A Portable Memory Access Framework on Reconfigurable Computers

Miaoqing Huang, Ivan Gonzalez, and Tarek El-Ghazawi”
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, The George Washington University
{mghuang,ivangm,tarek }(@gwu.edu

Abstract

Current Reconfigurable Computers (RCs) do not share
a unified architectural model, which presents a challenge
to any developer whao intends to port hardware designs
across different RC platforms. In this paper, we propose
a portable memory access framework that gives the user a
unified memory view combining the host memory and the lo-
cal memory of FPGA. Three memory access modes are pro-
vided, and the hardware cost and performance impact have
been measured on three major RCs: SRC-6, SGI RC-100
and Cray XD1. Under current implementation, the penalty
to hardware resource utilization and performance of apply-
ing this framework is reduced to minimum.

1. Introduction

In the past few years, several vendors have introduced
new systems that contain both microprocessors and FPGAs
such as SRC-6, SGI Altix/RASC systems, and Cray XD1.
These systems can be considered parallel computers that re-
semble modern HPC architectures, with added FPGA de-
vices working as co-processors to the microprocessor(s). In
these architectures, the main application will be executing
on the microprocessor(s) where kernels that take long exe-
cution time, but lend themselves to hardware implementa-
tions are extracted on the FPGA.

Although several High Level Languages (HLLs) target-
ing RCs are available currently, Hardware Description Lan-
guages (HDLs) are still the primary means for exploiting the
parallelism of FPGA devices. However, integrating a pro-
cessing core nto a new platform is not a trivial task, espe-
cially for HDL developers. RCs have different local mem-
ory architectures, network fabrics, and development {rame-
works, which requires the developer to spend tremendous

*This work was supported in part by the I/UCRC Program of the Na-
tional Science Foundation under the NSF Center for High-Performance
Reconfigurable Computing (CHREC).

1-4244-1472-5/G7/§25.00 © 2007 IEEE

effort for integrating processing core into FPGA in addition
to the effort for developing the core itself.

To overcome this difficulty, a standard memory access
framework on RCs is proposed. We consider following fea-
tures to make this framework portable and easy to use: (1)
The memory framework unifies the host memory and the lo-
cal memory into a logical memory space. (2) The user logic
only deals with the logical memory space for data access.
The framework takes care of the physical data transaction
between FPGA and pP (3) The framework maximizes the
overall data throughput under various circumstances. In the
following description, we dedicate the term “host memory™
to the main memory managed by software operating sys-
tem and the term “local memory™ to the memory modules
connected to FPGA device.

Several related works have discussed the integration of
#Ps and FPGAs, and different solutions have been pro-
posed. For example, recently, Vuleti¢ ef al. [1] introduced a
system layer with hardware support to bring the local mem-
ory of reconfigurable hardware resource (FPGA or ASIC)
into the virtual memory space which is managed by the OS.
Similar approaches have been considered in [2, 3], where
the OS is used to manage FPGA resources. Other research
works have tried to solve the communication interface prob-
lem. For example, Maalej et al. [4] described a methodol-
ogy to design a communication interface that directly con-
nects the hardware module to general-purpose processor for
System On Chip system.

However, these previous works focus more on software
system level on generic reconfigurable platforms and then
are different from the approach presented in the paper. The
main differences comprise: (1) The target platforms of the
proposed framework are fully developed RCs such as SGI
RASC and Cray XD1. On these platforms, vendors pro-
vide a platform-specific interface block (as shown in Figure
1), software drivers and APIs for the communication and
synchronization between pP and FPGA. (2) The target end
users are hardware designers who intend to integrate their
processing cores into vendor-specific programming envi-
ronment using HDL.

FPT 2007

" endor-Specific Interface Block| Local Memary
Bank n-7
\

DIt Micro- Proprietary, :
[User Logic Local Memory
o pracesser ?
Laocal Memary
FPGA Device Bank ¢

Figure 1. Generic Architecture of Reconfig-
urable Computer.

Figure 2. Local Memory Architectures of
three major RCs: {a) SRC-6, (b) SGI RC-100,
(c) Cray XD1.

