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an upset rate modeling tool that captures time-varying radiation effects for arbitrary satellite orbits using
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1. INTRODUCTION

As remote sensor technology for space systems increases in fidelity, the amount of
data collected by orbiting satellites and other space vehicles will continue to outpace
the ability to transmit that data to other stations (e.g., ground stations, other satel-
lites). Increasing future systems’ onboard data-processing capabilities can alleviate
this downlink bottleneck, which is caused by bandwidth limitations and high latency
transmission. Onboard data processing enables much of the raw data to be interpreted,
reduced, and/or compressed onboard the space system before transmitting the results
to ground stations or other space systems, thus reducing data transmission require-
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ments. For applications with low data transmission requirements, improved onboard
data processing can enable more complex and autonomous capabilities. Finally, in-
creased onboard data processing can enable future space systems to keep up with
increasingly stringent real-time constraints. However, increasing the onboard data-
processing capabilities requires high-performance computing, which has largely been
absent from space systems.

In addition to the high performance requirements of these enhanced future systems,
space environments impose several other stringent, high-priority design constraints.
System design decisions must consider the system’s size, weight, and power (SWaP)
and heat dissipation, which are dictated by the system’s physical platform configura-
tion. The satellite’s physical dimensions restrict the system’s size, the photovoltaic so-
lar array’s capacity restricts the power generation, and all heat dissipation must occur
from passive, radiative cooling, which can be slow. In addition to SWaP requirements,
system designers must consider system component reliability and system availability
because faulty space systems are either impossible or prohibitively expensive to ser-
vice. Radiation-hardened devices, with increased protection from long-term radiation
exposure (total ionizing dose), provide system reliability. While device-level radiation
hardening increases component lifetimes and reliability, these hardened devices are
expensive and have dramatically reduced performance as compared to non-hardened
commercial-off-the-shelf (COTS) components.

In order to design an optimal system, the performance, SWaP, and reliability re-
quirements of future space applications must be considered together. System design
philosophy must consider the worst-case operating scenario (e.g., typically worst-case
radiation), which may dramatically limit the overall system performance even though
the worst-case scenario may be infrequent (e.g., radiation levels typically change based
on orbital position). However, if components used for redundancy and reliability can be
dynamically repurposed to perform useful, additional computation, future space sys-
tems could meet both high-performance and high-reliability requirements. Future sys-
tems could maintain high reliability during worst-case operating environments while
achieving high performance during less radiation-intensive periods. Current design
methodologies do not account for this type of adaptability. Therefore, in order for future
space systems to achieve high levels of performance, more sophisticated and adaptive
system design methodologies are necessary.

One approach for adaptive high-performance space system design leverages
hardware-adaptive devices such as field-programmable gate arrays (FPGAs), which
provide parallel computations at a high level of performance per unit size, mass, and
power [Williams et al. 2010]. Fortunately, many space applications, such as synthetic
aperture radar (SAR) [Le et al. 2004], hyperspectral imaging (HSI) [Hsueh and Chang
2008], image compression [Gupta et al. 2006], and other image processing applica-
tions [Dawood et al. 2002], where onboard data processing can significantly reduce
data transmission requirements, are amenable to an FPGA’s highly parallel architec-
ture. Since reconfiguration enables FPGAs to perform a wide variety of application-
specific tasks, these systems can rival application-specific integrated circuit (ASIC)
performance while maintaining a general-purpose processor’s flexibility. An SRAM-
based FPGA can be reconfigured multiple times within a single application, allowing a
single FPGA to be used for multiple functions by time-multiplexing the FPGA’s hard-
ware resources, reducing the number of concurrently active processing modules when
an application does not require all processing modules all of the time. Thus, FPGA re-
configuration facilitates small, lightweight, yet powerful systems that can be optimized
for a space application’s time-varying hardware requirements.

In order to leverage FPGAs in space systems, the FPGA must operate correctly and
reliably in high-radiation environments, such as those found in near-Earth orbits. Cur-
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rently, most radiation-hardened FPGAs have antifuse-based configuration memories
that are immune to single-event upsets (SEUs). However, these hardened FPGAs have
reconfiguration limitations and small capacities, reducing the primary performance
benefits offered by COTS SRAM-based FPGAs. Fortunately, when combined with spe-
cial system design techniques, SRAM-based FPGAs can be viable for space systems. An
SRAM-based FPGA’s primary computational limitation is the possibility of SEUs caus-
ing errors within the FPGA user logic and routing resources, which can manifest as
configuration memory upsets or logic memory (e.g., flip-flops, user RAM) upsets (i.e.,
resulting in deviations from the expected application behavior). Fault-tolerant tech-
niques, such as triple-modular redundancy (TMR) and memory scrubbing, can pro-
tect the system from most SEUs and significantly decrease the SEU-induced errors,
but designing an FPGA-based space system using TMR introduces at least 200% area
overhead for each protected module. Depending on the expected upset rates for a given
space system, other lower-overhead fault tolerance methods could be used to provide
sufficient reliability while maximizing the resources available for performance.

When designing a traditional space system, system designers estimate the expected
worst-case upset rates and include an additional safety margin. However, since single-
event upset (SEU) rates vary based on orbital position and the majority of orbital
positions experience relatively low upset rates, a system designed for the worst-case
upset-rate scenario contains processing resources that are wasted during the frequent
low-upset-rate periods. In order to provide the necessary reliability during high-upset-
rate periods and reduce the processing overhead incurred during low-upset-rate pe-
riods, the fault tolerance method must change based on the current upset rate. We
propose a reconfigurable fault tolerance (RFT) framework that enables FPGA-based
systems to dynamically adapt the amount of fault tolerance based on the current upset
rate. For example, during high-upset-rate periods, the system can be reconfigured to
provide high reliability at the expense of reduced processing capabilities, while during
low-upset-rate periods the system can be reconfigured to provide higher performance
by re-provisioning the excess hardware (used for high reliability during high-upset-
rate periods) to application functionality. This upset-rate-based adaptability provides
high performance while maintaining reliability. We present an RFT hardware frame-
work for run-time support of multiple fault-tolerance methods on Xilinx FPGAs, along
with several use scenarios. We leverage dynamic partial reconfiguration (PR) to change
the fault-tolerance method during run-time without interrupting complete system ex-
ecution (the regions not under reconfiguration remain active). We develop a fault-rate
modeling tool to estimate the upset-rate variations during specific orbits, which is then
used to provide more accurate modeling parameters for a Markov-based RFT system
performability model. Modeling and performability analysis of the RFT framework is
shown in the context of two relevant case studies.

The remaining sections of this paper are organized as follows. Section 2 surveys
previous work related to this topic. Section 3 describes the RFT hardware architec-
ture, the RFT fault-rate model, and the RFT performability model. Section 4 analyzes
results obtained using our RFT fault-rate and RFT performability models with one
fault-injection case study and two orbital case studies. Finally, Section 5 presents con-
clusions and outlines directions for future research.

2. BACKGROUND & RELATED WORK

In this section, we motivate the need for SRAM-based FPGAs in space systems. The
FPGAs used in space systems must be able to withstand the amount accumulated
ionizing dose, measured as total ionizing dose (TID), expected during the mission to
ensure long-term device functionality. Single-event effects (SEEs), caused by collisions
with high-energy protons and heavy ions (i.e., radiation), are the primary short-term
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reliability concern in space systems. In order for FPGA-based systems to maintain
reliability, a combination of radiation-hardened FPGAs and complex fault-tolerance
techniques are required to mitigate errors. Since many of the common fault-tolerance
techniques require substantial temporal or spatial area overhead, new, low-overhead
techniques allow more reconfigurable logic to be used for actual, useful computation
instead of for redundancy.

2.1. FPGA Performance & Power Efficiency

SRAM-based FPGAs offer a very large amount of configurable logic and have the abil-
ity to modify portions of a design during run-time, giving these FPGAs the capability
to efficiently perform a wide range of applications by using a high degree of parallelism
while running at low clock rates. Williams et al. [2010] developed computational den-
sity metrics to quantify and predict performance of SRAM-based FPGAs for specific
types of algorithms and applications. Their analysis showed that FPGAs were capa-
ble of providing between 3 and 60 times more performance per unit power than many
conventional general-purpose processors, depending on the types of operations being
considered. The performance and power efficiency of FPGAs is extremely desirable for
the small power budgets of space systems.

2.2. Partial Reconfiguration

Partial reconfiguration (PR) enables a user to modify a portion of an FPGA’s config-
uration while the remainder of the FPGA remains operational. PR time-multiplexes
mutually exclusive application-specific processing modules on the same hardware and
only the modules that need to be reconfigured halt operation, which makes PR attrac-
tive for real-time systems. Currently, Xilinx supports PR for the Virtex-4 and newer
devices [Xilinx 2010a], while Altera has recently announced PR support for Stratix-V
devices [Altera 2010].

During the system design phase, system designers define the FPGA’s partially re-
configurable regions (PRRs) and partially reconfigurable modules (PRMs) and route
signals to/from the PRRs through bus macro PR primitives (Xilinx 9.2 PR tool flow)
or partition pins (Xilinx 12.1 PR tool flow). Partial bitstreams, communicated through
external configuration interfaces (e.g., SelectMAP, JTAG), are used to reconfigure the
PRRs with the PRMs. On Xilinx devices, the Internal Configuration Access Port (ICAP)
is an internal configuration interface, allowing user logic to directly reconfigure PRRs,
removing the need for additional external configuration support devices. Additionally,
since partial bitstreams are typically much smaller than full bitstreams (which are
used to configure the entire FPGA), PR reduces bitstream storage requirements. Par-
tial bitstreams may be significantly smaller than full bitstreams, related to the size of
each PRR.

