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Abstract—High-Level Synthesis (HLS) allows not only for
quicker prototyping, but also faster and more widespread design
space exploration. In this work we designed a turbo decoder using
Vivado HLS, which has not previously been explored. Our turbo
decoder was designed to allow for easy design space exploration,
both of algorithmic turbo decoder parameters as well as HLS
parameters. Data and analysis on the design space is presented
for approximately 200,000 variations with an emphasis on the
needed trade-offs when designing a turbo decoder.

I. INTRODUCTION

High-Level Synthesis (HLS) has gained considerable trac-
tion in recent years as a design methodology that can provide
significantly higher productivity than hand-crafted RTL, while
still offering competitive circuit performance. HLS is now
frequently the design methodology of choice for machine
learning accelerators [1]–[3], video processing [4], [5], scien-
tific computing [6], signal processing [7], communications [8],
and more. In this paper, we explore an HLS implementation
of a turbo decoder, which is the primary component in
implementing turbo code based forward error correction (FEC)
systems. Turbo codes are commonly used in mobile, deep
space, and other noisy-channel communications system.

A turbo decoder does not guarantee zero error transmission,
but rather is primarily evaluated by how low of an error rate
is achieved in a given lossy transmission. As such, there are
numerous trade-off opportunities. For example, a designer may
consider reducing the fixed-point bit-width, while increasing
the number of processing iterations, in hopes of trading an
increase in latency for a reduction in area, while still main-
taining the error-correcting performance. Such explorations are
difficult when designing at the RTL abstraction level. In this
work we show how HLS offers the ability to automatically
explore the rich design space available in turbo decoder FPGA
implementations.

The primary contributions of this paper are the following:
• A paramterized Turbo Decoder design, implemented in

Vivado HLS.
• A demonstration of how HLS enables the automated

design space exploration for this application.
• Experimental data of approximately 200,000 different

design variants, evaluated against size, speed, error-
correcting performance, and power metrics, with analysis
of the major design trade-offs.

The implementation code, and all experimental data is made
publicly available at github.com/byuccl/hls turbodecoder.

II. BACKGROUND

A. Turbo Decoder and Error Correcting Coding

Turbo Decoders are used to perform Error Correcting Cod-
ing (ECC), which is the process of correcting errors in digital
data that have been added through transmission in a noisy
communication channel. A turbo decoder relies on knowledge
of the encoder and iterative feedback to interpret the noisy
received message . The decoder is actually comprised of two
separate decoding modules, each of which perform decoding
based on the BCJR algorithm [9]. The BCJR algorithm relies
on knowledge of the encoder, the received bits, and previous or
prior information to produce additional or extrinsic informa-
tion. On each iteration, the information is being passed around
in a loop between the two decoders. As the information cycles
through the decoders, the extrinsic information converges to
the best solution or the most accurate message based on the
available information.

Different variations of turbo decoders have various features
of accuracy and complexity. While the structure and flow of
information is the same, the implementations of the BCJR
algorithm may be different. The “standard” MAP BCJR al-
gorithm performs calculations on the probabilities of bits,
while the Max MAP variant performs calculations on the
logarithms of probabilities. The latter uses a computational
approximation, allowing for significantly simpler calculations,
but causes reduced accuracy.

Since turbo decoders can vary by MAP algorithm, num-
ber of iterations, message length, and data type, there is a
rich design space to be explored, before even considering
the optimization space offered by HLS. This is explored in
Section IV-C.

We evaluate the quality of a turbo decoder implementation
using the following metrics:
Bit Error Rate (BER) Number of bits in error divided by the

total number of bits transmitted. This varies at different
signal to noise ratios (SNR) and results in a curve as
shown in Figures 1a, 1b and 1c.

Performance Baud rate of decoding (bits per second).
Implementation Cost Number of FPGA resources.
Power As estimated by the Xilinx Power Estimator (XPE).



B. Previous Work

Since their invention in 1993 [10], turbo codes have been
implemented in several different ways. While commonly used
for mobile, defense, and satellite communications systems,
these industrial implementations are not readily available. A
few papers have discussed designing turbo decoders using RTL
[11]–[14], either targeting an FPGA or VLSI implementation.
Their work primarily focus on architectural changes to a turbo
decoder design that can improve performance through hand
optimization. In his Master’s thesis [15], Conn designs three
hand optimized turbo decoder designs using HLS, focusing
on hardware acceleration of software defined radios (SDR).
Rather than optimizing a few designs, we focus on a large
turbo decoder design space and necessary tradeoffs in the
design process.

