
 1

Abstract — Information-theoretic cost functions such as

minimization of the error entropy (MEE) can extract more
structure from the error signal, yielding better results in
many realistic problems. However, adaptive filters (AFs)
using MEE methods are more computationally intensive
when compared to conventional, mean-squared error
(MSE) methods employed in the well-known, least mean
squares (LMS) algorithm. This paper presents a novel,
parallel hardware architecture for MEE adaptive filtering.
The design has been implemented and evaluated in real-
time on one of the servers of the Novo-G machine in the
NSF CHREC Center at the University of Florida, believed
to be the most powerful reconfigurable supercomputer in
academia. By pipelining the design and parallelizing
independent computations within the algorithm, our
proposed hardware architecture successfully achieves a
speedup of 5800 on one FPGA, 23200 on one quad-FPGA
board, and 46400 on two quad-FPGA boards, as compared
to the same algorithm running in software (optimized C
program) on a single CPU core. Just as important, our
results show that this reconfigurable design does not lose
precision while converging to the optimum solution in the
same number of steps as the software version. As a result,
our approach makes it possible for AFs using the MEE
cost function to adapt in real-time for signals that require
a sampling rate in excess of 400 kHz and thus can target a
much wider range of applications.

I INTRODUCTION
daptive filters are very important in the area of signal
processing and have a very large number of applications

in digital signal processing (DSP), such as system
identification, noise cancellation, and signal prediction to
name just a few. If the statistics of the input signal are
unknown (as is often the case), an adaptive filter can be used
to estimate the required signal statistics by means of an

This work was supported in part by the I/UCRC Program of the National
Science Foundation under Grant No. EEC-0642422.

iterative learning (adaptation) process. Adaptive filters are
often referred to as “intelligent” or “smart” systems precisely
because they are capable of dynamically estimating the
statistics of the incoming signal and, furthermore, adjusting
their internal parameters (impulse response/weights) to meet a
specific performance criterion. This performance criterion is
referred to as the cost function. The cost function defines the
rules of optimal adaptation, and is used by the AF to compute
the new filter weights. The new computed weights are then fed
back to the adaptive filter and replace the old weights until an
optimal and stable solution is reached. All learning algorithms
search the solutions space for global minima. During each
iteration, weights are adjusted in small increments by moving
them in the direction opposite to the gradient. Ideally, the
weights of the system will adjust and reach the global minima
in a finite number of iterations [1].

The most popular criterion used in adaptation has been
the mean-squared error (MSE) [2] because it presents a
tractable mathematical solution and leads to very simple and
computationally efficient algorithms such as least mean
squares (LMS). Although the MSE cost function has proven to
be successful, it is only an optimum solution when applied to
Gaussian signals with linear filters [3]. A new cost function,
minimization of error entropy (MEE) proposed in reference
[4] and inspired by concepts of information theory, adapts by
minimizing the average information content (entropy) of the
error rather than just the power of the error [5]. The
minimization of entropy extracts as much uncertainty as
possible from the error signal, leading to better weights when
compared to the MSE criterion. This alternative cost function
has demonstrated superior performance when compared to the
MSE cost function [5], especially for nonlinear signal
processing. However, Renyi’s quadratic entropy needs
transcendental evaluations of sample pairs for its estimation,
resulting in a substantial increase in computational
complexity, which to date has made this algorithm impractical
for real-time implementation (online learning).

Reconfigurable computing (RC) provides an attractive
solution by creating a unique hardware architecture that can be

 A Parallel Hardware Architecture
 for Information-Theoretic Adaptive Filtering

 Stefan Craciun*+, Alan D. George*, Herman Lam*, Jose C. Principe+

* NSF Center for High-Performance Reconfigurable Computing (CHREC)
+ Computational Neuro-Engineering Laboratory (CNEL)

 Department of Electrical and Computer Engineering, University of Florida
 Gainesville, Florida, 32611-6200

(email: craciuns@ufl.edu, george@chrec.org, hlam@chrec.org, principe@cnel.ufl.edu)

A

 2

adapted to the computational requirements of a particular cost
function. The efficient mapping of complex algorithms onto a
hardware architecture based upon FPGA technology can take
advantage of the unique data flow and inherent data
dependencies that exist within the algorithm. Using RC
techniques such as parallel data processing (wide parallelism)
and pipelining (deep parallelism), we can create a sustainable
architecture that makes the MEE cost function more appealing
for real-time applications and for cases when the input signal
requires high sampling rates.