2.3. Single-Event Effects

SEEs occur when high-energy particles, such as protons, neutrons, or heavy ions, col-
lide with silicon atoms on a device, depositing the ion’s electric charge into the de-
vice’s circuit. Protons and electrons are trapped within the Earth’s Van Allen belts,
while heavy ions are mainly produced by galactic cosmic rays and solar flares. When a
high-energy particle collides with a silicon device, the energy of the collision can cause
the logical values stored in sequential memory elements to be inverted. [Karnik and
Hazucha 2004] Errors caused by these particles are often referred to as soft errors or
SEUs, as there is no permanent circuitry damage and any affected memories can be
corrected by re-writing the correct values. Single-event functional interrupts (SEFIs),
another type of SEE, can cause a semi-permanent fault that requires a circuit to be
power-cycled to restore correct operation. Single-event latchups (SELs) are destructive
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SEEs that occur when a particle causes a parasitic forward-biased structure within the
device substrate that can allow destructively high amounts of current to flow through
the substrate, potentially damaging the device. SELs can be avoided by using appropri-
ate device manufacturing processes, and devices produced using silicon-on-insulator
(SOI) processes are largely immune. SEL immunity is an important property for se-
lecting devices for many space systems.

2.4. FPGAs in Space Systems

FPGA configuration memories can be constructed using several different technologies
(e.g., antifuse, flash, and SRAM), each with performance and reliability tradeoffs. Tra-
ditionally, antifuse-based FPGAs have been used in space systems to provide simple
processing capabilities and “glue logic” to interconnect multiple peripherals or to com-
bine/replace the functionality of multiple ASICs. Antifuse-based FPGAs are one-time
programmable where the configuration process creates/fixes the FPGA’s physical rout-
ing interconnect structure. This configuration process provides an inherent level of
fault tolerance from SEUs since the antifuse-based routing cannot be reversed. Ad-
ditionally, many commercially available antifuse-based FPGAs (e.g., Actel RTSX-SU
[Actel 2010a]) include replicated flip-flop cells to prevent upsets in the sequential
logic. Additionally, antifuse devices generally have a high TID threshold and immu-
nity to SELs. Unfortunately, when compared to flash-based or SRAM-based FPGAs,
antifuse-based FPGAs contain a relatively small amount of available logic gates and
the fixed-logic structure limits performance potential.

Flash-based FPGAs (e.g., Actel RT-ProASIC3 [Actel 2010b]) attempt to maintain an
antifuse-based FPGA’s reliability while increasing the amount of configurable logic
(logic available for a system designer to implement application functionality) and al-
lowing reconfiguration. Flash-based FPGA configuration memories are composed of
radiation-tolerant flash cells that provide reliability for combinational logic, however
system designers must insert sequential logic replication to fully protect the FPGA
from faults. Even though flash-based FPGAs can be fully reconfigured to support mul-
tiple applications, flash-based FPGAs do not support the PR capability that is available
on some SRAM-based FPGAs due to a lack of architectural and vendor support for such
a capability. Concerns over the TID effects on flash-based logic (floating-gate transis-
tors) have prevented wide-spread acceptance of flash-based FPGAs in space systems
[Wang 2003].

SRAM-based FPGAs are the most radiation-susceptible type of FPGA since the de-
sign functionality is stored in vulnerable SRAM cells (i.e., configuration memory), and
configuration memory upsets cause functional changes to the design’s logic. Tradition-
ally, this vulnerability has prevented SRAM-based FPGAs from being used in highly
critical space applications, however, some space systems use space-qualified SRAM-
based FPGAs for onboard processing. Space-qualified FPGAs are similar to COTS FP-
GAs but are produced using epitaxial wafers, use ceramic, hermetically-sealed pack-
aging, and have been tested to ensure that damaging SEL events will not compromise
the system. These devices are rated for TID levels high enough to be used in space sys-
tems [Xilinx 2010c]. Even with these reliability techniques, these space systems must
still use several fault-mitigation strategies, such as TMR and configuration scrubbing,
to ensure that system upsets are detectable and recoverable. (We note that unless
specified, all further FPGA references implicitly refer to SRAM-based FPGAs.)

Traditional FPGA-based space system designs leverage spatial TMR. TMR uses a
reliable majority voter connected to three identical module replicas in order to detect
and mask errors in any one module. In the context of TMR, a module refers to the
functional unit being replicated, which can range from a single logic gate to an entire
device. There are two primary TMR variations: external and internal. External TMR
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uses three independent FPGAs working in lockstep where each FPGA implements a
module replica and the outputs are connected to an external radiation-hardened voter
that compares the results. External TMR requires significant hardware overhead (each
protected module is triplicated and board layout complexity is significantly increased),
but is reliable. The RCC board produced by SEAKR engineering [Troxel et al. 2008]
uses external TMR to provide reliable computation using Xilinx Virtex-4 FPGAs. Al-
ternatively, internal TMR creates three identical modules within a single FPGA, and
the majority voter resides internally or externally [Carmichael et al. 1999]. Internal
TMR can reduce the number of physical FPGAs required to implement a space appli-
cation, but may increase the chance of a common-mode failure, where multiple mod-
ules fail simultaneously from a single fault. For example, a SEFI may cause multiple
internally-replicated modules to fail, whereas externally-replicated FPGAs would be
immune. Several tools assist system designers in incorporating TMR into space sys-
tem designs [Xilinx 2004; Pratt et al. 2006].

In addition to TMR, configuration scrubbing prevents error accumulation in FPGA
configuration memory. While TMR masks individual errors, TMR does not correct the
underlying fault and cannot correct errors that occur in multiple modules. Scrubbing
uses an external device to read back the FPGA’s configuration memory and compares
the read configuration memory to a known “good” copy. Alternatively, some FPGAs
calculate an error correction code (ECC) during configuration read-back for every con-
figuration frame, which can be used to detect and correct configuration faults. If a
mismatch is detected, the correct configuration can be written using PR without halt-
ing the entire FPGA operation [Xilinx 2010a]. Traditionally, scrubbing is performed by
an external radiation-hardened microcontroller to ensure reliability of the reconfigu-
ration process. However, a self-scrubber may be implemented within the FPGA using
the ICAP available in Xilinx Virtex-4 and newer devices.

Despite these drawbacks, SRAM-based FPGAs have been used in many space sys-
tems, including earth-observing science satellites, communication satellites, and satel-
lites and rovers for the Venus and Mars missions. For instance, space-qualified Xilinx
Virtex-1000 (XQVR1000) devices were used on the Mars Exploration Rovers for motor
control functions and four XQR4000XLs were used for the lander pyrotechnics [Ratter
2004]. Configuration read-back and scrubbing were used for detection and correction
of SEUs, and the full system was cycled once per Martian evening to remove persistent
errors. These systems, which contained very little logic as compared to today’s stan-
dards and lacked the ability for PR, were not used for data processing. The increased
logic resources on recent FPGA families enable future systems to use FPGAs for im-
age processing and other computation-intensive applications. The SpaceCube created
at NASA Goddard Space Flight Center uses multiple commercial Xilinx Virtex-4 FP-
GAs along with a radiation-hardened processor to provide onboard processing capabil-
ities for a variety of missions [Flatley 2010]. The SpaceCube provided computational
power for the Relative Navigation Sensors (RNS) experiment during Hubble Servicing
Mission 4 and is currently being used as an on-orbit test platform aboard the Naval
Research Laboratory’s MISSE-7 experiment on the International Space Station (ISS).
Each FPGA in the system contains a self-scrubber module, protected with TMR, to
correct errors and prevent error accumulation.

2.5. Low-Overhead Fault Tolerance Methods

While TMR is the most common fault tolerance method for FPGAs, the high area over-
head due to replicating modules partially negates some FPGA benefits. Therefore,
much research has focused on developing alternative, low-overhead fault-tolerance
methods for low-upset environments, such as replication-based fault tolerance [Laprie
et al. 1990], ECCs [Rao and Fujiwara 1989], and application-specific optimizations
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to provide low-cost reliability. Many of these alternative techniques can detect errors
quickly, but may require additional processing or complete re-computation to correct
the errors. When the expected upset rates are low, the re-computation rates may be
acceptably low, depending on application throughput requirements.

Replication-based fault tolerance represents the most commonly used type of fault-
mitigation strategy, due to conceptual simplicity and high fault coverage. TMR can
detect single errors and can correct/mask single errors using a majority voter. Dupli-
cation with compare (DWC) is an alternative replication-based method that compares
the outputs of duplicated modules. DWC reduces the resource overhead by one half
as compared to TMR, but DWC cannot correct errors and must fully re-compute data
when errors are detected [Johnson et al. 2008]. Shim et al. [2004] proposed reduced-
precision redundancy (RPR) for numerical computation using either DWC or TMR, but
reduced the resource overhead by only replicating the higher-order bits. RPR reduced
the number of detectable faults (fault coverage), but resulted in significant resource
savings while maintaining sufficient signal-to-noise ratios for many DSP applications.
Morgan et al. [2007] investigated the use of temporal redundancy and “quadded logic”
as additional methods for providing fault tolerance through redundancy. However, due
to inefficient mapping to the underlying FPGA architecture, their methods did not
provide fault tolerance improvement over TMR and imposed a large area overhead.
The effects of the fault-tolerant methods were offset by the increased cross-sectional
vulnerability of the larger FPGA designs.