Apart from error-correcting systems, many research projects
have explored how one can intelligently explore a design
space using HLS [16]–[18]. These techniques offer faster
convergence to pareto-optimal designs. We have not used these
“smart exploration” techniques in our work, as they are not
yet available in commercial tools. However, when more easily
accessible in the future, they would further strengthen the
argument for using HLS for turbo code implementations.

III. TURBO DECODER IMPLEMENTATION

A. Initial Exploration

We began exploring using HLS to design a turbo decoder by
using sample C++ code from the online resources from Todd
K. Moon’s popular textbook on error correcting codes [19],
as this was one of the only open-source implementations of a
turbo decoder. We modified this software to the point where
it would be accepted by Xilinx’s Vivado HLS tool.

This software was implemented as object-oriented C++
code, and relied heavily upon dynamic object allocation, thus
requiring significant restructuring. While ultimately we were
able to modify the original code in such a way that it would
be accepted by the HLS tool, the resulting software still had a
number of issues that made it less desirable including parama-
terizing through class constructors and lack of readability due
to our refactoring. The former was a problem because Vivado
HLS had trouble optimizing the design for the parameters
that were buried within the class constructors. Ultimately we
decided to rewrite the entire code in a structure that would be
easy for the compiler to analyze and optimize. This involved
removing the class-based approach, and returning to simpler
C-like software code.

While we are frequent advocates for HLS-based design
flows (and indeed there are many benefits as demonstrated
in subsequent sections), our experience in this application
showed that it is not yet practical to expect a software designer
to simply input their existing code into an HLS tool, and very
significant code restructuring may be required.

B. Code Restructuring for HLS

Our code rewrite proved successful, and provided the
groundwork needed to explore further HLS optimizations later.

The rewritten code also required significantly fewer resources,
and produced a much faster circuit (46% of the original
latency). Design space exploration was facilitated by remov-
ing the parameterized software classes, and design parame-
ters were instead implemented as pre-compiler (#define,
#ifdef) statements. All of the standard parameters (message
length, number of iterations, etc.) could be easily defined
and modified prior to compilation. While modern software
engineering often forgoes these precompiler directives in favor
of parameterized or polymorphic classes and objects, we found
the compiler could not optimize the latter as effectively.

Other computational changes were made, such as switching
the computational order of some variables. While this does not
change the algorithm, it does influence resource usage, speed,
etc. Other works described in Section II-B demonstrate other
computational changes that can influence the final result of the
design.

C. HLS Directives

Once the code was restructured, we next focused on adding
HLS optmization directives. All HLS directives were embed-
ded inside of pre-compiler conditional statements to allow
for design space exploration. Due to computational time
and resources, not all possible or beneficial directives were
included. Instead our emphasis was on systematically and
automatically exploring a subset of the whole design space.
Once this exploration is complete a designer can choose one
of the designs to further optimize by hand.

The subset of the design space we explored focused on
the many loops in the turbo decoder. After some initial
exploration, it was determined that these optimizations had a
larger influence on resource usage and speed than other HLS
directives. Attempting to do a truly exhaustive search of all
loops was determined to be unnecessary in order to save com-
pute time. Some combinations were known to overrule each
other, such as unrolling an outer loop automatically unrolling
an inner loop, and therefore did not need to be simulated. In
the end it was settled upon to do all combinations of unrolling
and pipelining on the calculations on the probabilities in two
different categories, normalizing those calculations, the nor-
malization of the prior/extrinsic information that was passed
between BCJR decoders (see Section II-A), and the BCJR
algorithm as a whole.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Design Parameters

In the design space exploration, we considered a number of
parameters that affect the implementation of the turbo decoder:
Number of Iterations: The number of times that the turbo

decoder repeats before deciding on an answer.
Message Length: Number of sent bits before processing be-

gins.
Algorithm Variations: MAP versus Max MAP algorithms.
Data Type: Floating or fixed point. Fixed point types are

labelled as fixed-x-y, where x is the total bit width, and
y is the number of bits used for the integer.



HLS Optimization Directives: Which HLS optimizations
(loop unrolling, pipelining) are chosen from Table II.

B. Methodology

In order to rapidly produce all of the different variations, a
Vivado HLS Tcl script looped through all of the combinations
and used Vivado HLS 2018.2 to run the synthesis. We used
the synthesis report estimates to determine the resource usage
and speed of the design. Power estimates were obtained by
using Vivado 2018.2 to perform implementation and generate a
power estimate. Some designs were too large to fit on the target
chip. Vivado did not produce power estimates and power data
is left blank for these designs. All synthesis was performed
targeting the Xililnx Zynq-7000 FPGA (xc7z020clg400) with
a target clock of 100 MHz. To reduce needed synthesis
runs and computer time, approximately 100 of the variations
with no HLS directives were chosen to synthesize using all
combinations of the chosen HLS directives. These were chosen
based on a cursory analysis for designs of interest - very small
resource uses, extremely accurate, etc.