The portable memory access framework 1s built on the
top of the vendor-specific interface block, and the memory
access interface offered to the user logic keeps unchanged
across different platforms. In order to realize this objective,
two sets of files are provided to hide all the details behind
the framework interface. One set of HDL files will give the
end user the hardware interface of the logical memory. The
other set of HLL files will specify the behavior of the puP
according to the bitstream.

2. Local Memory Architecture and Access
Methods of Representative RCs

Figure 1 shows the generic view of the FPGA device
and its local memory architecture, which consists of sev-
eral independent local memory banks. Generally, the user
logic is surrounded by the vendor-specific interface block,
which provides the user logic the means to access the out-
side world.

On SRC-6 platform, two FPGA devices share 6 banks
of local memory, 24MB in total,as shown in Figure 2(a).
Because the user logic only has one port for reading and
writing of local memory, it can not perform both transac-
tions on same bank simultaneously. There are two strategies
for handling data transportation between local memory and
host memory on SRC-6. (1) non-overlapping: There is
no overlap among data transferring-in, data processing and

(n (2) (3
Logical Logical Logical 5
User Memary User Memary User g

wemery | Logie Bank | Logie | Sk Logic S
Bank #0 #1 S

Figure 3. Three Memory Access Modes: (1)
Dual-ported random access mode, (2) Single-
ported random access mode, (3) Sequential
access mode.

data transferring-out. (2) semi-overlapping: Either data
transferring-in and data processing are overlapped, or data
processing and data transferring-out are carried out concur-
rently, however not both.

SGI's latest RASC technology, RC-100, has 5 banks of
physical SRAM, 40MB in total. However, the user logic
only views three local memory banks, as shown in Fig-
ure 2(b). The user logic has separate reading and writing
ports with local memory and can carry out both operations
on same memory bank concurrently. On RC-100, the user
must use one of following three strategies to transfer data.
{1) non-overlapping: Same to corresponding case of SRC-
6. (2) multi-buffering: Overlap data transferring-in, data
processing and data transferring-out. Two memory banks
are dedicated for raw data and result data respectively. Both
memory banks are divided into multiple windows, therefore
vendor logic and user logic can access the same bank simul-
taneously, however, on different windows and performing
disparate transactions. (3) streaming DMA: Raw data are
transferred into user logic and result data are returned back
to host memory directly.

On Cray XDI1 platform, one FPGA device is connected
with four banks of local memory, 4MB each, as shown in
Figure 2(c). Same to RC-100, each local memory bank has
two separate ports for reading and writing respectively by
user logic. Different from previous two cases, Cray XDI1
does not pre-define any data transportation strategy and the
host program has to synchronize with the bitstream interac-
tively to process a task. Therefore the user has to work out
his own strategy to fit his application.

3. The Proposed Memory Access Framework

In order to minimize the loading of the hardware devel-
opers to handle data movement between host memory and
local memory and make their designs portable, the frame-
work provides a single logical memory space that umifies
both memories. Furthermore, in order to make the mem-
ory access framework as efficient as possible, three differ-
ent access modes, as shown in Figure 3, are defined in the
remaining part of this section.

In the dual-ported random access mode, the framework

Table 1. The interface signhals defined in
memory access framework.

Signals VO Description

user_logic_go I If asserted, user logic can start function
memrdrq 0O Assert this signal if mem _rd_addr valid
mem.rd_addr [19:0] O Specify the reading address

mem rd_vol [31:0]} I Specify the data volume to be read
mem_rd_data_vld I If asserted, mem _rd_data is valid
mem_rd_data [127:0] I Valid if mem _rd_datavld asserted
Mem_wrrq 0O Assert this signal when mem_wr_data

and mem_wr_addr are both valid

mem_wr_addr [19:0]t O Specify the writting address
mem_wr.ready? I If asserted, writing is allowed
mem._wr_data [127:0] 0 Output data

user_logic_done O Assert this signal if user logic is done

*In the above case we assume the date width is 128-bit
and the size of one logical memory bank is 16MB.
1: random access mode only. 1. sequential access mode only.

provides one logical memory bank and the user logic can
access any memory location randomly, as shown in Figure
3(1). A typical application requiring this memory access
mode 1s large-size data sorting in which data are processed
through multiple rounds to reach the desired order.

