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Abstract — Information-theoretic cost functions such as 

minimization of the error entropy (MEE) can extract more 
structure from the error signal, yielding better results in 
many realistic problems. However, adaptive filters (AFs) 
using MEE methods are more computationally intensive 
when compared to conventional, mean-squared error 
(MSE) methods employed in the well-known, least mean 
squares (LMS) algorithm. This paper presents a novel, 
parallel hardware architecture for MEE adaptive filtering. 
The design has been implemented and evaluated in real-
time on one of the servers of the Novo-G machine in the 
NSF CHREC Center at the University of Florida, believed 
to be the most powerful reconfigurable supercomputer in 
academia. By pipelining the design and parallelizing 
independent computations within the algorithm, our 
proposed hardware architecture successfully achieves a 
speedup of 5800 on one FPGA, 23200 on one quad-FPGA 
board, and 46400 on two quad-FPGA boards, as compared 
to the same algorithm running in software (optimized C 
program) on a single CPU core. Just as important, our 
results show that this reconfigurable design does not lose 
precision while converging to the optimum solution in the 
same number of steps as the software version. As a result, 
our approach makes it possible for AFs using the MEE 
cost function to adapt in real-time for signals that require 
a sampling rate in excess of 400 kHz and thus can target a 
much wider range of applications. 

I INTRODUCTION 
daptive filters are very important in the area of signal 
processing and have a very large number of applications 

in digital signal processing (DSP), such as system 
identification, noise cancellation, and signal prediction to 
name just a few. If the statistics of the input signal are 
unknown (as is often the case), an adaptive filter can be used 
to estimate the required signal statistics by means of an 
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iterative learning (adaptation) process. Adaptive filters are 
often referred to as “intelligent” or “smart” systems precisely 
because they are capable of dynamically estimating the 
statistics of the incoming signal and, furthermore, adjusting 
their internal parameters (impulse response/weights) to meet a 
specific performance criterion. This performance criterion is 
referred to as the cost function. The cost function defines the 
rules of optimal adaptation, and is used by the AF to compute 
the new filter weights. The new computed weights are then fed 
back to the adaptive filter and replace the old weights until an 
optimal and stable solution is reached.  All learning algorithms 
search the solutions space for global minima. During each 
iteration, weights are adjusted in small increments by moving 
them in the direction opposite to the gradient.  Ideally, the 
weights of the system will adjust and reach the global minima 
in a finite number of iterations [1].  

The most popular criterion used in adaptation has been 
the mean-squared error (MSE) [2] because it presents a 
tractable mathematical solution and leads to very simple and 
computationally efficient algorithms such as least mean 
squares (LMS). Although the MSE cost function has proven to 
be successful, it is only an optimum solution when applied to 
Gaussian signals with linear filters [3]. A new cost function, 
minimization of error entropy (MEE) proposed in reference 
[4] and inspired by concepts of information theory, adapts by 
minimizing the average information content (entropy) of the 
error rather than just the power of the error [5]. The 
minimization of entropy extracts as much uncertainty as 
possible from the error signal, leading to better weights when 
compared to the MSE criterion. This alternative cost function 
has demonstrated superior performance when compared to the 
MSE cost function [5], especially for nonlinear signal 
processing. However, Renyi’s quadratic entropy needs 
transcendental evaluations of sample pairs for its estimation, 
resulting in a substantial increase in computational 
complexity, which to date has made this algorithm impractical 
for real-time implementation (online learning).  

Reconfigurable computing (RC) provides an attractive 
solution by creating a unique hardware architecture that can be 
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adapted to the computational requirements of a particular cost 
function. The efficient mapping of complex algorithms onto a 
hardware architecture based upon FPGA technology can take 
advantage of the unique data flow and inherent data 
dependencies that exist within the algorithm. Using RC 
techniques such as parallel data processing (wide parallelism) 
and pipelining (deep parallelism), we can create a sustainable 
architecture that makes the MEE cost function more appealing 
for real-time applications and for cases when the input signal 
requires high sampling rates.  