The exact same source code was also used to determine the
error-correcting abilities of a particular implementation vari-
ant. This data is presented in BER plots, which demonstrate the
error rate in the decoded data, given different signal-to-noise
ratios (error rates in transmission). We ran the executable files
generated for each turbo decoder variation (except for changes
in HLS directives because there would have been no effect on
the accuracy of the turbo decoder) through a simulated additive
white Gaussian noise (AWGN) communication channel in
python. The simulations were run until they had either decoded
250 bits incorrectly or they had transmitted 8 MB of data.
The same messages and noise (at each SNR) were used for
all variations of the turbo decoder to ensure consistent results
among the different variations.

C. Results

Figures 1a and 1b show the effect that the number of
iterations and message length can have on the accuracy of
a turbo decoder. As the number of iterations increases, the
turbo decoder is able to perform more calculations, resulting
in more accuracy. As the message length increases, there is
more information for the turbo decoder to operate on and
so produces a more accurate message. The precision of the
data type can also play a significant role in the success of the
algorithm, as seen in Figure 1c. (The double, float, fixed-64-8,
and fixed-128-16 all had the same accuracy in the simulation,
and so cannot be differentiated in the graph). Floating point
types allow greater precision, but this can be duplicated with
extremely large floating point types.

These algorithmic considerations also affect the FPGA hard-
ware required to synthesize it. Figure 2 show the consequences
of the algorithm on the power, baud rate, FFs, and LUTs
during the first HLS synthesis of the design (ie with no HLS
directives included). Areas where power is not shown are areas
that could not be synthesized in the target FPGA (without
further HLS tuning) due to size constraints. In general, changes

that tend to increase the accuracy of the received message
make the design slower, and require more resources, although
each parameter does so to varying degrees.

To evaluate the hardware costs of implementing a turbo
decoder, the Accuracy-Resource Pareto frontier was found for
each individual resource. The frontier at an SNR of 4 are
shown in Figures 3b, 3c, 4 and 5. Zoomed in versions of the
FF and LUT pareto frontiers are shown in Figure 3a. All of
the figures show the difficulty in maintaining accuracy with
limited resources. However, the rich variation of possibilities
ensures that there will likely be a viable solution to any
problem.

D. Notable Designs

Table I shows the best designs when optimizing for only
a single objective Unsurprisingly, the smallest and fastest
designs are very similar - low message length and using the
Max MAP algorithm, although having the MAP algorithm
as the minimum power breaks the pattern. We also defined
a number of costs function in order to compare the various
designs. The results can also be seen in Table I. Interestingly,
all of the designs that had the best cost functions used a
message length of 400 bits and used a float data type. A
review of the table also shows which HLS directives are more
important. 1b, 4, 5b, and 8 are the most common directive
categories that are used (see Table II for what the various
HLS directives refer to).

In addition to the single resource pareto frontier, we also
performed a multi-dimensional pareto search to find all of the
designs that were optimal in some way. From the approxi-
mately 200,000 designs that we started with, we found 2448
designs that were optimal in some combination of important
parameters. The statistics for this optimal set of designs (of
the design space that was explored) can be seen in Table III.
It seems that designs that use 100-200 bits in the message and
3-4 iterations of the turbo decoder is a good spot to start many
designs. While not shown in the table, HLS optimizations were
found across the whole spectrum of attempted combinations.

E. Software Comparison

The HLS created hardware designs were also compared
against software run times using the Zynq ARM processor.

Of the designs that were compared, 251 required no HLS
directives in order to be faster than the software. However, all
of them used fixed point data types, rather than a floating point
type. Since the processor has no hardware support for fixed
point, this makes sense. Of the 45 designs using the float data
type that were chosen for further HLS refinement, 19 resulted
in designs that were faster on the FPGA than on the processor.

The designs that were chosen for further HLS directives had
on average a 629% improvement in baud rate when compared
to the software code. Of the 30 designs in this category
that were still slower than the software, the average percent
difference to the software was only 28%.
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Fig. 1: BER Comparison for Different Parameters
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Fig. 2: Resource Comparisons for Different Parameters
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Fig. 3: Accuracy-Resource Pareto Comparisons

V. CONCLUSION

In this paper we demonstrated how algorithmic exploration
of turbo decoders could be combined with HLS optimization
exploration in order to generate a rich set of design variants.
The result was a series of best designs in 9 different categories,
and 2448 designs that were optimal in some combination of
parameters.
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