The organization for the remainder of the paper is as
follows. In Section 2, the computational requirements and an
overview of the MEE algorithm are given. In Section 3, we
describe the proposed architectural model for an AF based
upon a MEE cost function and the design of the
subcomponents of the architecture. This new design has been
implemented and evaluated on up to two boards (i.e. eight
FPGAs) in one server of Novo-G. In Section 4, we present
results and analysis of real-time experiments of the AF
conducted on Novo-G. In doing so, we measure the speedup
of the AF as compared to software, and at the same time
demonstrate its precision and scalability. Section 5 provides a
summary and conclusions.

II ALGORITHM OVERVIEW
In the signal-processing domain it has been shown that

designing and synthesizing high-speed architectures for feed-
forward structures (for example the finite impulse response or
FIR filter) is considerably easier than designing hardware
architectures for signal-processing algorithms that require
feedback [6]. While pipelining can significantly increase the
speed at which the filter converges, in adaptive systems it has
limited impact due to feedback [7]. This feedback loop that
updates the filter coefficients prevents the next input from
being processed until the filter coefficients have been updated.
A solution to this problem is to delay the weight updates by a
given number of cycles and allow a new input to be processed
using the weights updated n cycles back, which is referred to
as the delay technique in signal processing. Even though the
weights are updated every cycle, there is a delay of n cycles
between the current input and the time the weights will be
updated. Such is the case of the DLMS algorithm [8], which
for small delays and an appropriate step size efficiently uses
the pipelining technique to increase the throughput of the
regular FIR filter [9]. Another very similar and useful method
is to use the interleaving technique [10]. This method allows
for the introduction of delays at different stages of the transfer
function, making it possible to pipeline the overall structure.

We observe that there is a fundamental difference
between MEE cost functions and those of conventional LMS
filters. For MEE cost functions, the new weights are computed
based upon the current and past input values. The adapting
weights are computed using a batch of input samples that
generate a sequence of errors. The number of errors used to
compute the new weights is known as the window size. Within
one feedback loop, there are significantly more computations
before each weight is updated. This observation clearly
suggests that pipelining and parallelizing an MEE algorithm

can have a much larger impact on hardware speedup than
using the same techniques on MSE cost functions, since there
is a considerably longer sequence of computations within the
feedback loop.

The general structure for adaptive filters can be divided into
three major blocks, as shown in Figure 1.

Figure 1. Adaptive filter structure

The first block is an adaptive FIR filter capable of changing

its impulse response (filter weights). The output of this filter
y(n) is simply the dot-product between the input vector and the
weight vector:

 (1)

The output y(n) is then compared to a desired signal d(n).
In supervised learning, the desired signal represents the goal
of the filter. As the output of the filter approaches this desired
signal, the weights also approach the optimal solution. In
system identification, the desired signal is the output of an
unknown system (plant) for which the AF is trying to find the
transfer function. The error e(n) is the difference between the
filter output and the desired value .

The second building block consists of the cost function
and learning algorithm. Cost functions define the rules of
adaptation (optimal criterion) and the learning algorithm
computes the new filter weights, which are then fed back to
the first block. For the MEE cost function the iterative weight
updates are of the form:

 (2)

where represent the new weights, the current
weights, is the step size, and is the gradient of the
information potential (IP). Erdogmus et al. [4] has defined a
nonparametric estimator of the IP as:

 (3)

where κ represents a kernel function from density estimation.
We can obtain the gradient of the IP by taking the derivative
with respect to the weights:

 (4)

 3

In Eq. 4, we have used the Gaussian kernel for κ defined as:

 (5)

The challenge here is to design an architecture that
accelerates this iterative process by exploiting the maximum
amount of inherent parallelism (wide and deep) while taking
advantage of the data dependencies within each iteration. Two
important parameters define the computational complexity of
the overall filter adaptation. The first is the filter size, which is
equal to the number of weights. As the order of the filter is
increased, more weights have to be computed, fed back, and
updated. For gradient ascent, the complexity of the algorithm
is linear or O(L) with respect to the filter order (L). A more
influential parameter governing the complexity of the MEE
cost function is the window size (n in Eqs. 3 and 4). As seen in
Eq. 4, the gradient of the IP is a double summation over i and
j, which means that the window size over which the IP
gradient is estimated is the critical factor influencing the
computational complexity of the algorithm. The computational
complexity is O(N2) with respect to the window size. Figure 2
shows the quadratic increase in computation time (for
software) when the window size is increased.

Figure 2. Software execution time of one weight update as a function of

window size

It should also be noted that the window size has a direct
effect on the (filter) performance of the algorithm. A larger
window size will provide a better IP estimate, directly
translating into a smoother and faster convergence of the
weights to the optimal solution. However, the quadratic
increase in complexity creates a steep tradeoff between filter
performance and computation time. This paper proposes an
architecture that transforms the time-performance tradeoff into
a linear dependency.