The organization for the remainder of the paper is as 
follows. In Section 2, the computational requirements and an 
overview of the MEE algorithm are given. In Section 3, we 
describe the proposed architectural model for an AF based 
upon a MEE cost function and the design of the 
subcomponents of the architecture. This new design has been 
implemented and evaluated on up to two boards (i.e. eight 
FPGAs) in one server of Novo-G. In Section 4, we present 
results and analysis of real-time experiments of the AF 
conducted on Novo-G. In doing so, we measure the speedup 
of the AF as compared to software, and at the same time 
demonstrate its precision and scalability. Section 5 provides a 
summary and conclusions. 

II ALGORITHM OVERVIEW 
In the signal-processing domain it has been shown that 

designing and synthesizing high-speed architectures for feed-
forward structures (for example the finite impulse response or 
FIR filter) is considerably easier than designing hardware 
architectures for signal-processing algorithms that require 
feedback [6]. While pipelining can significantly increase the 
speed at which the filter converges, in adaptive systems it has 
limited impact due to feedback [7]. This feedback loop that 
updates the filter coefficients prevents the next input from 
being processed until the filter coefficients have been updated. 
A solution to this problem is to delay the weight updates by a 
given number of cycles and allow a new input to be processed 
using the weights updated n cycles back, which is referred to 
as the delay technique in signal processing. Even though the 
weights are updated every cycle, there is a delay of n cycles 
between the current input and the time the weights will be 
updated. Such is the case of the DLMS algorithm [8], which 
for small delays and an appropriate step size efficiently uses 
the pipelining technique to increase the throughput of the 
regular FIR filter [9].  Another very similar and useful method 
is to use the interleaving technique [10]. This method allows 
for the introduction of delays at different stages of the transfer 
function, making it possible to pipeline the overall structure.  

We observe that there is a fundamental difference 
between MEE cost functions and those of conventional LMS 
filters. For MEE cost functions, the new weights are computed 
based upon the current and past input values. The adapting 
weights are computed using a batch of input samples that 
generate a sequence of errors. The number of errors used to 
compute the new weights is known as the window size. Within 
one feedback loop, there are significantly more computations 
before each weight is updated. This observation clearly 
suggests that pipelining and parallelizing an MEE algorithm 

can have a much larger impact on hardware speedup than 
using the same techniques on MSE cost functions, since there 
is a considerably longer sequence of computations within the 
feedback loop.  

The general structure for adaptive filters can be divided into 
three major blocks, as shown in Figure 1. 

 
Figure 1. Adaptive filter structure 

 
The first block is an adaptive FIR filter capable of changing 

its impulse response (filter weights). The output of this filter 
y(n) is simply the dot-product between the input vector and the 
weight vector: 

        
     (1) 

The output y(n) is then compared to a desired signal d(n). 
In supervised learning, the desired signal represents the goal 
of the filter. As the output of the filter approaches this desired 
signal, the weights also approach the optimal solution. In 
system identification, the desired signal is the output of an 
unknown system (plant) for which the AF is trying to find the 
transfer function. The error e(n) is the difference between the 
filter output and the desired value .  

The second building block consists of the cost function 
and learning algorithm.  Cost functions define the rules of 
adaptation (optimal criterion) and the learning algorithm 
computes the new filter weights, which are then fed back to 
the first block. For the MEE cost function the iterative weight 
updates are of the form: 

  
      (2) 

 
where  represent the new weights,  the current 
weights,  is the step size, and  is the gradient of the 
information potential (IP). Erdogmus et al. [4] has defined a 
nonparametric estimator of the IP as:  

           (3) 

where κ represents a kernel function from density estimation. 
We can obtain the gradient of the IP by taking the derivative 
with respect to the weights: 

       (4) 



 3 

In Eq. 4, we have used the Gaussian kernel for κ defined as:  

       (5) 