Even though these replication-based methods for fault tolerance are suitable for FP-
GAs, several new fault-tolerant FPGA architectures leverage an FPGA’s high capacity
and flexibility while maintaining reliability. Alnajiar et al. [2009] proposed a hypo-
thetical coarse-grained multi-context FPGA architecture that supported TMR, DWC,
and single-context modes. Their work explored the effects of soft errors and aging on
the proposed architecture, with an example Viterbi decoder module mapped to the
hypothetical architecture. Kyriakoulakos and Pnevmatikatos [2009] proposed simple
modifications to the current Virtex-5 and Virtex-6 architectures to allow native sup-
port for DWC and TMR. By adding an XOR-gate between each 5-input LUT within a
larger 6-input LUT, the existing architecture and synthesis tools required only min-
imal changes to support their approach, while incurring only 17.5% to 76% slice uti-
lization overhead for DWC or TMR, respectively.

Algorithm-based fault tolerance (ABFT) is a method that can be used with many
linear-algebra operations, such as matrix multiplication or LU decomposition [Huang
and Abraham 1984]. ABFT augments an original data matrix with row and/or column
checksums and the linear-algebra operation is performed on the new, augmented ma-
trix. If the linear-algebra operation completes successfully, the resulting augmented
matrix will contain valid, consistent checksums. ABFT checksum generation and com-
parison has lower computational complexity than the primary linear-algebra opera-
tion. ABFT computational overhead is generally low, and as a proportion of total com-
putation, decreases as the matrix size increases. Methods similar to ABFT can also
protect data in FFT-based algorithms [Wang and Jha 1994], which are fully comprised
of linear operations. Silva et al. [1998] investigated vulnerabilities in traditional ABFT
implementations and proposed methods for improving fault coverage using a Robust
ABFT approach. ABFT may be used in FPGA applications to provide datapath pro-
tection with low overhead while other fault-tolerance methods, such as TMR, protect
control logic.

3. RECONFIGURABLE FAULT TOLERANCE

RFT leverages COTS components in space systems to achieve high performance and
flexibility while maintaining reliability. Beyond traditional, spatial TMR, alternative
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Fig. 1: System-on-Chip Architecture with RFT Controller

fault-mitigation methods may be appropriate given a particular application’s perfor-
mance requirements and set of expected environmental factors (e.g., radiation). Other
methods, such as temporal TMR, ABFT, software-implemented fault tolerance (SIFT),
or checkpointing and rollback, may be suitable for system-level protection. Each al-
ternative fault-mitigation method has tradeoffs between performance, reliability, and
overhead, and Pareto-optimal operation may change over a system’s lifetime. There-
fore, the main goal of our proposed RFT framework is to enable a system to au-
tonomously adapt to Pareto-optimal operation based on the current system’s environ-
mental situation.

Our RFT framework consists of three main elements: a PR-based hardware archi-
tecture; a fault-rate model for estimating orbital SEU rates; and a methodology for
modeling RFT system performability. The hardware architecture, described in Section
3.1, is similar to other traditional SoC architectures used for reconfigurable comput-
ing, with multiple, identical PRRs, which are leveraged for module redundancy. The
hardware architecture allows the system to execute each processing module (PRM)
in several possible fault-tolerance modes, each with differing performance and relia-
bility characteristics. RFT software adapts the amount of per-module redundancy in
accordance with the current environment and temporarily pauses only the reconfig-
ured hardware modules to preserve and record application state while changing the
fault-tolerance mode, allowing the remainder of the system to continue processing. Ad-
ditionally, modules with constant state can continue processing during the adaptation
process. Section 3.2 presents a model for estimating expected fault rates in potential
space-system orbits. Finally, Section 3.3 presents a performability model that quanti-
fies the RFT benefits in environments with varying upset rates.

3.1. RFT Hardware Architecture

Figure 1 shows the high-level architecture of an FPGA-based SoC design with PRRs
integrated with an RFT controller. The main architectural components include a mi-
croprocessor, a memory controller, I/O ports, PRRs (1 . . . N) for PRMs, and the system
interconnect, which connects all of these components to the microprocessor. Since we
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Table I: RFT Fault-Tolerance Modes

Fault-Tolerance Mode Fault-Tolerance Type PRRs Required

Triple Modular Redundancy (TMR) Redundancy 3
Duplication with Compare (DWC) Redundancy 2
High-Performance (HP) - no fault protection Single-Module 1
Algorithm-Based Fault Tolerance (ABFT) Single-Module 1
Internal TMR Single-Module 1

leverage Xilinx FPGAs, the microprocessor is a MicroBlaze (less resource-intensive
processors such as PicoBlaze can also be used) and the system interconnect is a pro-
cessor local bus (PLB). The MicroBlaze orchestrates PRR reconfiguration using the
ICAP, maintains the state of the currently active PRMs, and initiates fault-tolerance
mode switching.

All architectural components except for the PRRs are protected using TMR since
these components’ functionality is crucial to the entire system’s reliability. Although
the ICAP cannot be replicated, the signals to and from the ICAP are also protected
with TMR. Tools such as Xilinx’s TMRTool [Xilinx 2004] or BYU’s EDIF-based TMR
tool [Pratt et al. 2006] automate TMR design creation by applying low-level TMR vot-
ing on the design’s original, unprotected netlist. For additional SEU protection, FPGA
configuration scrubbing should be performed in order to prevent error accumulation.
Scrubbing can be performed with an external scrubber and radiation-hardened con-
figuration storage or with an internal scrubber using the internal configuration ECC
present in Virtex-4 and later devices.

Each PRM uses a PLB-compatible interface that connects to the RFT controller or
directly to the PLB based on whether the PRM is an RFT-enabled module (a module
replicated/instantiated by the RFT controller) or not, respectively. The RFT controller
instantiates the bus macros or other low-level components required for interfacing
with the PRRs. The RFT controller also contains multiple majority voters and com-
parators (voting logic) that can be used to detect or correct errors by evaluating the
replicated PRMs’ outputs. The RFT-enabled modules are used in parallel to create
redundancy-based, fault-protection modes (e.g., DWC, TMR) by interfacing with the
RFT controller’s voting logic. Additionally, other single-module fault-protection modes,
such as ABFT, can be used for individual PRRs and the RFT controller provides addi-
tional fault tolerance components, such as watchdog timers, to detect hanging condi-
tions within PRMs.

Table I lists the currently supported fault-tolerance modes of RFT and the modes’
fault-tolerance type and PRR requirements. The MicroBlaze evaluates the system’s
current performance requirements and monitors external stimuli (radiation) using
external sensors to determine when the fault-tolerance mode should be switched, at
which time the MicroBlaze reconfigures the appropriate PRRs and the RFT controller’s
internal voting scheme between the PRRs’ outputs for the new fault-tolerance mode.

3.1.1. RFT controller operation. Figure 2 illustrates the interface between PRRs and the
PLB for an RFT controller that can operate in single-module and redundancy-based
fault-tolerance modes. This RFT controller interface routes input signals from the sys-
tem interconnect to the appropriate PRRs and routes voting output signals back to
the PLB. The abstraction of this logic into the RFT controller enables pre-existing
PRMs to leverage the fault-tolerance modes and interface with the RFT controller
with minimum modifications. To communicate data and control signals between the
MicroBlaze, the PRRs, and the RFT controller, at design time, the system designer
assigns a large memory-mapped region of the MicroBlaze’s address space to the RFT
controller. In order to route signals to specified PRRs, the system designer also subdi-
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Fig. 2: RFT Controller PLB-to-PRR Interface

vides this region into smaller subregions and assigns a subregion to each PRR, while
taking into consideration the memory interface requirements of each potential PRM.
Each PRM must implement the actual memory interface (e.g., dual-port RAM, FIFO-
based interface), which allows pre-existing PRMs to interface with the RFT controller
with minor modifications since no specific interface is required. When communication
data from the MicroBlaze arrives over the PLB, the RFT controller’s address decoder
processes the input address and determines the destination PRR(s) based on the cur-
rent fault-tolerance mode. While operating in single-module fault-tolerance modes, the
data is passed directly to the PRR specified by the decoded address. While operating
in redundancy-based fault-tolerance modes, the data is passed to multiple PRRs using
appropriate enable signals to the PRRs’ interfaces.