Besides its computational complexity, the MEE cost
function presents numerous challenges. These challenges
include the need to accurately evaluate the exponential
function as part of the Gaussian kernel (Eq. 5) and the need to
avoid losing precision over multiple iterations. Past AF

implementations have strictly used either entirely floating-
point or fixed-point designs [11,12]. Fixed-point AFs present
a much lower latency [11] and require less FPGA logic
resources. The effect of small latency on feedback systems is a
very popular topic in AF and provides numerous advantages.
However, a floating-point implementation has the major
advantage of maintaining better precision with no overflow for
big swings in the input signal [13]. This behavior translates
directly to better filter performance, because the filter requires
less number of iterations to find the optimum solution, and at
the same time the solution is more accurate. The design we
propose is a hybrid of the two, utilizing precise floating-point
functions where precision is needed and simple fixed-point
blocks where precision is less important. Due to its complex
cost function and relatively novel approach, prior to this work
AFs using the MEE cost function have not been realizable for
high-speed, real-time processing. This paper explores an
efficient parallelization of the MEE cost function as a part of
an AF that can significantly accelerate the adaptation process,
providing a reconfigurable design that can be used in real-time
for numerous applications.

III PARALLEL ALGORITHM AND ARCHITECTURE
In this section, the main building blocks of the AF

(Adaptive FIR and cost function shown in Figure 1) are
decomposed into smaller and more detailed components,
illustrating the novel manner in which we have mapped the
MEE algorithm onto a hardware structure. Batch learning
represents the centerpiece of this algorithm and is the key idea
that inspired and enabled this reconfigurable design. For batch
learning, all the input data is available a priori. Ideally, in a
fully pipelined design, the frequency at which the input
vectors enter the system is equal to the clock rate. Figure 3
shows the window size over which we will evaluate the IP
gradient (Eq. 4), which is then used to update the weights
(Eq. 2). If we have all the samples over the entire window size
available, we can divide the window into a sequence of input
vectors and arrange them chronologically x(0) through x(n-1),
in the same manner in which they would enter the pipeline.
The size of each input vector is equal to the filter order.

Figure 3. Forming the sequence of input vectors from a given window size

The IP gradient is evaluated over a window of errors. The

latency of the entire design becomes less detrimental to
speedup as the window size increases. We will show later in
this section that speedup is linearly proportional to the window

 4

size. Evaluating the IP gradient over a window size increases
in precision as the window grows, but we should be very
careful in choosing a particular window size because the
complexity of this evaluation is O(N2) as shown in Eqs. 3 and
4. Therefore, hardware resources required to implement the IP
gradient also increase quadratically as a function of window
size, resulting in a fewer number of AFs that can fit onto each
FPGA for very large window sizes, and consequently limiting
speedup.

A. FIR Filter
The hardware design and implementation of a FIR filter

has been rigorously studied in the past [14, 15, 16, 17]. In our
work, we use a simple pipelined implementation that allows a
new input vector to be clocked in every clock cycle. Figure 4
shows a detailed structure of the FIR architecture. Just as the
sliding window in Figure 2 suggests, a new input vector is
presented to the FIR at every clock cycle, when a new sample
enters the input delay line. Concurrently, all past samples shift
one register to the right and the last value x(1) (the oldest
sample in the delay line) is simply forgotten. The new input
vector is multiplied by the
current weight vector , and then
each term of the dot-product is added according to Eq. 1. In
our design, multiplication is performed with a floating-point
mega-function from Altera’s core library and the additions
that follow are computed in fixed-point. The weight registers
store floating-point values since, for the same number of bits,
floats have a much wider dynamic range, which is necessary
because the weights are changed by a wide range of values
[18]. A 32-bit fixed-point range would be insufficient to
represent this wide range of values. Finally, the output of this
block is the error , where n represents the time index.

Figure 4. Adaptive FIR functional block

B. Mapping MEE Cost Function to Hardware
The MEE cost function can be further divided into four

main subcomponents as suggested by Eq. 4. Figure 5 shows
these four subcomponents, their interconnections, and the
direction of the dataflow among them. All four blocks are
pipelined to create the MEE cost function. We will next look
at each block in more detail to describe the fine-grained
parallelism that lies at the root of the MEE algorithm.