The challenge here is to design an architecture that 
accelerates this iterative process by exploiting the maximum 
amount of inherent parallelism (wide and deep) while taking 
advantage of the data dependencies within each iteration. Two 
important parameters define the computational complexity of 
the overall filter adaptation. The first is the filter size, which is 
equal to the number of weights. As the order of the filter is 
increased, more weights have to be computed, fed back, and 
updated. For gradient ascent, the complexity of the algorithm 
is linear or O(L) with respect to the filter order (L). A more 
influential parameter governing the complexity of the MEE 
cost function is the window size (n in Eqs. 3 and 4). As seen in 
Eq. 4, the gradient of the IP is a double summation over i and 
j, which means that the window size over which the IP 
gradient is estimated is the critical factor influencing the 
computational complexity of the algorithm. The computational 
complexity is O(N2) with respect to the window size. Figure 2 
shows the quadratic increase in computation time (for 
software) when the window size is increased. 

 

 
Figure 2. Software execution time of one weight update as a function of 

window size 
 

It should also be noted that the window size has a direct 
effect on the (filter) performance of the algorithm. A larger 
window size will provide a better IP estimate, directly 
translating into a smoother and faster convergence of the 
weights to the optimal solution. However, the quadratic 
increase in complexity creates a steep tradeoff between filter 
performance and computation time. This paper proposes an 
architecture that transforms the time-performance tradeoff into 
a linear dependency.  

Besides its computational complexity, the MEE cost 
function presents numerous challenges. These challenges 
include the need to accurately evaluate the exponential 
function as part of the Gaussian kernel (Eq. 5) and the need to 
avoid losing precision over multiple iterations. Past AF 

implementations have strictly used either entirely floating-
point or fixed-point designs [11,12].  Fixed-point AFs present 
a much lower latency [11] and require less FPGA logic 
resources. The effect of small latency on feedback systems is a 
very popular topic in AF and provides numerous advantages. 
However, a floating-point implementation has the major 
advantage of maintaining better precision with no overflow for 
big swings in the input signal [13]. This behavior translates 
directly to better filter performance, because the filter requires 
less number of iterations to find the optimum solution, and at 
the same time the solution is more accurate. The design we 
propose is a hybrid of the two, utilizing precise floating-point 
functions where precision is needed and simple fixed-point 
blocks where precision is less important. Due to its complex 
cost function and relatively novel approach, prior to this work 
AFs using the MEE cost function have not been realizable for 
high-speed, real-time processing. This paper explores an 
efficient parallelization of the MEE cost function as a part of 
an AF that can significantly accelerate the adaptation process, 
providing a reconfigurable design that can be used in real-time 
for numerous applications.   

III  PARALLEL ALGORITHM AND ARCHITECTURE 
In this section, the main building blocks of the AF 

(Adaptive FIR and cost function shown in Figure 1) are 
decomposed into smaller and more detailed components, 
illustrating the novel manner in which we have mapped the 
MEE algorithm onto a hardware structure. Batch learning 
represents the centerpiece of this algorithm and is the key idea 
that inspired and enabled this reconfigurable design. For batch 
learning, all the input data is available a priori. Ideally, in a 
fully pipelined design, the frequency at which the input 
vectors enter the system is equal to the clock rate. Figure 3 
shows the window size over which we will evaluate the IP 
gradient (Eq. 4), which is then used to update the weights 
(Eq. 2). If we have all the samples over the entire window size 
available, we can divide the window into a sequence of input 
vectors and arrange them chronologically x(0) through x(n-1), 
in the same manner in which they would enter the pipeline. 
The size of each input vector is equal to the filter order. 