The RFT controller routes the outputs from each individual PRR, the outputs from
the voting logic via the FT-mode register, or recorded internal status information over
the PLB to the MicroBlaze. When the MicroBlaze requests a PRR’s output, the RFT
controller’s output multiplexer (Output Mux in Fig. 2) selects the appropriate PRR out-
put to route to the PLB controller based on the decoded address from the MicroBlaze
and the current FT-Mode value. In single-module fault tolerance modes, the RFT con-
troller’s output multiplexer routes signals directly from the PRRs to the PLB controller,
which bypasses the RFT’s internal voting logic. In redundancy-based fault-tolerance
modes, the output multiplexer routes the verified outputs from the RFT controller’s
voting logic to the PLB controller.
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In addition to providing routing and voting logic for redundancy-based fault-
tolerance modes, the RFT controller supports additional fault-tolerance capabilities
that do not require redundant PRMs. If the system is operating in a single-module
fault-tolerance mode, each PRM may use the RFT controller’s watchdog timers or per-
form internal fault detection. The RFT controller provides each PRR with an optional
watchdog timer interface using a signal that must be asserted periodically within a
user-defined time interval (usually on the order of seconds). If the PRM does not assert
the watchdog timer reset signal within the time interval, the RFT controller’s inter-
rupt generator asserts an interrupt signal to the MicroBlaze, alerting the MicroBlaze
of a possible failed PRR. Additionally, PRMs that perform internal fault detection must
include an interrupt signal to notify the RFT controller of internally detected errors,
which the RFT controller propagates to the MicroBlaze. PRMs using ABFT perform
self-checking (or self-correction if the ABFT operation permits) on internally gener-
ated checksums and send an interrupt signal to the RFT controller when data errors
are detected. Similarly, PRMs that use internal TMR can also signal detected and cor-
rected errors to the RFT controller. PRMs without any specific fault-tolerance features
can also use the RFT controller’s watchdog timer, which still allows the RFT controller
to detect module hang-ups or other operational errors.

3.1.2. MicroBlaze operation. In an RFT system, the MicroBlaze enables additional op-
erational features, such as fault-tolerance methods to complement the fault-tolerance
modes offered by the RFT controller. Additionally, the MicroBlaze maintains the sys-
tem’s fault-tolerance state (e.g., active PRMs, current PRRs’ fault-tolerance modes,
etc.) and orchestrates PRR reconfiguration and the fault-tolerance mode switching pro-
cess.

To protect the application state while reconfiguring PRRs, the MicroBlaze provides
support for PRM checkpointing and rollback [Bowen and Pradham 1993; Naeimi and
DeHon 2008]. A checkpoint, which the MicroBlaze stores in enternal memory, consists
of the minimum set of application state information needed to restore the application’s
current state. In the event of a fault, an application can use the previous checkpoint
to roll back to a known good state, instead of wasting execution time by beginning
execution at an initial starting state. A PRM’s state can be checkpointed if the PRM
can be read and modified by the MicroBlaze. In an RFT system, the state of all PRMs
should be checkpointed periodically in order to reduce wasted computation in the event
of a fault-induced PRM restart. The stored checkpoints can then be used during fault
recovery procedures to improve system availability.

In addition to handling PRM checkpointing, the MicroBlaze also handles fault recov-
ery and reconfiguration procedures. If the RFT controller’s voting logic detects faults
in the PRMs’ outputs, the RFT controller records fault status information about the
faulty PRM (e.g., error location, time, etc.) in internal FT-status registers and sends
an interrupt to the MicroBlaze, which initiates the reconfiguration procedure. The FT-
status registers record fault status information that may be used by the MicroBlaze
to make fault-tolerance mode decisions or to provide system log information to system
operators. For single-module fault-tolerance modes, the MicroBlaze corrects the faulty
PRM by reconfiguring the PRR with the PRM’s original bitstream over the ICAP. For
the DWC fault-tolerance mode, both of the associated PRMs must be reconfigured since
the faulty PRM cannot be identified. If checkpoints exist for the PRMs, the MicroBlaze
initializes the new PRMs using these checkpoints. Alternatively, if the RFT system
is operating in the TMR fault-tolerance mode, the MicroBlaze checkpoints one of the
non-faulty PRMs while the faulty PRM is reconfigured. After the non-faulty PRM has
been checkpointed, the RFT controller pauses the non-faulty PRMs using clock gat-
ing to keep the PRMs synchronized. Once the faulty PRM has been reconfigured, the
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MicroBlaze initializes the newly reconfigured PRM from the most recent checkpoint,
and the RFT controller can re-enable the clocks for all three of the replicated PRMs to
resume operation.

Finally, the MicroBlaze orchestrates the switching procedure between different RFT
fault-tolerance modes. Fault-tolerance mode switching can be triggered by external
events, by a priori knowledge of the operating environment, or by application-triggered
events, and the fault-tolerance mode switching procedure may vary on a per-system
basis depending on the specific system performance and reliability requirements. The
MicroBlaze can use information from the fault-status registers to make Pareto-optimal
decisions about future fault-tolerance modes. Before fault-tolerance mode switching,
the MicroBlaze ensures that sufficient PRRs are available for the new fault-tolerance
mode. Additional PRRs may be required or PRRs may be freed when switching from
a single-module fault-tolerance mode to a redundancy-based fault-tolerance mode or
vice versa, respectively. The MicroBlaze signals the RFT controller to change fault-
tolerance modes by writing to the RFT controller’s FT-Mode register. The MicroBlaze
reconfigures the PRRs involved in the fault-tolerance mode switching via the ICAP
with partial bitstreams for the appropriate PRM or a blank partial bitstream if the
PRR is not required for the new fault-tolerance mode. When the reconfiguration pro-
cess is complete, the MicroBlaze signals the RFT controller, by rewriting the FT-Mode
register, to resume PRM operation.

3.1.3. Environment-Based Fault Mitigation. RFT fault-tolerance mode switching can be
triggered by a priori knowledge of the operating environment, by application-triggered
events, or by external events. While a priori knowledge and application-triggered
events are convenient for modeling purposes, real-world systems leverage measure-
ments from attached sensors to determine the system’s current environmental status.
Additionally, due to the unpredictability of space weather conditions, such as solar
flare events, an RFT system must be able to respond dynamically to the changing en-
vironment.

In an RFT system, the current expected fault rate can be estimated either directly
or indirectly. An external radiation sensor can be directly interfaced with the FPGA,
allowing the MicroBlaze to track the current fault rate and predict future fault rates.
Alternatively, the RFT system can indirectly determine fault rates by tracking the
number of data and configuration faults detected during operation. Since an FPGA’s
fabric is composed of large SRAM arrays, these arrays can be used as makeshift radia-
tion detectors. If a fault is detected in the FPGA configuration or data memory, either
through readback during scrubbing or from the RFT controller’s logic, the fault can be
recorded or can be used to make decisions about which RFT fault-tolerance mode to
use. One simple, rule-based method for choosing the RFT fault-tolerance mode is to
use a sliding window approach. For instance, a system may use the following rules:

(1) If there were any faults in the past 5 minutes, use the DWC fault-tolerance mode.
(2) If there were more than 5 faults in the past 5 minutes, use the TMR fault-tolerance

mode.
(3) Only transition from the TMR fault-tolerance mode to a lower-reliability mode af-

ter 5 minutes for fault-free operation.

The size of the sliding window and the RFT fault-tolerance mode choices are system-
and mission-dependent. A larger window size can provide a more conservative fault-
tolerance strategy, while a small window size can more quickly adapt to spikes in the
experienced fault rate. Implementing a rule with hysteresis, such a rule (3), can pro-
duce a more reliable strategy, while requiring a smaller window size. The time required
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Table II: RFT Controller Resource Usage

Module Name LUTs Used FFs Used Slices Used FPGA Utilization

PLB Controller 479 375 345 1.4%
Address Decoder 238 0 136 0.5%
RFT Registers 82 64 48 0.2%
Watchdog Timers 498 390 366 1.4%
Voting Logic 438 0 234 0.9%
Output Mux 227 0 132 0.5%

Total 1962 829 1261 5.0%

for transitioning between RFT modes is dominated by the PRR reconfiguration time,
which will be discussed in the next section.

3.1.4. RFT Controller Resource and Performance Overheads. To quantify the RFT con-
troller’s resource overhead, we implemented an RFT-based system on a Virtex-4 FX60-
based platform, similar to the SpaceCube. The design uses six PRRs connected to a
MicroBlaze through a PLB-connected RFT controller and operates at 100 MHz. Each
PRR contains 2,000 slices for user logic. Each PRR can operate in high-performance
(HP) mode, DWC-mode with the PRR’s neighboring PRRs, or TMR-mode with two con-
secutive, neighboring PRRs. The resources (LUT, FF, and slice) required for the RFT
controller and constituent modules are detailed in Table II. The final column of Table
II shows the percentage of the Virtex-4 FX60 used by each module. The RFT controller
logic, excluding the PLB controller that would be required for non-RFT designs, re-
quires approximately 900 slices. The largest modules within the RFT controller are
the (optional) watchdog timers and the voting logic. Overall, the complete RFT con-
troller uses approximately 5% of the total FPGA.

Since frequent PRR reconfiguration combined with lengthy PRR reconfiguration
time can impose a performance overhead, we measured the reconfiguration of a single
PRR. The PRR reconfiguration time was measured using timing functions on a Mi-
croBlaze with a PLB-attached ICAP controller running at 100 MHz. We measured the
PRR reconfiguration time for a 2,000 slice PRR as approximately 15 ms. Even though
the RFT mode-switching overhead is dominated by this PRR reconfiguration time, the
mode-switching time incurs a negligible performance penalty due to the likely low
frequency of mode-switching. Additionally, the switching overhead only occurs when
increasing the fault tolerance redundancy (i.e., switching from DWC to TMR). When
decreasing the fault tolerance redundancy, the retained modules can continue running
without interruption.

