
©2019 IEEE

Deep-Learning Inferencing with
High-Performance Hardware Accelerators

Luke Kljucaric, Alan D. George
Department of Electrical and Computer Engineering, University of Pittsburgh
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Pittsburgh, PA, USA
{luke.kljucaric, alan.george}@nsf-shrec.org

Abstract— In order to improve their performance-per-watt
capabilities over general-purpose architectures, FPGAs are
commonly employed to accelerate applications. With the
exponential growth of available data, machine-learning apps
have generated greater interest in order to more
comprehensively understand that data and increase
autonomous processing. As FPGAs become more readily
available on cloud services like Amazon Web Services F1
platform, it is worth studying the performance of accelerating
machine-learning apps on FPGAs over traditional fixed-logic
devices, like CPUs and GPUs. FPGA frameworks for
accelerating convolutional neural networks (CNN), which are
used in many machine-learning apps, have begun to emerge for
accelerated-application development. This research aims to
compare the performance of these forthcoming frameworks on
two commonly used CNNs, GoogLeNet and AlexNet.
Specifically, handwritten Chinese character recognition is
benchmarked across multiple FPGA frameworks on Xilinx and
Intel FPGAs and compared against multiple CPU and GPU
architectures featured on AWS, Google’s Cloud platform, the
University of Pittsburgh’s Center for Research Computing
(CRC), and Intel’s vLab Academic Cluster. All NVIDIA GPUs
have proven to have the best performance over every other
device in this study. The Zebra framework available for Xilinx
FPGAs showed to have an average 8.3 times and 9.3 times
performance and efficiency improvement, respectively, over the
OpenVINO framework available for Intel FPGAs. Although the
Zebra framework on the Xilinx VU9P showed greater efficiency
than the Pascal-based GPUs, the NVIDIA Tesla V100 proved to
be the most efficient device at 125.9 and 47.2 images-per-second-
per-Watt for AlexNet and GoogLeNet, respectively. Although
currently lacking, FPGA frameworks and devices have the
potential to compete with GPUs in terms of performance and
efficiency.

Keywords— machine learning, FPGA, inference, xfDNN,
Volta, AWS, F1, PAC, OpenVINO,

I. INTRODUCTION
The explosive growth of available data for training

machine-learning models has driven a heavier focus on the
development of artificial-intelligence apps. This growth in
data requires faster, more efficient, and more intelligent
processing. Machine-learning apps for image processing often
use convolutional neural networks (CNNs) in their models for
processing new, unclassified data autonomously. CNNs are
attractive for these types of applications because they require
minimal preprocessing in comparison to other methods in
order to extract image features [1]. The goal of CNNs is to
extract features from the input images, which is necessary in
order to have a common representation of images associated

with a class. An image feature is a measurable property of an
image, such as outlines of shapes and patterns among sets of
images. The CNN is trained to recognize these features and
associate the same patterns to similar classes of images. The
features should be unique between classes and common within
a class, so the CNN can make clear inferences. The parallel
nature of CNNs, consisting of convolutions and matrix
multiplications, make them highly amenable for GPU and
FPGA acceleration.

Traditional acceleration of CNNs on FPGAs has been
performed by implementing a specific neural-network
processor in hardware [2] [3] [4] [5]. This process can lead to
lengthy design times and limited flexibility when the model or
application domain is changed. Frameworks for accelerating
CNNs on FPGAs for use with machine-learning frameworks,
like Caffe and MxNet, are being developed to address these
issues. The same apps that use GPUs for acceleration can
leverage these frameworks to use FPGAs instead, with limited
configuration of the FPGA required.

Limited research has been presented on studying these
FPGA frameworks for accelerating CNNs. It is important to
understand the performance of these emerging frameworks to
optimally use FPGAs in machine-learning app acceleration.
While other architectures, like GPUs, are also popular for
accelerating machine-learning apps, it is beneficial to compare
the performance of these FPGA frameworks to GPU and
fixed-logic devices, for example, to investigate reductions in
energy consumption. Many different toolkits and frameworks
exist to leverage Intel and Xilinx devices in different ways. It
is challenging, yet important, to be able to compare different
frameworks on different architectures.

In this research, we evaluate and compare current
architectures and frameworks for CNN acceleration on
various FPGAs, GPUs, and CPUs with a case study in Chinese
character recognition. This evaluation will aid in the
understanding of the relative performance in terms of
throughput and efficiency of many different acceleration
platforms. As focus begins to shift from machine-learning
training to inferencing, it is important to understand the
architectures and frameworks to best accelerate machine-
learning inferencing apps and effectively design high-
performance computing (HPC) systems oriented to machine
learning.