Figure 5. MEE cost function subcomponents

1) Error Pairwise Distance Block

The MEE cost function (Eq. 4) uses the error calculation
provided by the FIR block to evaluate the IP gradient. This
equation is composed of the three terms that are multiplied
and then summed over i and j. The first term inside the double
summation is the pairwise distance between all errors:

This task can seem daunting because for a window size of

N, N2/2 pairwise error distances have to be computed.
However, the FIR block is designed such that after an initial
latency, the errors become available in a sequential manner,
after each clock cycle, which means that we can start
computing pairwise subtractions as soon as the first two errors
become available. The design illustrated in Figure 6 shows the
errors stored in a registered delay line, and all the pairwise
distances computed between the current error and all the past
ones. This parallelized design of pairwise distance calculations
achieves considerable speedup when compared to software
because it employs N clock cycles to compute N2/2
subtractions. For every new error, the number of pairwise
distances increases by one until it reaches a maximum of n.

 5

 Figure 6. Pipelined pairwise distance computation

When the last error e(n) (for a given window size = n) is

clocked into the delay line, the pairwise distance block will
compute the final N pairwise distances between error
and all previous errors .
All error distances are stored in a 2D array of pipelined
registers. By taking advantage of the algorithm dataflow, this
design will use only N subtractors to compute N2/2 pairwise
distances in N clock cycles. The following 2D matrix is
constructed when all N errors have passed through this block:

It should be noted that this is an upper triangular matrix
where one column is computed for each clock cycle starting
from the left. The computation of distance matrices is very
important in a number of fields including bioinformatics,
physics, and chemistry. In general, for calculating pairwise
distances in applications such as structural or sequential
alignments, systolic arrays are used to accelerate calculations
[19]. However, in this case, not all errors for which we wish to
calculate the pairwise distances are available at the same time.
They become available one by one, every clock cycle. In such
cases, using a systolic array would prove to be a waste of
resources. The pipelined design shown in Figure 6 is much
more effective, parallelizing as many computations as are
available (all subtractions between the current error and all
past errors) within each clock cycle.

2) Gaussian Kernel Block
The second building block is used to compute the Gaussian

kernel computation:

Eq. 5 shows the complete form of this kernel. As soon as the
pairwise error distances become available, they are inputted to
the Gaussian kernel block as shown in Figure 7. This block is
directly connected to the pairwise distance block, such that all
pairwise distances computed within the current cycle are fed
directly into a Gaussian kernel block.

Figure 7. Gaussian kernel block

For a given window size of N, the cost function requires
N2/2 Gaussian kernel computations. However, by efficiently
mapping the data flow of this algorithm to hardware, we
compute N2/2 Gaussian kernels in only N cycles plus the
latency of one kernel. The exponential block used is Figure 7
comes from Altera’s floating-point, mega-function library.
This floating-point exponential has the capability to be
pipelined, as do all algebraic functions used in this design, and
as a result it minimizes the impact of latency on the total
execution time. The results of the Gaussian kernel block are
stored in a 2D register array. The following 2D matrix is
constructed when all N2/2 Gaussian kernels have been
computed:

Each column in this matrix is computed one clock cycle at a
time starting from the left-most kernels.

 6

The last term remaining in the MEE cost function (Eq. 4) is

the input pairwise distances . The hardware

required for computing these terms is identical to that of the
error distances block. All of the three building blocks are
pipelined as shown in Figure 9.

The tree 2D arrays contain all the terms needed to
compute the gradient of the IP in Eq. 4. The double
summation becomes an iterative accumulation of these terms
as they become available.

3) Accumulator Block
Figure 8 shows the general pipelined architecture of the

accumulator. The three matrices are multiplied and the results
are added to compute the IP. One accumulator block is
dedicated to each row of the matrix. In total, there are N
accumulators to parallelize the double summation in Eq. 4;
each is responsible for computing a quantity of the IP.

Figure 8. Pipelined Accumulator

By accumulating the terms of Eq. 4 every time a new
column of the 2D arrays becomes available, we further
accelerate the algorithm. The double summation containing
N2/2 additions is completed in only N clock cycles plus the
latency of the pipelined accumulator. By parallelizing the
computations of pairwise distances, and pipelining them with
the Gaussian kernel block and the final accumulator block, we
improve the asymptotic time complexity of the algorithm from
O(N2) in the serial form to O(N) in the parallel form.

Figure 9 shows the entire parallelization of the MEE cost
function. The inputs are n samples from the
batch (n is the window size) and n
errors (from the FIR Filter).
The outputs are the new weights where

 and the weights are updated
using Eq. 2.

Going back to Figure 2, the software version of this
algorithm was quadratically dependent upon the window size,
making it impossible to obtain fast and smooth convergence of
the weights to their optimal solution without incurring a large
time penalty. By transforming the relationship between
computation time and window size to a linear relationship, we
can now better satisfy the tradeoff between filter performance
and total computation time, as explored in the next section.