 

 
Figure 3. Forming the sequence of input vectors from a given window size 

 
The IP gradient is evaluated over a window of errors. The 

latency of the entire design becomes less detrimental to 
speedup as the window size increases. We will show later in 
this section that speedup is linearly proportional to the window 
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size. Evaluating the IP gradient over a window size increases 
in precision as the window grows, but we should be very 
careful in choosing a particular window size because the 
complexity of this evaluation is O(N2) as shown in Eqs. 3 and 
4. Therefore, hardware resources required to implement the IP 
gradient also increase quadratically as a function of window 
size, resulting in a fewer number of AFs that can fit onto each 
FPGA for very large window sizes, and consequently limiting 
speedup.  

A.    FIR Filter 
The hardware design and implementation of a FIR filter 

has been rigorously studied in the past [14, 15, 16, 17]. In our 
work, we use a simple pipelined implementation that allows a 
new input vector to be clocked in every clock cycle. Figure 4 
shows a detailed structure of the FIR architecture. Just as the 
sliding window in Figure 2 suggests, a new input vector is 
presented to the FIR at every clock cycle, when a new sample 
enters the input delay line. Concurrently, all past samples shift 
one register to the right and the last value x(1) (the oldest 
sample in the delay line) is simply forgotten. The new input 
vector  is multiplied by the 
current weight vector , and then 
each term of the dot-product is added according to Eq. 1. In 
our design, multiplication is performed with a floating-point 
mega-function from Altera’s core library and the additions 
that follow are computed in fixed-point. The weight registers 
store floating-point values since, for the same number of bits, 
floats have a much wider dynamic range, which is necessary 
because the weights are changed by a wide range of values 
[18]. A 32-bit fixed-point range would be insufficient to 
represent this wide range of values. Finally, the output of this 
block is the error , where n represents the time index. 

 

 
Figure 4. Adaptive FIR functional block 

 
 

B.    Mapping MEE Cost Function to Hardware  
The MEE cost function can be further divided into four 

main subcomponents as suggested by Eq. 4. Figure 5 shows 
these four subcomponents, their interconnections, and the 
direction of the dataflow among them. All four blocks are 
pipelined to create the MEE cost function. We will next look 
at each block in more detail to describe the fine-grained 
parallelism that lies at the root of the MEE algorithm.   

 
 

 
Figure 5. MEE cost function subcomponents 

 
1) Error Pairwise Distance Block 

The MEE cost function (Eq. 4) uses the error calculation 
provided by the FIR block to evaluate the IP gradient.  This 
equation is composed of the three terms that are multiplied 
and then summed over i and j. The first term inside the double 
summation is the pairwise distance between all errors:   

 

 

 
This task can seem daunting because for a window size of 

N, N2/2 pairwise error distances have to be computed. 
However, the FIR block is designed such that after an initial 
latency, the errors become available in a sequential manner, 
after each clock cycle, which means that we can start 
computing pairwise subtractions as soon as the first two errors 
become available. The design illustrated in Figure 6 shows the 
errors stored in a registered delay line, and all the pairwise 
distances computed between the current error and all the past 
ones. This parallelized design of pairwise distance calculations 
achieves considerable speedup when compared to software 
because it employs N clock cycles to compute N2/2 
subtractions. For every new error, the number of pairwise 
distances increases by one until it reaches a maximum of n.  
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 Figure 6. Pipelined pairwise distance computation  
 
When the last error e(n) (for a given window size = n) is 

clocked into the delay line, the pairwise distance block will 
compute the final N pairwise distances between error  
and all previous errors . 
All error distances are stored in a 2D array of pipelined 
registers.  By taking advantage of the algorithm dataflow, this 
design will use only N subtractors to compute N2/2 pairwise 
distances in N clock cycles. The following 2D matrix is 
constructed when all N errors have passed through this block: 
 

 

 

It should be noted that this is an upper triangular matrix 
where one column is computed for each clock cycle starting 
from the left. The computation of distance matrices is very 
important in a number of fields including bioinformatics, 
physics, and chemistry. In general, for calculating pairwise 
distances in applications such as structural or sequential 
alignments, systolic arrays are used to accelerate calculations 
[19]. However, in this case, not all errors for which we wish to 
calculate the pairwise distances are available at the same time. 
They become available one by one, every clock cycle. In such 
cases, using a systolic array would prove to be a waste of 
resources. The pipelined design shown in Figure 6 is much 
more effective, parallelizing as many computations as are 
available (all subtractions between the current error and all 
past errors) within each clock cycle.  
 
