, Proc. of Midwest Symposium on Circuits
and Systems, pp. 90-93, 1998.

[15] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan, Ripal
Nathuji, Vishakha Gupta, Radhika Niranjan, Adit Randive, and Purav
Saraiya, “High-Performance Hypervisor Architectures: Virtualization in
HPC Systems”, 1st Workshop on System-level Virtualization for High
Performance Computing (HPCVirt 2007), Lisbon, Portugal, March 20,
2007.

[16] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Performance Bounds of
Partial Run-Time Reconfiguration in High-Performance Reconfigurable
Computing”, 1st International Workshop on High-Performance
Reconfigurable Computing Technology and Applications
(HPRCTA’07), held in conjunction with SC’07 Reno, NV, USA,
November , 2007, pp. 11-20.

[17] Z. Li, and S. Hauck, “Configuration Prefetching Techniques for Partial
Reconfigurable Coprocessor with Relocation and Defragmentation”,
Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA 2002), pp. 187-195.

[18] Z. Li, K. Compton, and S. Hauck, “Configuration Caching Management
Techniques for Reconfigurable Computing”, IEEE Symposium on
FPGAs for Custom Computing Machines, 2000, pp. 87-96.

[19] E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga, N.
Alexandridis, “System-Level Parallelism and Concurrency Maximisation
in Reconfigurable Computing Applications”, International Journal of
Embedded Systems (IJES) 2006, Vol. 2, No.1/2, pp. 62-72.

[20] E. El-Araby, “A System-Level Design Methodology For Reconfigurable
Computing Applications”, A Thesis for the Master of Science Degree in
Computer Engineering, Department of Electrical and Computer
Engineering, The George Washington University, January 2005.

[21] M. C. Smith, and G. D. Peterson, “Analytical Modeling for High
Performance Reconfigurable Computers.” In Proceedings of the SCS
International Symposium on Performance Evaluation of Computer and
Telecommunications Systems, July 2002.

[22] M. C. Smith, “Analytical Modeling of High Performance Reconfigurable
Computers: Prediction and Analysis of System Performance”, A
Dissertation Proposal for the Doctor of Philosophy Degree in Electrical
Engineering, The University of Tennessee, Knoxville, March 2002.

[23] J. D. Hadley, and B. L. Hutchings. Design methodologies for partially
reconfigured systems. In P. Athanas and K. L. Pocek, editors,
Proceedings of IEEE Workshop on FPGAs for Custom Computing
Machines, Napa, CA, April 1995, pp. 78-84.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