Figure 9. Overall architecture of MEE cost function

 7

IV RESULTS AND ANALYSIS
The platform used to test the performance and scalability

of this parallel architecture is the Novo-G reconfigurable
supercomputer. Housed in the NSF Center for High-
Performance Reconfigurable Computing (CHREC) at the
University of Florida, Novo-G currently consists of 48 GiDEL
PROCStar-III quad-FPGA boards. Each of these 192 FPGAs
is an Altera Stratix-III E260 device featuring 768 18×18
multipliers and 256K logic elements, with 4.25GB of
dedicated memory in three parallel banks directly attached.
For more detailed information on Novo-G, see [20].

Software baselines used for comparison in this section are
coded in C, compiled using GCC with optimization –O4, and
executed on an AMD 2.4 GHz Opteron with 4GB of DDR400
RAM. The AF design was tested in real-time to compare its
performance versus software. In doing so, we address two
major challenges:

1. How does the hardware design compare to the software
implementation in terms of precision over multiple
iterations. Does the design converge to the optimal
weights in the same number of steps?

2. How much speedup does the hardware architecture
achieve over the software implementation?

A) Precision Results and Analysis

One of the most popular applications of AFs is system
identification. Given an unknown system, the AF can
approximate its transfer function in a finite number of
iterations. Figure 1 back in Section 2 shows the usual setup of
this experiment. A filter with set coefficients will provide the
desired signal. A sequence of 2000 samples consisting of
white Gaussian noise is inputted to both the fixed filter (i.e.
unknown system) and to the AF. The weights are adapted for
2000 iterations using the MEE criterion. By tracking the
weight changes over time, we can determine how fast and how
accurately they converge to the optimum values, while also
comparing these results with those from the software
implementation. When the algorithm uses higher
computational precision, a fewer number of iterations is
needed to reach the optimal solution.

Figure 10. Convergence of adaptive filter weight to same value as weight of

observed plant

Figure 10 tracks the value of one weight over 2000
iterations for both hardware and software. The results are very
similar with both weights converging to the optimal value (5).
More importantly, the convergence takes the same number of
iterations, demonstrating that our hybrid (float/fixed) 32-bit
architecture maintains identical precision to software
throughout the entire adaptation process.

In all the experiments the order of the FIR is set to 10
while the window size varies (IP gradient is evaluated over the
window size).

B. Performance Analysis of a Single AF

When evaluating speedup, the parameter that plays a
crucial role is the size of the window over which the IP
gradient is evaluated (Eq. 4). This parameter represents the
number of input samples used to compute a weight update
(Eq. 2). The window size influences execution time by
increasing the number of computations within the weight
feedback loop (Eq. 2). Figure 11 plots the execution time in
hardware of one weight update versus varying window sizes.

Figure 11. Execution time vs. window size

The dependence between window size and execution time

is linear. This result is extremely important because, as shown
back in Figure 2, execution time in software is quadratically
dependent upon window size and requires significantly more
time. We have provided a reconfigurable design that takes
advantage of the inherent parallelism within the MEE
algorithm, transforming the asymptotic time complexity from
O(N2) to O(N). This outcome has major significance for the
field of AFs because the MEE cost function, which has been
proven to achieve better results than conventional MSE
algorithms, can now be implemented in real-time for signals
that require sampling frequencies on the range of 400 kHz.
However, as shown later, increasing the window size provides
an increase in speedup only up to a point, beyond which the
speedup will decline. The reason is the exponential
dependence between the window size and the FPGA resources
required (logic cells). Table 1 reports the percentage of
hardware resources consumed by one AF as the filter’s
window size is increased.

 8

TABLE I. FRACTION OF LOGIC CELLS UTILIZED ON FPGA (STRATIX-III E260)
FOR VARIOUS WINDOW SIZES

The consequence of this exponential growth in resource

requirements for increasing window sizes is that fewer AFs
can fit onto one FPGA. The most critical resource utilized by
our design for this particular FPGA is logic cells (99%)
followed by DSP block elements (65%). Table 2 shows the
number of AFs that can fit onto one Stratix-III E260 FPGA as
the AF window size is increased. The number of AF drops off
drastically for window sizes greater than 100.

TABLE 2. MAXIMUM NUMBER OF AFS PER FPGA (STRATIX-III E260) FOR
VARIOUS WINDOW SIZES

Thus, it is misleading to evaluate speedup by simply

assuming that for an increase in window size, the number of
computations inside the feedback loop will also increase,
leading to considerable speedup (since we have proven that
hardware time complexity is O(N) while software is O(N2)).
For infinite resources this assertion would be true, but of
course in reality the resources required to keep up with a
growing window size also increase exponentially.