3.2. RFT Fault-Rate Model

In order to analyze RFT’s reliability benefits, a suitable fault-rate model that incorpo-
rates varying fault rates, system performance capabilities, and system fault-tolerance
modes is required. Traditional reliability analysis focuses on quantifying permanent
hardware failures in systems with long lifetimes. Since many processors and FPGAs
have a high TID and can withstand decades of use in near-Earth environments, perma-
nent hardware failures due to long-term, end-of-life failures can be ignored. Therefore,
reliability analysis for space systems focuses on short-term failure analysis by model-
ing SEU-induced computational failures. For FPGA-based systems, these failures can
cause either single or multiple data errors through corrupted data or configuration
memory. FPGA upset rates for space systems are correlated with the magnetic field
strength of the system’s current orbital position. For example, as a system passes into
the Van Allen radiation belt, the trapped charged particles in the belt have a higher
likelihood of interacting with the system. For systems in a low-earth orbit, only a por-
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Fig. 3: RFT Fault-Rate Model

tion of the orbit passes through the inner Van Allen belt, at a location known as the
South Atlantic Anomaly (SAA). The SAA represents the low-altitude area with a large
number of trapped particles from the inner Van Allen belt’s closest point to the Earth.

Existing fault-rate modeling generally produces a single, average orbital upset rate,
however this average is not sufficient for RFT. In order for RFT to adapt the fault-
tolerance mode, the fault-rate model must estimate the expected fault rates based on
the instantaneous orbital position. To account for the orbit-dependent, time-varying
fault rates, data from several sources can be combined to form a more accurate esti-
mate than a single average rate. Our fault-rate model combines orbital position and
trajectory, magnetic field strength, and cosmic ray particle interaction data to provide
an accurate estimate of instantaneous fault rates. We use these fault-rate estimates
as input into multiple system-level Markov models in order to calculate reliability,
availability, and performability of RFT systems.

Our RFT fault-rate model combines three existing models to estimate time-varying
fault rates. Figure 3 illustrates the three models used as well as the inputs and outputs
to each model. To generate accurate fault estimates, a system’s time-varying orbital
position must be modeled. Orbital position can be estimated using the SGP4 model,
which is a simplified general perturbation modeling algorithm. NORAD, who is re-
sponsible for tracking space objects and space debris, developed SGP4 for tracking
near-earth satellites [Hoots and Roehrich 1980]. SGP4 accurately calculates a satel-
lite’s position given a set of orbital elements (apogee, perigee, inclination, etc.) collec-
tively referred to as a two-line element (TLE). Given a system’s TLE, the RFT fault-
rate model uses SGP4 to generate the system’s position information, in terms of lat-
itude, longitude, and altitude, over the user-defined modeling time period. Next, the
RFT fault-rate model passes the SGP4 positioning information for each point along
a specified orbit to the International Association of Geomagnetism and Aeronomy’s
(IAGA) International Geomagnetic Reference Field (IGRF) model [Maus et al. 2005],
which models the Earth’s magnetosphere. IGRF combines magnetosphere data col-
lected from satellites and observatories around the world in order to create the most
accurate and up-to-date model possible (the model is updated every five years). For a
given orbital position, IGRF outputs a McIlwain L-parameter, representing the set of
magnetic field lines that cross the Earth’s magnetic equator at a number of Earth-radii
equal to the value of the L-parameter. The inner Van Allen radiation belt corresponds
to L-values between 1.5 and 2.5. The outer Van Allen belt corresponds to L-values be-
tween 4 and 6. In addition to identifying regions with trapped particles, the McIlwain
L-parameter can be used to estimate the effect of geomagnetic shielding (cutoff rigid-
ity) from galactic cosmic rays. . The estimated L-parameters are then used, along with
the outputs of CREME96, to estimate SEU rates.
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The CREME96 model [Tylka et al. 1997], a publically available SEU estimation
tool, generates fault-rate estimates and has been used extensively to predict heavy ion
and proton-induced SEU rates, as well as estimate the expected total ionizing dose
in modern electronics. CREME96 combines orbital parameters, space system physi-
cal characteristics, and silicon device process information to create a highly accurate
SEU simulation. Traditionally, CREME96 generates an average fault rate for a par-
ticular orbit, generated by averaging hundreds of orbits together. However, CREME96
can also generate fault rates for orbital segments, which can be segmented using the
McIlwain L-parameter. By running several simulations with very narrow L-parameter
segments, CREME96 can obtain estimated fault rates for each segment. As the width
of each segment decreases, the generated fault rates become more precise and contin-
uous. The L-parameter outputs from the IGRF model are then mapped to the appro-
priate orbital segment and the associated fault rate.

The SGP4, IGRF, and CREME96 models collectively generate a time-varying fault-
rate estimate over the course of a specified orbit. We implemented the RFT fault-rate
model as a C++-based program that connects the separate models together and passes
data between them. SGP4’s algorithms, along with C++/Java reference code, are pub-
lically available via the Internet. A FORTRAN-based implementation of the IGRF al-
gorithm for calculating position-based McIlwain L-parameters is publically available
from NASA Goddard [Macmillan and Maus 2010]. Fault-rate information can be gen-
erated from the CREME96 model through a web-based interface, which is stored for ef-
ficient offline use. Orbits described by TLEs can be visualized using open-source tools,
such as JSatTrak [Gano 2010]. The RFT fault-rate model program accepts TLE data
as input and generates time-varying fault-rate estimates as output. These fault-rate
estimates are then used by the RFT performability model.

3.3. RFT Performability Model

System reliability is the probability that a system is operating without faults after a
specified time period. Assuming exponentially-distributed random faults at rate λ, the
system reliability is traditionally defined as:

R(t) = e−λt (1)

Mean-time-to-failure (MTTF) and Mean-time-to-repair (MTTR), are the average
amounts of time before a system encounters a failure (or repair) event. For a fault
rate λ (or repair rate µ), MTTF (or MTTR) is defined as:

MTTF =

∫
∞

0

t ·Rλ(t) dt MTTR =

∫
∞

0

t · Rµ(t) dt (2)

System availability, which is similar to system reliability, estimates the long-term,
steady-state probability that the system is operating correctly, and is defined as:

A =
MTTF

MTTF +MTTR
(3)

System unavailability is the opposite of availability, and is often used for convenience
when discussing systems with very high availability. Unavailability is defined as:

UA = 1−A =
MTTR

MTTF +MTTR
(4)

Space system reliability and availability can be accurately modeled using Markov mod-
els. A Markov model is composed of states and transition rates. A state represents the
current operating state of the system and the transition rates represent the transitions
from an operating state to a failure state (i.e., failure rates), or from a failure state to
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an operating state (i.e., repair rates). The Markov model can be transformed into a se-
ries of equations, which can be solved or approximated numerically using tools such as
SHARPE, an open-source fault-modeling tool [Sahner and Trivedi 1987], to determine
probabilities of each state. System reliability and availability can be directly deter-
mined from the calculated state probabilities. For Markov models, the instantaneous
availability of repairable systems measures the probability of being in an “available”
vs. “failed” state at a given point in time. These types of models are frequently used
to estimate the effects of TMR, scrubbing, and other fault-tolerance methods in FP-
GAs and other electronics [Pratt et al. 2007; Dobias et al. 2005; Garvie and Thompson
2004].

Markov reward models, a type of weighted Markov model, can be used to extend
the concept of system availability to measure system performability of adaptable sys-
tems [Meyer 1982; Ciardo et al. 1990]. Performability is a metric that combines system
availability with the amount of work produced by the system and gives a measure of
total work performed. Performability is especially useful for gracefully degradable sys-
tems or other systems that having changing characteristics over time. Assuming that
X(t) is a semi-Markov process with state space S and is continuous over time t > 0,
the instantaneous performability is defined by

Performability(t) =
∑
a∈S

Perf(a) · P{X(t) = a} (5)

where Perf(a) is the system performance in state a. System performance can be de-
fined using any desired performance metric (e.g., throughput, execution time, etc.) and
performability is measured similarly. In this context, instantaneous availability can
be viewed as a special case when the Perf(a) = 1 in available states and Perf(a) = 0
otherwise.

For reconfigurable FPGA systems where the system configuration changes over time
(e.g., our RFT architecture), the system must be modeled as a phased-mission system.
A phased-mission system is described using a set of unique models for each phase
of the mission. The states at the end of a given phase’s model map to the states of
the following phase’s model during phase transitions and the phase duration can be
modeled as either probabilistic or deterministic [Kim and Park 1994; Alam et al. 2006].