Signals for handling this mode are shown in Table 1. Af-
ter the framework finishes preparation, it asserts the signal
user_logic_go to let the user logic start. Similarly, the user
logic should assert the signal user_logic_done to notify the
framework the end of its operation and then the framework
will make sure all result data are written back to host mem-
ory before terminating the bitstream. The usage of these
two signals are same in three modes. In mode-1, when the
user logic reads the memory, the data blocks are delivered
as the same order as requested and the validity is indicated
by the signal memd_datavid For memory writing, the
address and data are required to be given at the same time.

In the single-ported random access mode, the framework
provides two separate logical memory banks for storing raw
data and result data respectively, as shown in Figure 3(2).
The interface signals in this mode is same to the previous
one. However, the reading and writing directions of user
logic never change during the whole period of hardware
process, which 1s the functionality of the bitstream.

The sequential access mode supports the computation
scenario in which all the data access is in order. Only two
ports are required for dealing this situation, one for reading
and the other for writing, as shown in Figure 3(3). A typical

example of this scenario 1s data encryption and decryption
under Electronic Codebook (ECB) mode in which the mes-
sage 1s split into blocks and each block is processed sepa-
rately [5]. The signal mem_access_vol tells the user logic
how many raw data blocks are to expect. The user logic has
to check the signal mem_wr_ready belore it tries to write
result data to output port.

4. Implementation

Because the three platforms have different local mem-
ory architectures and data transferring mechanisms, the im-
plementation of this memory access framework varies from
one machine to another. Table 2 lists the mapping between
the three modes and the three platforms. In this initial im-
plementation, the data width is set to 128-bit wide for all
three modes. The memory size of one logical bank 1s fixed
as 16 MB and 8 MB for mode-1 and mode-2 respectively.

The user logic for testing these three modes consists of
two fully pipelined DES (Data Encryption Standard) block-
ciphers [5]. Running at 200 MHz, these two cores can pro-
duce a theoretical throughput of 3.2 GB/s (16Bx 200M/s).
However, the real performance largely depends on the
means to transfer the data and the overlap between data
transferring and data processing.

For mode-1, because the user logic takes control of both
reading port and writing port of the same memory bank dur-
ing its function period, there is no overlap between data
transferring and data processing.

Mode-2 is implemented by using the “Multi-buffering”
mechanism on SGI RC-100. Logical memory banks 0&1
are mapped to half of local memory banks 081 respectively.
Both local memory banks 0&]1 are divided into two win-
dows such that vendor logic and user logic can access same
local memory bank simultaneously to overlap the data trans-
ferring and data processing. On other two platforms there 1s
no overlap because there are no enough spare local memory
banks for implementing similiar mechanism.

For mode-3, the data transferring-in and data processing
are overlapped on SRC-6. On other two platforms, the local
memory banks are completely bypassed. The source data
blocks are read from host memory and fed to user logic di-
rectly. The result data blocks are written back to host mem-
ory without local store as well.

For mode-1 & 2, if the size of raw data is bigger than
the size of the logical bank, multiple iterations of hardware
process will be triggered. The framework will take care of
the data transferring automatically and start the user logic
several rounds to perform the data processing,

Table 3 shows the resource utilization and performance
of both cases, with or without the framework, of these three
different modes. The proposed framework specification in-
troduces negligible resource penalty in the hardware design

Table 2. Mapping three memory access modes onto three reconfigurable computers.

SRC-6 SGI RASC* Cray XD1
mode-1 | Four local memory banks are combined as one | Whole local memory bank 0 is treated as | Four local memory banks are combined
Fig.3(1) logical bank. one logical bank. as one logical bank.
No overlap between data transferring and data processing.