Figure 12 shows how speedup varies with an increase in
window size, where peak speedup is achieved around a
window size of 100. For this particular window size (100),
one iteration (a weight update) in software is executed in
0.668 ms. As a comparison, the hardware implementation runs
one iteration (a weight update using only one AF) in 2.30 µs
achieving a speedup of 290. What is more revealing is the
difference in frequency at which the hardware design and the
software implementation can sample a given signal. The
maximum sampling frequency for software is 1.497 kHz,
which means that any speech filtering application alongside
many important applications are impossible to sample at or
above the Nyquist frequency. While the MEE cost function is
busy evaluating the next weight it cannot process a new
sample any faster that every 0.668 ms. By contrast, the
hardware AF design accelerates each iteration and is capable
of sampling signals at 435 kHz while employing the MEE
algorithm. This achievement broadens the spectrum of signals
to which the AF can adapt, making it possible to exploit the
superior MEE algorithm for popular applications such as
acoustic echo cancellation [22] and denoising speech [23], as
well as many neural applications [24] that require higher-order
statistics to adapt the filter coefficients.

In summary, the correlation between speedup and window
size is a tradeoff of two factors. The window size sets the
number of parallelizable computations inside the feedback
loop and also the quantity of hardware resources required to
map the algorithm in hardware. The number of parallelizable
computations inside the feedback loop contributes to the
achievable speedup, since our proposed architecture takes
advantage of the inherent parallelism. Also the number of
filters that can adapt in parallel is an important contributing
factor towards speedup. Ideally, the largest speedup is
obtained for a window size that is large enough to require
many parallelizable computations within the feedback loop but
not so large that it requires an excessive amount of FPGA
resources that would prevent many filters from adapting in
parallel on one FPGA.

Figure 12. Speedup as a function of window size

The speedup plot in Figure 12 is specific only to this

Stratix-III E260 FPGA. For an FPGA with more resources,
the speedup peak will shift to the right and higher. Because
this design has been written in a reasonably generic form of
VHDL, it could be ported to other FPGA devices. For future
work it may be interesting to analyze how window size affects
speedup for devices with more or less logic cells but such
issues are beyond the scope of this paper. Since many
applications require the parallel adaptation of multiple
independent channels [25], the number of AF functioning in
parallel becomes an important factor in deciding whether or
not this particular design meets the need of a specific
application. For neural applications [26], the number of
channels required will often surpass several hundred.

C. Performance Analysis on Novo-G

For an AF with a tenth-order FIR and evaluating the IP
gradient over 100 samples (window size for batch learning)
we were able to fit a total of twenty AFs onto one Stratix-III
E260 FPGA. By doing so, we are able to achieve a linear
speedup of 290 × 20 = 5800 as compared to the software
baseline running on a single CPU core.

By simply replicating this design first on one GiDEL
PROCStar-III quad-FPGA board and then on two boards, we

AF window size 10 50 100 200 400 450
Fraction of total
logic cells used <1% <1% 5% 23% 49% 99%

AF window
size 50 100 200 400 450

Max.
number of

AFs
243 20 6 2 1

 9

were able to implement a total number of 80 and then 160 AFs
capable of adapting independently in parallel. With all eight
FPGAs running at the maximum capacity (99% of logic cells
utilized), populated by all 160 AFs, the measured speedup
rises to 46400, while the speedup recorded for only one board
is exactly half of that (23200). The speedup grows linearly
because there is very little (i.e. insignificant) overhead from
the communication between the host CPU and the FPGAs.
The host CPU loads only one sample every clock cycle to the
AFs. The only occasion when data is transferred from the
FPGAs back to the CPU is when the weights are calculated at
the end of the algorithm. Each AF has ten weights and each
weight is 32 bits. Compared to the amount of time that elapses
for the weights to be calculated, this communication time is
negligible.

Figure 13 shows a diagram of the distribution of AFs over
one quad-FPGA board. Each AF adapts independently by
responding to a batch of 100 samples of white Gaussian noise,
over 2000 iterations. Every clock cycle, one sample of
the batch is input to each AF.
The new weights ,
computed using Eq. 2, are transferred back to the CPU, which
is the equivalent of one iteration.