 

2) Gaussian Kernel Block 
The second building block is used to compute the Gaussian 

kernel computation:
 

Eq. 5 shows the complete form of this kernel. As soon as the 
pairwise error distances become available, they are inputted to 
the Gaussian kernel block as shown in Figure 7. This block is 
directly connected to the pairwise distance block, such that all 
pairwise distances computed within the current cycle are fed 
directly into a Gaussian kernel block. 

 
 

Figure 7. Gaussian kernel block 
 

For a given window size of N, the cost function requires 
N2/2 Gaussian kernel computations. However, by efficiently 
mapping the data flow of this algorithm to hardware, we 
compute N2/2 Gaussian kernels in only N cycles plus the 
latency of one kernel. The exponential block used is Figure 7 
comes from Altera’s floating-point, mega-function library. 
This floating-point exponential has the capability to be 
pipelined, as do all algebraic functions used in this design, and 
as a result it minimizes the impact of latency on the total 
execution time. The results of the Gaussian kernel block are 
stored in a 2D register array. The following 2D matrix is 
constructed when all N2/2 Gaussian kernels have been 
computed: 
 

 
 
Each column in this matrix is computed one clock cycle at a 
time starting from the left-most kernels. 
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The last term remaining in the MEE cost function (Eq. 4) is 

the input pairwise distances . The hardware 

required for computing these terms is identical to that of the 
error distances block. All of the three building blocks are 
pipelined as shown in Figure 9. 

The tree 2D arrays contain all the terms needed to 
compute the gradient of the IP in Eq. 4. The double 
summation becomes an iterative accumulation of these terms 
as they become available.  
 

3) Accumulator Block 
Figure 8 shows the general pipelined architecture of the 

accumulator. The three matrices are multiplied and the results 
are added to compute the IP. One accumulator block is 
dedicated to each row of the matrix. In total, there are N 
accumulators to parallelize the double summation in Eq. 4; 
each is responsible for computing a quantity  of the IP. 

 
Figure 8. Pipelined Accumulator 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

By accumulating the terms of Eq. 4 every time a new 
column of the 2D arrays becomes available, we further 
accelerate the algorithm. The double summation containing 
N2/2 additions is completed in only N clock cycles plus the 
latency of the pipelined accumulator. By parallelizing the 
computations of pairwise distances, and pipelining them with 
the Gaussian kernel block and the final accumulator block, we 
improve the asymptotic time complexity of the algorithm from 
O(N2) in the serial form to O(N) in the parallel form. 

Figure 9 shows the entire parallelization of the MEE cost 
function. The inputs are n samples from the 
batch  (n is the window size) and n 
errors  (from the FIR Filter). 
The outputs are the new weights where 

 and the weights are updated 
using Eq. 2. 

Going back to Figure 2, the software version of this 
algorithm was quadratically dependent upon the window size, 
making it impossible to obtain fast and smooth convergence of 
the weights to their optimal solution without incurring a large 
time penalty. By transforming the relationship between 
computation time and window size to a linear relationship, we 
can now better satisfy the tradeoff between filter performance 
and total computation time, as explored in the next section.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Figure 9. Overall architecture of MEE cost function 
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IV RESULTS AND ANALYSIS 
The platform used to test the performance and scalability 

of this parallel architecture is the Novo-G reconfigurable 
supercomputer. Housed in the NSF Center for High-
Performance Reconfigurable Computing (CHREC) at the 
University of Florida, Novo-G currently consists of 48 GiDEL 
PROCStar-III quad-FPGA boards.  Each of these 192 FPGAs 
is an Altera Stratix-III E260 device featuring 768 18×18 
multipliers and 256K logic elements, with 4.25GB of 
dedicated memory in three parallel banks directly attached. 
For more detailed information on Novo-G, see [20].  