Two local memory banks are combined as | Half of local memory bank 0 is treated | Two local memory banks are combined
mode-2 logical bank 0, and another two local mem- | as logical bank 0. Half of local memory | as logical bank 0, and the other two lo-
Fig.3(2) ory banks are combined as logical bank 1. | bank 1 is treated as logical bank 1. Use | cal memory banks are combined as log-

No overlap between data transferring and data | the “Multi-buffering” mechanism to over- | ical bank 1. No overlap between data

processing. lap data transferring and data processing. transferring and data processing.

Two local memory banks are combined to pro- | Use the “Streaming DMA” mechanism to | “Host memory direct access” mech-

vide the raw data, and another two local mem- | retrieve raw data from host memoryandre- | anism is adopted. The user logic
mode-3 ory banks are combined to store the processed | turn result to host memory directly. reads from and writes to host memory
Fig.3(3) | data. Data transferring-in and data processing through the “User Request Interface”

are overlapped. Data transferring-out is car- of the “RapidArray Transport Core”.
ried out after the data processing.

*On SGIRASC platform, allocate “hugepage” to avoid the kernel copy at the host side.

Table 3. Resource Utilization and Perfor-
mance Comparison of Three Memory Access
Modes on Three Reconfigurable Computers.

Resource Utilization (slices)

SGI RC-100 Cray XD1

SRC-6 WioFr | W/Fr || WooFr | W/ Fr
m-1 || 14,317 || 22,281 | 22,281 || 14.942 | 14,685
m-2 || 14,172 || 22,300 | 22,300 || 14,645 | 14,546
m-3 || 15,007 || 22,659 | 22,659 || 13.670 | 14,428

End-to-end Throughput (GB/s)
m-1 0.02 0.65 0.65 0.57 0.57
m-2 0.47 1.14 1.14 0.57 0.57
m-3 0.67 2.09 2.09 1.17 1.17

and does not alter the final performance regardless of the
the memory access mode.

5. Conclusion and Future Work

A portable memory access framework on reconfigurable
computers is proposed. This framework is built on the top
of vendor’s pre-defined interface block and provides a uni-
fied logical memory space that combines the local memory
and the host memory. Three memory access modes, Dual-
ported Random Access Mode, Single-ported Random Ac-
cess Mode and Sequential Access Mode are provided for
different scenarios. Preliminary testing of this framework

on three major RCs shows no resource utilization overhead
and performance impact. However, one major limitation of
the current implementation is the lack of flexibility. The
quantity, size and data width of memory banks are all fixed,
which undermines ease-of-use and coverage of this frame-
work. A tool 1s under developing to customize these three
characteristics of the memory interface following user’s re-
quest. In addition to increasing the ease-of-use, the tool
will try to reduce the resource cost and performance impact
to minimum as well.

References

[1] M. Vuleti¢, P. Ienne, C. Claus, and W. Stechele, “Mul-
tithreaded virtual-memory-enabled reconfigurable hardware
accelerators,” in Proe. IERE International Conference on
Field Programmable Technology 2006 (FPT 2006), Dec.
2006, pp. 197204,

[2] M. Dales, “Managing a reconfigurable processor in a gen-
eral purpose workstation environment,” in Proe. Design, Au-
tomation and Test in Europe Conference and Exhibition, 2003
(DATE 03), Mar. 2003, pp. 980-985.

[3] M. Vuletié, L. Pozzi, and P. Tenne, “Virtual memory window
for application-specific reconfigurable coprocessors,” [EEE
Trans. VLSI Syst., vol. 14, no. 8, pp. 910-915, Aug. 2006.

[4] I. Maalej, G. Gogmat, M. Abid, and I. L. Philippe, “Interface
design approach for system on chip based on configuration,”
in Proe. 2003 International Symposium on Cireuits and Sys-
tems, vol. 5, May 2003, pp. 593-596.

[5] M. Huang, T. El-Ghazawi, B. Larson, and K. Gaj, “Develop-
ment of block-cipher library for reconfigurable computers,”in
Proc. IEEE 3rd Southern Conference on Programmable Logic
2007 (SPL’07), Feb. 2007, pp. 191-194.