Figure 13. Independent AF blocks adapting in parallel on one quad-FPGA

board of Novo-G

For this experiment, only up to two of the 48 quad-FPGA
boards in the Novo-G machine were used. Because no off-chip
memory was necessary when running the AF design on each
FPGA, and because only one sample is input to each AF at
every clock cycle, there are no potential bottlenecks expected
to arise as more FPGAs are used. Every Novo-G board has its
own host CPU core that feeds an input signal to each AF
through a simple memory map. There is no node-to-node
communication needed for servers in the system, and no
transfer of information even between the four FPGAs
belonging to the same board; the AFs are embarrassingly
parallel with respect to one another. Even though we have
demonstrated the efficiency of our hardware design by using a
system identification application, we are not constrained to
only use Gaussian noise as input to the AF to find the transfer
function of an unknown system. There are many applications
that require the parallel adaptation of multiple channels [23,
24, 25, 26] to find the optimal weights for each channel.

V CONCLUSIONS
This paper proposes a novel parallel architecture that is

fine-tuned to the unique needs of the minimum error entropy
(MEE) cost function. A hybrid design using both fixed- and
floating-point computational blocks maps the MEE cost
function onto hardware by taking advantage of the algorithm’s
dataflow and inherent parallelism. The design minimizes
latency without losing precision over an extended number of
iterations (2000). The MEE cost function dictates the rules of
adaptation for an AF.

For testing the performance of our design, we use a
system identification application in which the adaptive
weights converge to the optimal solution, and find the transfer
function of an unknown plant. The results are compared to a
software baseline and prove that the weights of the hardware
implementation converge to the same solution obtained by
software within the same number of iterations. Furthermore,
the asymptotic time complexity of the adaptive algorithm is
decreased from O(N2) in software to O(N) in hardware,
providing a linear relationship between performance
(convergence time) and execution time.

The most critical factor that influences speedup is the
window size (number of input samples) used to compute the
weight updates. The window size influences both the number
of parallelizable computations within the feedback loop and
the hardware resources required to implement the cost
function. Larger window sizes will increase the number of
parallelizable computations but at the same time require
significantly more resources. The result is that less AFs can fit
onto one FPGA, a factor that can decrease speedup and make
this design undesirable for applications that require many
channels to be processed in parallel. We analyze the tradeoff
and find the optimum window size (100) for which the
maximum speedup is achieved.

Finally, experiments conducted and measurements taken
on one board of the Novo-G machine in real-time prove that
our architecture obtained significant speedup and is highly
scalable (speedup of 290 for one AF, 5800 for one FPGA,
23200 for one quad-FPGA board, and 46400 for two quad-
FPGA boards). The most important result is that we can now
for the first time target numerous applications that have
previously been restricted from using the MEE cost function
due to its heavy computational demands.

VI REFERENCES

[1] Sheng-Fuu Lin; Kumar, P.R.; “Parameter convergence in the stochastic

gradient adaptive control law”, Proceedings of the 27th IEEE Conference
on Decision and Control, on 7-9 Dec 1988, Page(s): 1211 - 1212 vol. 2

[2] Zheng-wei; Hu Zhi-Yuan Xie; “Modification of Theoretical Fixed-point
LMS Algorithm for Implementation in Hardware”, Second International
Symposium on Electronic Commerce and Security, on 22-24 May 2009,
Page(s): 174 – 178 vol. 2

[3] Elliott, R.J.; Krishnamurthy, V.; “Finite dimensional filters for
maximum likelihood estimation of continuous-time linear Gaussian
systems”, Proceedings of the 36th IEEE Conference on Decision and
Control, on 10-12 Dec 1997, Page(s): 4469 - 4474 vol. 5

[4] Erdogmus, D.; Principe, J.C.; “Generalized Information Potential
Criterion for Adaptive System Training”, IEEE Transactions on Neural
Networks, on Sep 2002, Page(s): 1035 – 1044 vol. 13

 10

[5] Erdogmus, D.; Principe, J.C.; “Entropy Minimization Algorithm for
Multilayer Perceptrons”, Proceedings from International Joint
Conference on Neural Networks 2001, Page(s): 3003 - 3008 vol. 4

[6] Lok-Kee, Ting; Woods, R.; Cowan, C.F.N.; “Virtex FPGA
implementation of a pipelined adaptive LMS predictor for electronic
support measures receivers”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, on Jan. 2005, Page(s): 86 – 95 vol. 13

[7] Glentis, G.O.; “Pipelined architectures for the TD-LMS adaptive filter”,
IEEE International Conference on Acoustic Speech and Signal
Processing, on 2001, Page(s): 1081 - 1084 vol. 2

[8] Mahfuz, E.; Chunyan Wang; Ahmad, M.O.; “A high-throughput DLMS
adaptive algorithm”, IEEE International Symposium on Circuits and
Systems, on 23-26 May 2005, Page(s): 3753 - 3756 Vol. 4