We use the RFT fault-rate model’s generated fault-rate estimates to drive multi-
ple system-level Markov models in order to calculate reliability, availability, and per-
formability of RFT systems. In order to incorporate varying fault rates (due to orbital
position) and varying system topologies (due to RFT), we leverage a phased-mission
Markov approach. We model the RFT system as a collection of individual phases, with
each phase consisting of a period of time where the fault-tolerance mode, failure rates,
and repair rates are constant. The phase lengths are both application-dependent and
orbit-dependent. At the end of each phase, the pre-transition state probabilities are
mapped onto initial probabilities for the post-transition Markov model. Figure 4 illus-
trates an example high-level model transitioning from TMR to DWC at time t1, and
then transitioning from DWC back to TMR at time t2. Fault rates (λ) and repair rates
(µ) are represented as directed graph edges between states. At each phase transition
(denoted by the dashed vertical lines), state probabilities are re-mapped (dashed ar-
rows). When re-mapping state probabilities from TMR to DWC, two TMR states are
merged into a single operational state. When re-mapping from DWC to TMR, the sin-
gle operational DWC state maps to the most-similar TMR state. Each fault-tolerance
mode has an associated Markov model. Each state of the Markov model corresponds to
the number of operational devices in a system (e.g., PRRs in an FPGA-based SoC).
Transitions between states occur when a device changes state from operational to
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Fig. 4: Phased-mission Markov model transitioning between TMR and DWC modes

failed, or vice-versa. FPGA upset rates are estimated using the RFT fault-rate model
described in Section 3.2. The system repair rates are based on the system-designer-
specified scrub rate and checkpointing rate and the system and PRR reconfigura-
tion time, which can be obtained experimentally. Transitions between fault-tolerance
modes are mission-dependent. State-mapping functions ensure a continuous availabil-
ity function, although performability may contain discontinuities at phase transitions.

Figure 5 shows Markov model representations for each fault-tolerance mode in a
system with six PRRs. Figures 5(a) and 5(b) represent systems where each PRR is op-
erating in the HP or ABFT fault-tolerance modes, respectively. Figure 5(c) represents
a system using three independent pairs of PRMs operating in the DWC fault-tolerance
mode. Figure 5(d) represents a system using two independent sets of three PRMs op-
erating in the TMR fault-tolerance mode. Solid circles represent the Markov model’s
available operating states and dashed circles represent failed operating states. Us-
ing the definition of performability from Eq. 5, each state in a Markov reward model
is assigned a performance throughput value. For this analysis, system performance is
normalized to the work performed by a single PRR. The performance throughput value
of each state is represented in the Markov model by the value in the rectangles. For
example, six independent PRRs running concurrently in the HP fault-tolerance mode
would have a performance throughput value of 6 while a system using six PRRs with
two independent sets of PRRs operating in the TMR fault-tolerance mode would have
a performance throughput value of 2.

The ABFT Markov model is used to demonstrate a generic reliability model for
modules that contain some form of internal fault tolerance and are capable of self-
detecting data errors. In particular, ABFT provides a low-overhead method for detect-
ing errors in certain linear algebra operations. While hardware-implemented ABFT
may not have 100% fault coverage, hardware-implemented ABFT provides improve-
ments over the HP model, which cannot detect when corrupt data is returned. In the
Markov model for the single-module ABFT mode, we estimate the performance of a
single module as 80% of the default, unprotected module due to the performance over-

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Adam Jacobs et al.

Fully 

Operational

1 Failed 

Module

2 Failed 

Modules

3 Failed 

Modules

4 Failed 

Modules

5 Failed 

Modules

6.0

5.0

4.0

3.0

2.0

1.0

6 Failed 

Modules

0

6 λ

5 λ

4 λ

3 λ

2 λ

1 λ

Fully 

Operational

1 Failed 

Module

2 Failed 

Modules

3 Failed 

Modules

4 Failed 

Modules

5 Failed 

Modules

4.8

4.0

3.2

2.4

1.6

0.8

6 Failed 

Modules

0

7.2 λ

6 λ

4.8 λ

3.6 λ

2.4 λ

1.2 λ

µ

µ

µ

µ

µ

µ

Fully 

Operational

1 Failed 

Module

2 Failed 

Modules

3.0

2.0

1.0

6 λ

4 λ

µ

µ

3 Failed 

Modules

0

2 λ µ

Fully 

Operational

One Degraded 

Instance

Multiple 

Modules

Failed

Two Degraded 

Instances

One Failed 

TMR Instance

One Failed, 

one degraded 

TMR Instance

6 λ

2 λ 3 λ

3 λ 4 λ

2 λ

µ

µ

µ

µ

µ

2.0

2.0

2.01.0

1.0

0

(a) 6x HP (b) 6x ABFT (c) 3x DWC (d) 2x TMR

Fig. 5: Markov Models of RFT Modes

head associated with generating and comparing checksums for fault detection [Acree
et al. 1993]. Additionally, ABFT fault rates are modeled as having a 20% higher fault
rate than unprotected modules due to the increased module size from the ABFT logic.
The repair rate for the ABFT model uses the system’s scrubbing rate, supplying a
worst-case repair rate for cases when ABFT logic does not detect (or even introduces)
an error, relying on external scrubbing and configuration readback to detect errors.
Although these numbers are application- and implementation-specific, the numbers
represent overhead costs that must be considered. The ABFT model can also be used
to model other modules using user-implemented fault tolerance techniques. For a given
phased-mission Markov model, a TLE is used to determine the expected fault rates us-
ing the RFT fault-rate model in Section 3.2. These fault rates, along with a description
of the mission-specific criteria for using each fault-tolerance mode, are used to split a
full space mission into distinct phases for Markov modeling. RFT phases are periods of
time with constant fault rates, repair rates, and fault-tolerance modes. For each phase,
the previous phase’s state probabilities are mapped onto the new phase’s Markov
model as initial probabilities. SHARPE processes the new model to numerically solve
the state probabilities and reliability metrics for the current phase. SHARPE’s results
provide the initial probabilities for the next phase. This process is repeated iteratively
for each phase for the entire mission’s duration and SHARPE’s results are aggregated
to produce overall reliability results.

4. RESULTS AND ANALYSIS

In this section, we present one validation case study and two orbital case studies to
evaluate the potential reliability and performance benefits of our RFT framework for
space systems. The validation case study uses FPGA fault injection to estimate fault
rates and error coverage, which can then be used by the other case studies. The orbital
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case studies represent FPGA-based space systems operating in two common orbits,
with multiple performance and reliability requirements. The first case study repre-
sents a space system operating in low-Earth orbit (LEO), the Earth Observing-1 (EO-1)
satellite. Space systems in a LEO experience relatively low radiation. The second case
study represents a space system operating in a highly elliptical orbit (HEO), which
is a much harsher radiation orbit. Each case study will compare multiple adaptive
fault-tolerance strategies to a traditional static TMR strategy.

4.1. Validation Case Study

In order to validate our reliability models, faults must be injected into an executing
RFT system. In this section, we present FPGA fault-injection results gathered using
the Simple, Portable Fault Injector (SPFI) [Cieslewski et al. 2010]. SPFI performs fault
injection using both full and partial reconfiguration, which reduces the time required
to modify configuration memory and improves the speed of fault injection. However,
due to the time required to inject and test each fault, testing every bit in the configura-
tion memory may be infeasible. Instead, SPFI uses random sampling and a statistical
approach to estimate design vulnerability. We validate our reliability models by corre-
lating SPFI’s results with analytical Markov model results.

For the validation case study, we implemented a simplified RFT-based system on a
Xilinx ML505 FPGA development platform. The RFT-based system had a 3-PRR RFT
controller that allowed HP and TMR voting and had watchdog timer functionality.
Each PRR contained a matrix multiplication (MM) PRM and a MicroBlaze processor
in the static region streamed data from a UART to an MM PRM and streamed results
back to the UART. The SPFI fault-injection tool enabled individual system components
(e.g., PRMs, RFT controller, MicroBlaze) to be tested independently without modifying
the entire system. Table III shows the RFT systems’ fault-injection results. For each
system component, Table III indicates the number of injections performed and the
number of data errors and system hangs detected. The fault vulnerability for each
component is scaled to the FPGA’s total number of configuration bits to estimate the
components’ design vulnerability factor (DVF). A component’s/device’s DVF represents
the percentage of bits that are vulnerable to faults and can result in observable errors.

Most Xilinx FPGA designs have a DVF that ranges from 1%-10% [Xilinx 2010b]
due to the large amount of configuration memory devoted to routing. The DVF for
each component is calculated by measuring the component’s fault rate, estimating the
number of vulnerable bits by scaling the fault rate to the size of the area occupied
by the component, and dividing the number of vulnerable bits by the total number of
FPGA configuration bits. For the following experiments, 100,000 bits were randomly
selected from each region under test in order to estimate the DVF within a narrow
95% confidence interval. For a single MM PRM with the RFT controller using HP
mode, only 1.6% of faults that occurred in the PRR were found to cause observable er-
rors in the output. Approximately 41,497 vulnerable bits in each PRR, which occupies
approximately one-eighth of the FPGA, results in a DVFMM of 0.197%. In this case,
the majority of the PRR is unused, resulting in very few vulnerable bits and a low
DVF. Faults injected into the RFT controller resulted in a DVFRFT of 0.022%. The Mi-
croBlaze was not protected using TMR or other design techniques and had a DVFMB

of 0.342%. Based on these component fault-injection results, the total FPGA DVF is
estimated to be 0.955% (3DV FMM +DV FRFT +DV FMB).

Figure 6 shows Markov model representations for each fault-tolerance mode in a
system with three PRRs. Figures 6(a) and 6(b) represent systems where each PRR is
operating in the HP or the TMR fault-tolerance mode, respectively. These models are
similar to the models presented in Section 3.3, without additional states for performa-
bility, and with the addition of state transitions to account for fault coverage. In a TMR
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system, coverage refers to the percentage of faults that cause the system to immedi-
ately enter the “failed” state. These non-covered faults occur due to designs not being
fully protected by TMR.