Software baselines used for comparison in this section are 
coded in C, compiled using GCC with optimization –O4, and 
executed on an AMD 2.4 GHz Opteron with 4GB of DDR400 
RAM. The AF design was tested in real-time to compare its 
performance versus software. In doing so, we address two 
major challenges: 

1. How does the hardware design compare to the software 
implementation in terms of precision over multiple 
iterations. Does the design converge to the optimal 
weights in the same number of steps? 

2. How much speedup does the hardware architecture 
achieve over the software implementation? 

 
A)     Precision Results and Analysis 

One of the most popular applications of AFs is system 
identification. Given an unknown system, the AF can 
approximate its transfer function in a finite number of 
iterations. Figure 1 back in Section 2 shows the usual setup of 
this experiment. A filter with set coefficients will provide the 
desired signal. A sequence of 2000 samples consisting of 
white Gaussian noise is inputted to both the fixed filter (i.e. 
unknown system) and to the AF. The weights are adapted for 
2000 iterations using the MEE criterion. By tracking the 
weight changes over time, we can determine how fast and how 
accurately they converge to the optimum values, while also 
comparing these results with those from the software 
implementation. When the algorithm uses higher 
computational precision, a fewer number of iterations is 
needed to reach the optimal solution. 

 
Figure 10. Convergence of adaptive filter weight to same value as weight of 

observed plant 

Figure 10 tracks the value of one weight over 2000 
iterations for both hardware and software. The results are very 
similar with both weights converging to the optimal value (5). 
More importantly, the convergence takes the same number of 
iterations, demonstrating that our hybrid (float/fixed) 32-bit 
architecture maintains identical precision to software 
throughout the entire adaptation process. 

In all the experiments the order of the FIR is set to 10 
while the window size varies (IP gradient is evaluated over the 
window size). 
 
B.    Performance Analysis of a Single AF 

When evaluating speedup, the parameter that plays a 
crucial role is the size of the window over which the IP 
gradient is evaluated (Eq. 4). This parameter represents the 
number of input samples used to compute a weight update 
(Eq. 2). The window size influences execution time by 
increasing the number of computations within the weight 
feedback loop (Eq. 2). Figure 11 plots the execution time in 
hardware of one weight update versus varying window sizes.  

 
Figure 11. Execution time vs. window size 

 
The dependence between window size and execution time 

is linear. This result is extremely important because, as shown 
back in Figure 2, execution time in software is quadratically 
dependent upon window size and requires significantly more 
time. We have provided a reconfigurable design that takes 
advantage of the inherent parallelism within the MEE 
algorithm, transforming the asymptotic time complexity from 
O(N2) to O(N). This outcome has major significance for the 
field of AFs because the MEE cost function, which has been 
proven to achieve better results than conventional MSE 
algorithms, can now be implemented in real-time for signals 
that require sampling frequencies on the range of 400 kHz. 
However, as shown later, increasing the window size provides 
an increase in speedup only up to a point, beyond which the 
speedup will decline. The reason is the exponential 
dependence between the window size and the FPGA resources 
required (logic cells). Table 1 reports the percentage of 
hardware resources consumed by one AF as the filter’s 
window size is increased.  
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TABLE I.  FRACTION OF LOGIC CELLS UTILIZED ON FPGA (STRATIX-III E260) 
FOR VARIOUS WINDOW SIZES 

 
The consequence of this exponential growth in resource 

requirements for increasing window sizes is that fewer AFs 
can fit onto one FPGA. The most critical resource utilized by 
our design for this particular FPGA is logic cells (99%) 
followed by DSP block elements (65%). Table 2 shows the 
number of AFs that can fit onto one Stratix-III E260 FPGA as 
the AF window size is increased. The number of AF drops off 
drastically for window sizes greater than 100.  