[9] Sizhong Chen; Tong Zhang, “Self-timed dynamically pipelined adaptive
signal processing system: a case study of DLMS equalizer for read
channel”, IEEE transactions on Circuits and Systems, on July 2005,
Page(s): 1338 – 1347 vol. 52

[10] Fengqi Yu; Willson, A.N., Jr.; “An interleaved/pipelined architecture for
adaptive lattice equalizer”, Proceedings of the 43rd IEEE Midwest
Symposium on Circuits and Systems, on 2000, Page(s): 856 - 859 vol. 2

[11] Garcia-Alcantara; V. Rodelllar; V. Gomez-Vilda, P.; “Fixed-point
arithmetic trade-offs in adaptive filters for speech recognition”,
Electrotechnical Conference, 1998. MELECON, 9th Mediterranean, on
18-20 May 1998, Page(s): 518 - 521 vol. 1

[12] North, R.C.; Zeidler, J.R.; Ku, W.H.; Albert, T.R.; “A floating-point
arithmetic error analysis of direct and indirect coefficient updating
techniques for adaptive lattice filters”, Signal Processing, IEEE
Transactions on, on May 1993, Page(s): 1809 – 1823 vol. 41 issue 5

[13] Leon, G.; Jenkins, W.K.; “Adaptive fault tolerant digital filters with
single and multiple bit errors in floating-point arithmetic”, The 2000
IEEE International Symposium on Circuits and Systems, on 2000,
Page(s): 630 - 633 vol. 3

[14] Daitx, F.F.; Rosa, V.S.; Costa, E.; Flores, P.; Bampi, S.; “VHDL
Generation of Optimized FIR Filters”, 2nd International Conference on
Signals, Circuits and Systems, on 7-9 Nov. 2008, Page(s): 1 – 5

[15] Rosa, V.S.; Costa, E.; Bampi, S.; “A VHDL Generation Tool for
Optimized Parallel FIR Filters”, International Conference on Very Large
Scale Integration, on Oct 2006, Page(s): 134 – 139

[16] Mehendale, M.; Sherlekar, S. D.; Venkatesh, G., “Synthesis of
multiplier-less FIR filters with minimum number of additions”, Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, on 1995, Page(s): 668-
671

[17] Meher, P.K.; Chandrasekaran, S.; Amira, A.; “FPGA Realization of FIR
Filters by Efficient and Flexible Systolization Using Distributed
Arithmetic”, IEEE Transactions on Signal Processing, on July 2008,
Page(s): 3009 - 3017 vol. 56, no. 7

[18] Horrocks, D.H.; Bull, D.R.; “Quantization effects in FIR filters: fixed
versus floating point”, IEE Colloquium on Electronic Filters, on 9th June
1989, Page(s): 9/1-9/8

[19] Oliver, T.; Schmidt, B.; Nathan, D.; Clemens, R.; Maskell, D.; “Multiple
Sequence Alignment on an FPGA”, Proceedings of the 2005 11th
International Conference on Parallel and Distributed Systems
(ICPADS'05), on 22-22 July 2005, Page(s): 326 – 330, vol. 2

[20] Novo-G architecture overview, www.chrec.org/~george/Novo-G.pdf
[21] Mu Cluster overview, http://www.hcs.ufl.edu/lab/mu.php
[22] Chhetri, A.S.; Stokes, J.W.; Florencio, D.A.; “Acoustic Echo

Cancelation for High Noise Environments”, 2006 IEEE International
Conference on Multimedia and Expo, on 9-12 July 2006, Page(s): 905 –
908

[23] Shuqi Wang; Yin Shi; “An Improved Speech Denoising Algorithm
Based on Adaptive Least Mean Square”, International Conference on
Industrial and Information Systems, on 24-25 April 2009, Page(s): 293 –
296

[24] Yunfeng, Wu; Rangayyan, R.M.; Sin-Chun, Ng; “Cancellation of
Artifacts in ECG Signals Using a Normalized Adaptive Neural Filter”,
29th annual International Conference of the IEEE Engineering in
Medicine and Biology Society, on 22-26 Aug. 2007, Page(s): 2552 –
2555

[25] Mozipo, A.L.T.; Massicotte, D.; Quinton, P.; Risset, T.; “A parallel
architecture for adaptive channel equalization based on Kalman filter
using MMAlpha”, IEEE Canadian Conference on Electrical and
Computer Engineering, on 12th May 1999, Page(s): 554 -559 vol. 1

[26] Xuedong Chen; Ou Bai; “Towards multi-dimensional robotic control via
noninvasive brain-computer interface”, International Conference on
Complex Medical Engineering, on 9 - 11 April 2009, Page(s): 1 - 5