Initial fault-injection testing revealed that our system appeared to have two possible
fault scenarios. In the first scenario, a fault could cause the system to remain opera-
tional but produce erroneous data. This state was recoverable using periodic scrubbing.
In the second scenario, a fault could cause the system to hang until a full reconfigu-
ration was performed. We expanded the Markov models to include these behaviors as
additional states. Figure 6(a) shows the HP Markov model with two unavailable states
that account for the two fault scenarios. The probabilities of transitioning to “Faulty
Data” or “System Hang” were determined from the component fault-injection testing.
The DVFFPGA was estimated from the sum of each of the components tested.

A similar approach was taken for the TMR Markov model shown in Figure 6(b).
The additional “degraded” state is used to model faults that have been masked by
the TMR protection provided by the RFT controller. The probability of transitioning
to the “degraded” state is provided by the DVFMM from previous testing. The DVFsys

term represents faults in the RFT controller (DVFRFT) and MicroBlaze (DVFMB). From
fault-injection testing, we estimate the DVFsys to be approximately 0.364%.

By assigning fault rates, repair rates, and coverage to the Markov model, we can
calculate the system availability. Table IV shows the fault and repair rates used in
this analysis. Using a scrub rate of 1 fault per 10 seconds, and a repair rate of 1 scrub

Table III: Fault-Injection Results for RFT Components

System Faults Data System Vulnerable DVF
Component Injected Errors Hangs Bits (est.) (%)

Matrix Multiply (MM) 100,000 1,501 71 41,497 0.197%
RFT Controller (RFT) 100,000 63 157 4,576 0.022%

MicroBlaze (MB) 100,000 150 1,219 86,584 0.342%

Full FPGA 0.955%
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per 5 seconds, the RFT system will have a 98.82% availability in HP mode and 99.31%
availability in TMR mode. When the fault rate to scrub rate ratio is increased, the ben-
efits of TMR become more pronounced. Using a scrub rate of 1 fault per 2 seconds, and
a repair rate of 1 scrub per 10 seconds, the RFT system will have a 92.25% availability
in HP mode and 95.32% availability in TMR mode. These high availabilities, even in
HP mode, are due to frequent scrubbing and the very low DVF of the FPGA design.

Finally, we validate the Markov model results using fault injection. In a
continuously-running RFT system, faults are injected at a specified rate, which is ran-
domly varied using a Poisson distribution to simulate the error model used in the
Markov model. Scrubbing, using partial reconfiguration, occurs at user-defined peri-
odic intervals. Full reconfiguration occurs at the next scrubbing cycle after a PRM error
has been detected by the RFT controller. Full reconfigurations also occur if the exter-
nal testing program detects that the FPGA system has entered the “System Hang”
state. Availability can be experimentally determined by the ratio of time the system is
operating correctly to the total experiment run time. For each run, 10,000 faults were
randomly injected into a running system. Table IV shows the results of the availabil-
ity experiment and the relative error from the analytical model. At low fault rates,
the HP and TMR modes both provide approximately 99% availability. With high fault
rates, the system had an availability of 92.59% in the HP-mode and 93.89% in the
TMR-mode.

The Markov model availability methodology provides a simple and effective method
for determining the effects of fault and repair rates on system availability without
exhaustive testing. In general, the HP models predicted slightly lower unavailability
than what was observed during experimental testing while the TMR models overesti-
mated the availability of the system. All availability results were within 1.5% of the
Markov models’ predictions. The Markov model accuracy can be improved by providing
more accurate fault-injection results. The availability values obtained through experi-
ments can be improved by increasing the length of the testing period.

Fault-injection testing did highlight implementation issues that must be handled in
any high-reliability design. The use of TMR had a lower than expected benefit due to
the unprotected MicroBlaze processor. Since the DVFMB was larger than the DVFMM,
the availability of the system was dominated by the MicroBlaze’s availability. For high
reliability, the MicroBlaze must be protected with TMR or an alternative fault-tolerant
processor (e.g., FT-LEON3).

4.2. Orbital Case Studies

For each orbital case study, the system under test is an FPGA System-on-Chip im-
plementation of the RFT hardware architecture described in Section 3.1. In order to
calculate device vulnerability, the parameters for the Xilinx Virtex-4 FX60 will be used
as inputs to the RFT fault-rate model described in Section 3.2. The radiation suscep-
tibility parameters of the Virtex-4 device family are obtained from the Xilinx Radi-
ation Test Consortium’s (XRTC) published results [Swift et al. 2008]. The generated
fault rate is linearly scaled from a full device to the size of the PRR to produce PRR

Table IV: RFT Markov Model Validation

Fault Period Repair Period FT-Mode Markov Model Experimental Model
(time/fault) (time/scrub) Availability Availability Error

10s 5s HP 98.82% 98.99% 0.2%
10s 5s TMR 99.31% 99.11% 0.2%
2s 10s HP 92.25% 92.59% 0.4%
2s 10s TMR 95.32% 93.89% 1.5%
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fault rates. The RFT controller is connected to 6 PRRs, allowing for several combi-
nations of the TMR, DWC, and ABFT fault-tolerance modes discussed in Section 3.3.
The performability model from Section 3.3 is used to evaluate the effectiveness of each
fault-tolerance strategy.

4.2.1. Low-Earth Orbit Case Study. Space systems in LEO are commonly used for earth-
observing science applications, such as HSI or SAR. Both HSI and SAR have large
datasets, which can be significantly reduced through on-board processing using a va-
riety of algorithms that are decomposable into basic kernels that can be parallelized
and implemented on an FPGA system for high performance and power efficiency. For
example, HSI can be decomposed into a sequence of matrix multiplications and matrix
inversions, and SAR can be decomposed into vector multiplication and FFTs. Since
these mathematical operations are linear, ABFT can be used to protect the computa-
tion results from SEUs. For applications that cannot be protected with ABFT, TMR or
DWC must be used to provide fault tolerance.

The TLE used to generate the fault rates for this LEO case study is from the EO-1
satellite. The EO-1 orbit is circular at an altitude of 700 km and a 98.12 ◦ inclination
with a mean travel time of 98 minutes. Figure 7(a) shows the orbital track of EO-1
and the shaded circle represents the EO-1’s field of view. Figure 7(b) shows the es-
timated number of upsets per hour that occur in the EO-1 orbit over several orbital
periods. The average fault rate of the Virtex-4 FX60 in the EO-1’s orbit is 16.5 faults
per device-day (combined configuration memory and BRAM vulnerability). Each local
maximum occurs when the satellite is closest to the Earth’s magnetic poles. Figure 7(c)
shows the total number of accumulated faults over time. Fault rates in EO-1’s orbit are
low because the orbit is lower than the Van Allen Belts and is fully within the Earth’s
magnetosphere, which deflects a large amount of radiation. We examine the availabil-
ity and performability of TMR, DWC, and ABFT fault-tolerance modes in LEO, as well
as three adaptive fault-tolerance strategies to maximize application performability:
10% two-mode, 50% two-mode, and three-mode adaptive strategies. For the adaptive
fault-tolerance strategies, the fault-tolerance mode switching is determined by com-
paring the current upset rate with a fault-rate threshold. The 10% two-mode adaptive
strategy uses the ABFT fault-tolerance mode when upset rate is in the lowest 10%
of the expected fault rates and the TMR fault-tolerance mode otherwise. The 50%
two-mode adaptive strategy uses a similar strategy as the 10% two-mode, but with
a higher fault-rate threshold. The three-mode adaptive strategy uses ABFT when the
upset rate is in the lowest 10% of the expected fault rates, TMR when the upset rate is
in the highest 50% of the expected fault rates, and DWC otherwise. In all modes, the
system performs scrubbing to ensure that configuration memory errors are removed
from the system. For this LEO case study, the system uses a 60-second scrub cycle,
which is also used as the system repair rate for the Markov models. Figure 8(a) shows
the availability of the LEO system while statically using the four fault-tolerance mod-
els described in Figure 5. While the static HP strategy’s availability quickly declines
(due to the lack of any fault-tolerance mechanisms), the static TMR, DWC, and ABFT
strategies all maintain availability above 95%. The dynamically changing availabil-
ity is directly related to the current fault rate, however, since the repair rate of the
system (through scrubbing) is much larger than the expected fault rates, most config-
uration memory faults are rapidly mitigated. The system availability while using the
three adaptive fault-tolerance strategies is shown in Figure 8(b). The average avail-
ability for each adaptive strategy improves availability over the static ABFT strategy,
and the adaptive strategies can increase the minimum availability to above 99.5%.
Table V displays the availability results for each fault-tolerance strategy in terms of
unavailability, showing the probability of a system failure. The 10% two-mode adap-
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(a) Visualization of the EO-1 TLE data using JSatTrak [Gano 2010]
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(b) Expected fault rates over several orbits
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(c) Total accumulated faults over several orbits

Fig. 7: LEO fault rates using the RFT fault-rate model

tive strategy reduces average unavailability by 88% as compared to the static ABFT
strategy. For extremely high availability, static TMR is required, as the maximum un-
availability for the adaptive strategies is more than 100 times higher than TMR.