 

TABLE 2. MAXIMUM NUMBER OF AFS PER FPGA (STRATIX-III E260) FOR 
VARIOUS WINDOW SIZES 

 
Thus, it is misleading to evaluate speedup by simply 

assuming that for an increase in window size, the number of 
computations inside the feedback loop will also increase, 
leading to considerable speedup (since we have proven that 
hardware time complexity is O(N) while software is O(N2)). 
For infinite resources this assertion would be true, but of 
course in reality the resources required to keep up with a 
growing window size also increase exponentially.  

Figure 12 shows how speedup varies with an increase in 
window size, where peak speedup is achieved around a 
window size of 100.  For this particular window size (100), 
one iteration (a weight update) in software is executed in 
0.668 ms. As a comparison, the hardware implementation runs 
one iteration (a weight update using only one AF) in 2.30 µs 
achieving a speedup of 290. What is more revealing is the 
difference in frequency at which the hardware design and the 
software implementation can sample a given signal. The 
maximum sampling frequency for software is 1.497 kHz, 
which means that any speech filtering application alongside 
many important applications are impossible to sample at or 
above the Nyquist frequency. While the MEE cost function is 
busy evaluating the next weight it cannot process a new 
sample any faster that every 0.668 ms. By contrast, the 
hardware AF design accelerates each iteration and is capable 
of sampling signals at 435 kHz while employing the MEE 
algorithm. This achievement broadens the spectrum of signals 
to which the AF can adapt, making it possible to exploit the 
superior MEE algorithm for popular applications such as 
acoustic echo cancellation [22] and denoising speech [23], as 
well as many neural applications [24] that require higher-order 
statistics to adapt the filter coefficients.  

In summary, the correlation between speedup and window 
size is a tradeoff of two factors. The window size sets the 
number of parallelizable computations inside the feedback 
loop and also the quantity of hardware resources required to 
map the algorithm in hardware. The number of parallelizable 
computations inside the feedback loop contributes to the 
achievable speedup, since our proposed architecture takes 
advantage of the inherent parallelism. Also the number of 
filters that can adapt in parallel is an important contributing 
factor towards speedup. Ideally, the largest speedup is 
obtained for a window size that is large enough to require 
many parallelizable computations within the feedback loop but 
not so large that it requires an excessive amount of FPGA 
resources that would prevent many filters from adapting in 
parallel on one FPGA. 

 
Figure 12. Speedup as a function of window size 

 
The speedup plot in Figure 12 is specific only to this 

Stratix-III E260 FPGA.  For an FPGA with more resources, 
the speedup peak will shift to the right and higher. Because 
this design has been written in a reasonably generic form of 
VHDL, it could be ported to other FPGA devices. For future 
work it may be interesting to analyze how window size affects 
speedup for devices with more or less logic cells but such 
issues are beyond the scope of this paper. Since many 
applications require the parallel adaptation of multiple 
independent channels [25], the number of AF functioning in 
parallel becomes an important factor in deciding whether or 
not this particular design meets the need of a specific 
application. For neural applications [26], the number of 
channels required will often surpass several hundred. 

 
C.    Performance Analysis on Novo-G  

For an AF with a tenth-order FIR and evaluating the IP 
gradient over 100 samples (window size for batch learning) 
we were able to fit a total of twenty AFs onto one Stratix-III 
E260 FPGA. By doing so, we are able to achieve a linear 
speedup of 290 × 20 = 5800 as compared to the software 
baseline running on a single CPU core.  

By simply replicating this design first on one GiDEL 
PROCStar-III quad-FPGA board and then on two boards, we 

AF window size 10 50 100 200 400 450 
Fraction of total 
logic cells used <1% <1% 5% 23% 49% 99% 

AF window 
size 50 100 200 400 450 

Max. 
number of 

AFs  
243 20 6 2 1 
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were able to implement a total number of 80 and then 160 AFs 
capable of adapting independently in parallel. With all eight 
FPGAs running at the maximum capacity (99% of logic cells 
utilized), populated by all 160 AFs, the measured speedup 
rises to 46400, while the speedup recorded for only one board 
is exactly half of that (23200).  The speedup grows linearly 
because there is very little (i.e. insignificant) overhead from 
the communication between the host CPU and the FPGAs. 
The host CPU loads only one sample every clock cycle to the 
AFs. The only occasion when data is transferred from the 
FPGAs back to the CPU is when the weights are calculated at 
the end of the algorithm. Each AF has ten weights and each 
weight is 32 bits. Compared to the amount of time that elapses 
for the weights to be calculated, this communication time is 
negligible. 

Figure 13 shows a diagram of the distribution of AFs over 
one quad-FPGA board. Each AF adapts independently by 
responding to a batch of 100 samples of white Gaussian noise, 
over 2000 iterations.  Every clock cycle, one sample  of 
the batch  is input to each AF. 
The new weights , 
computed using Eq. 2, are transferred back to the CPU, which 
is the equivalent of one iteration. 
 

 
Figure 13. Independent AF blocks adapting in parallel on one quad-FPGA 

board of Novo-G 
 

For this experiment, only up to two of the 48 quad-FPGA 
boards in the Novo-G machine were used. Because no off-chip 
memory was necessary when running the AF design on each 
FPGA, and because only one sample is input to each AF at 
every clock cycle, there are no potential bottlenecks expected 
to arise as more FPGAs are used. Every Novo-G board has its 
own host CPU core that feeds an input signal to each AF 
through a simple memory map. There is no node-to-node 
communication needed for servers in the system, and no 
transfer of information even between the four FPGAs 
belonging to the same board; the AFs are embarrassingly 
parallel with respect to one another. Even though we have 
demonstrated the efficiency of our hardware design by using a 
system identification application, we are not constrained to 
only use Gaussian noise as input to the AF to find the transfer 
function of an unknown system. There are many applications 
that require the parallel adaptation of multiple channels [23, 
24, 25, 26] to find the optimal weights for each channel.  

V CONCLUSIONS 
This paper proposes a novel parallel architecture that is 

fine-tuned to the unique needs of the minimum error entropy 
(MEE) cost function. A hybrid design using both fixed- and 
floating-point computational blocks maps the MEE cost 
function onto hardware by taking advantage of the algorithm’s 
dataflow and inherent parallelism. The design minimizes 
latency without losing precision over an extended number of 
iterations (2000).  The MEE cost function dictates the rules of 
adaptation for an AF.  

For testing the performance of our design, we use a 
system identification application in which the adaptive 
weights converge to the optimal solution, and find the transfer 
function of an unknown plant. The results are compared to a 
software baseline and prove that the weights of the hardware 
implementation converge to the same solution obtained by 
software within the same number of iterations. Furthermore, 
the asymptotic time complexity of the adaptive algorithm is 
decreased from O(N2) in software to O(N) in hardware, 
providing a linear relationship between performance 
(convergence time) and execution time.  

The most critical factor that influences speedup is the 
window size (number of input samples) used to compute the 
weight updates. The window size influences both the number 
of parallelizable computations within the feedback loop and 
the hardware resources required to implement the cost 
function. Larger window sizes will increase the number of 
parallelizable computations but at the same time require 
significantly more resources. The result is that less AFs can fit 
onto one FPGA, a factor that can decrease speedup and make 
this design undesirable for applications that require many 
channels to be processed in parallel. We analyze the tradeoff 
and find the optimum window size (100) for which the 
maximum speedup is achieved.  

Finally, experiments conducted and measurements taken 
on one board of the Novo-G machine in real-time prove that 
our architecture obtained significant speedup and is highly 
scalable (speedup of 290 for one AF, 5800 for one FPGA, 
23200 for one quad-FPGA board, and 46400 for two quad-
FPGA boards). The most important result is that we can now 
for the first time target numerous applications that have 
previously been restricted from using the MEE cost function 
due to its heavy computational demands.  
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