The system performability for the static and adaptive fault-tolerance strategies for a
LEO is also shown in Table V. Due to the low overall upset rates and good availability
of the static ABFT strategy, the static ABFT strategy achieves the highest performabil-
ity. The 50% two-mode adaptive strategy achieves an average performability through-
put of 4.01, a 100% improvement over static TMR, while improving unavailability over
the static ABFT strategy by 73%. The 10% two-mode strategy has lower average per-
formability, while maintaining better system availability. The three-mode strategy has
better performability than the static DWC mode while having better availability than
the static DWC or ABFT modes, but is outperformed by the 50% two-mode strategy.
We point out that the fault-rate threshold for the two-mode strategies can be used to
adjust the availability and performability parameters for a space system. Figure 9 il-
lustrates the effect of changing the threshold of the two-mode adaptive strategy for
the LEO case study. As the threshold is raised, more time is spent using the ABFT
mode, which lowers system availability while increasing performability. For the LEO
case study, most of the performance gains from using ABFT can be obtained by using a
low threshold value because much of the orbit will be under this threshold. With a 10%
threshold, an RFT system would spend an approximately equal amount of time in each
of the ABFT and TMR modes. Raising the adaptive threshold higher than 50% results
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Fig. 8: LEO system availability

in limited performance gains at the expense of decreased availability. Further analy-
sis of these thresholds in mode-switching strategies can enable optimization toward
Pareto-optimal goals.

4.2.2. Highly-Elliptical Orbit Case Study. The HEO is a common type of orbit used mostly
by communication satellites. From the ground, satellites traveling in an HEO can ap-
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Table V: Unavailability and performability for LEO case study

Average Maximum Average Minimum
Unavailability Unavailability Performability Performability

TMR 9.8× 10−6 3.8× 10−5 2.00 2.00
DWC 3.9× 10−3 1.1× 10−2 3.00 2.98
ABFT 1.6× 10−2 4.7× 10−2 4.79 4.76
2-Mode (10%) 1.9× 10−3 4.6× 10−3 3.51 2.00
2-Mode (50%) 4.4× 10−3 1.8× 10−2 4.01 2.00
3-Mode 2.7× 10−3 5.4× 10−3 3.69 2.00
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Fig. 9: Effects of Adaptive Threshold on Availability and Performability

pear stationary in the sky for long periods of time. HEOs also offer visibility of the
Earth’s polar regions, where most geosynchronous satellites do not. The HEO used for
this case study is a Molniya orbit, named for the communication satellites that first
used this orbit. A TLE for a Molniya-1 satellite was used to generate fault rates for
the HEO case study. This orbit has a perigee of 1,100km, an apogee of 39,000km, and
a 63.4 ◦ inclination with a mean travel time of 12 hours. The average amount of radi-
ation throughout the orbit is much higher than the LEO case study, and much larger
amounts of radiation are encountered when the satellite passes through the Van Allen
belts. The average fault rate in the Molniya-1 orbit is 62 faults per device-day. For most
of the orbit, the fault rate averages 7 faults per device-day, but the large fault-rate
peaks that occur near perigee increases the overall fault rate. Figure 10(a) illustrates
the Molniya-1 orbit and Figure 10(b) shows the estimated number of upsets per hour
that an FPGA might experience in an HEO. Figure 10(c) shows the total number of
accumulated faults over time. Space systems outside of the Earth’s magnetosphere,
either in geosynchronous orbit or in interplanetary space, experience constant fault
rates that vary based on the occurrence of solar flares and other space weather condi-
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(a) Visualization of Molniya-1 TLE data using JSatTrak [Gano 2010]
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(b) Expected fault rates over time
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(c) Total accumulated faults over time

Fig. 10: HEO fault rates using the RFT fault-rate model

tions. Solar flares can send a wave of high-energy particles into space, causing a brief
period of extremely high fault rates. These fault-rate spikes, while different in origin,
look similar to the fault-rate peaks that occur in this case study. The analysis used in
this case study can also be used to estimate RFT system performance in the presence
of different space weather conditions.

We evaluate the availability and performability of TMR, DWC, and ABFT fault-
tolerance modes in an HEO. In order to maximize performability of applications in
an HEO, we also examine two adaptive fault-tolerance strategies. The ABFT/TMR
adaptive strategy uses the ABFT fault-tolerance mode when upset rates are in the
lowest 5% of expected fault rates and the TMR fault-tolerance mode otherwise. The
DWC/TMR adaptive strategy uses the same fault-rate thresholds as ABFT/TMR, but
switches between the DWC and TMR modes. In each mode, the system performs scrub-
bing to ensure that configuration memory errors are removed from the system. For
the HEO case study, the system uses a 10-second scrub cycle to account for the in-
creased average fault rates experienced in an HEO, which is used as the system repair
rate for the Markov models. Figures 11(a) and 11(b) show the availability of the HEO
case study system while using three static fault-tolerance strategies and two adap-
tive strategies. The static TMR strategy maintains an average availability of 99.93%,
but the availability drops as low as 95.1% while passing through the peak fault-rate
periods. While using the static DWC and ABFT strategies, the availability drops sig-
nificantly during the peak fault-rate periods, making these strategies unsuitable for
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(a) System availability of static strategies (zoomed image on right)
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(b) System availability of adaptive strategies (zoomed image on right)

Fig. 11: HEO system availability

systems that must maintain continuous operation (due to the extremely high upset
rate, many systems shut down operation during peak fault-rate periods). However,
outside of the peak fault-rate periods, the minimum availability for the static DWC
(99.8%) and ABFT (99.3%) strategies are high enough to be tolerable by many applica-
tions. The two adaptive strategies use DWC and ABFT fault-tolerance modes during
low fault-rate periods and TMR fault-tolerance mode during the peak fault-rate pe-
riods. Using the adaptive strategies, the availability never falls below the TMR strat-
egy’s minimum availability of 95.1% during peak fault-rate periods, while maintaining
higher availability at other times. (Note the change of scale in Figure 11(b).) Table VI
shows the unavailability and performability of the fault-tolerance strategies described
in this section. The DWC/TMR adaptive strategy reduces average unavailability by
80% as compared to the static DWC strategy. The ABFT/TMR adaptive strategy re-
duces average unavailability by 85% as compared to the static ABFT strategy.

The system performability for the static and adaptive fault-tolerance strategies for
an HEO are shown in Table VI. While the TMR strategy exhibits the lowest performa-
bility, the TMR strategy also has the lowest variation in performability and high-
est availability, allowing for predictable performance levels. The performability of the
static ABFT and DWC strategies is significantly reduced in the peak fault-rate periods,
but quickly returns to acceptable levels after passing through the peak fault-rate peri-
ods. The maximum unavailability for each of the adaptive strategies occurs during the
peak fault-rate periods. Since the RFT system is using the TMR fault-tolerance mode
during these segments, the adaptive strategies have the same maximum unavailability
as the static TMR strategy. The DWC/TMR adaptive strategy increases performability
over the TMR strategy by 46%. The ABFT/TMR adaptive strategy increases average
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Table VI: Unavailability and performability for HEO case study

Average Maximum Average Minimum
Unavailability Unavailability Performability Performability

TMR 7.2× 10−4 4.9× 10−2 2.00 1.95
DWC 1.4× 10−2 4.1× 10−1 2.98 2.46
ABFT 4.9× 10−2 9.2× 10−1 4.73 2.62
DWC/TMR 2.6× 10−3 4.9× 10−2 2.92 1.95
ABFT/TMR 7.2× 10−3 4.9× 10−2 4.56 1.95

performability over the TMR strategy by 128%, or reduces performability by 4% over
the static ABFT strategy, while significantly improving unavailability over the ABFT
strategy.

5. CONCLUSIONS

In this work, we have presented a novel and comprehensive framework for reconfig-
urable fault tolerance capable of creating and modeling FPGA-based reconfigurable
architectures that enable a system to self-adapt its fault-tolerance strategy in accor-
dance with dynamically varying fault rates. The PR-based RFT hardware architecture
enables several redundancy-based fault-tolerance modes (e.g., DWC, TMR) and addi-
tional fault-tolerance features (e.g., watchdog timers, ABFT, checkpointing and roll-
back), as well as a mechanism for dynamically switching between modes. The combi-
nation of these fault-tolerance features enables the use of COTS SRAM-based FPGAs
in harsh environments. Future work will automate and optimize the creation RFT con-
trollers for specific system configurations in order to increase developer productivity,
facilitate adoption, and reduce system overhead.

In addition to the hardware architecture, we have demonstrated a fault-rate model
for RFT to accurately estimate upset rates and capture time-varying radiation effects
for arbitrary satellite orbits using a collection of existing, publically available tools and
models. Our model provides important characterization of fault rates for space systems
over the course of a mission that cannot be captured by average fault rates. The HEO
case study demonstrated the large range of fault rates experienced in certain elliptical
orbits, and the potential for performance improvements when using RFT.

Using the results from the fault-rate model, our Markov-model-based RFT performa-
bility model was used to demonstrate the benefits of using an adaptive fault-tolerance
system architecture. The performability model was validated using FPGA fault injec-
tion on an experimental RFT system and multiple static and adaptive fault-tolerance
strategies for space systems in dynamically changing environments were evaluated.
The RFT performability model demonstrated that while TMR provides a lower bound
on availability, less reliable, low-overhead methods can be used during low-fault-rate
periods to improve performance. We evaluated two case study orbits and observed
that adaptive fault-tolerance strategies are able to improve unavailability by 85% over
static ABFT and performability by 128% over traditional, static TMR fault tolerance.
This additional performance can lead to more capable and power-efficient FPGA-based
onboard processing systems in the future.
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