II. BACKGROUND
Many different concepts, tools, frameworks, and devices

are used in this study to understand the current HPC machine-
learning inferencing domain. This section aims to explain all

This research was supported by SHREC industry and agency members
and by the IUCRC Program of the National Science Foundation under
Grant No. CNS-1738783.

the components necessary for the app acceleration on
different architectures, frameworks, and platforms.

A. Machine-Learning Inference
With the trained network, inferencing can be performed on

new data. For more information, the reader is referred to [6],
[7], [8], [9], [10], [11], [12], [13].

B. Caffe Machine-Learning Framework
Caffe is an open-source framework for developing

machine-learning apps. In this research, we use Caffe because
the CNN acceleration frameworks for FPGAs currently only
fully support Caffe models [14] [15] [16]. For more
information, the reader is referred to [17].

C. Field-Programmable Gate Arrays (FPGAs)
Unlike fixed-logic devices such as CPUs and GPUs,

FPGAs are reconfigurable-logic devices. FPGAs are capable
of realizing dedicated data-paths that map to application
functions, resulting in more efficient processing compared to
fixed-logic devices. These custom data-paths often give
FPGAs an advantage over fixed-logic devices in terms of
performance-per-watt. Many different data-paths can be
instantiated onto the FPGA in parallel, which makes these
devices amenable for accelerating CNN-based apps. Although
the data-paths on FPGAs are typically longer than fixed-logic
devices, the energy-efficiency comes from the parallelism in
the design [8].

D. Xilinx Framework for Deep Neural Networks (xfDNN)
The xfDNN v2 framework, also referred to as xDNN, aims

to accelerate CNNs on Xilinx FPGAs. The framework has
support for custom neural networks, which has allowed for
more general usage of the framework [14]. Xilinx provides a
compiler tool which maps layers of the CNN being used in an
application to xfDNN for proper acceleration. This
compilation is one of the few extra steps required for
accelerating an application with xfDNN. The xfDNN
framework has multiple configuration profiles. The two main
profiles are the 4×28×32 and 2×56×32 configurations. The
difference between these configurations is the number of
processing elements (PE) being used. A processing element is
the main computational unit of xfDNN. There are 4 and 2
processing elements in the 4×28×32 and 2×56×32
configurations, respectively. The labels 28×32 and 56×32
signify the DSP array configuration used for each PE. The
differences between the two designs are that the 56×32-
labeled core can process higher-resolution images at a lower
latency, whereas the 28×32-labeled core is designed for
maximum throughput [18]. Caffe is used on the CPU side of
the application, which then makes reference to xfDNN for
FPGA acceleration. There is no source provided for xfDNN,
only a precompiled binary.

E. Mipsology Zebra
Zebra is a closed-source framework for Xilinx FPGAs

which was developed by Mipsology. Mipsology claims that
Zebra can take any existing Caffe application for CPUs and
GPUs and execute it using the Zebra runtime on Xilinx
FPGAs [15]. This portability is an attractive feature when
trying to port existing applications to different device
architectures quickly. Similar to xfDNN, Zebra can be
configured with a different number of “cores.” No
documentation exists for the usage or details of the cores, but
the default is set to six cores. Additionally, like xfDNN, the

main application makes calls to the Caffe API which then
references the Zebra framework.

F. Graphics Processing Units (GPUs)
GPUs have been widely used in machine-learning apps for

their highly parallel nature. GPUs are typically comprised of
thousands of lightweight cores which allow for acceleration of
massively-parallel math operations, similar to those found in
CNNs. The Volta architecture featured in the 12-nm Tesla
V100 was designed with machine-learning apps in mind. The
convolutional layers in CNNs are computed through matrix
multiplication and accumulation operations. The Volta
architecture on the V100 contains over 600 “Tensor cores”
that each perform four-by-four, half-precision matrix
multiplication and full-precision accumulation in a single
clock cycle. These Tensor cores give the Volta architecture a
significant advantage in machine-learning apps versus
previous GPU architectures [19]. To leverage GPU-specific
hardware, like Volta Tensor cores, a fork of Caffe has been
developed by NVIDIA known as NVCaffe. For more
information, the reader is referred to [20].

G. Many-Core CPUs
With the intention of being clusters-on-chip, it is important

to include many-core CPUs in this comparison to understand
their increasingly parallel performance in the machine-
learning domain against other HPC devices. For more
information on the devices in this study, the reader is referred
to [21], [22], [23], [24], [25].

H. Intel Machine-Learning Software
Intel also develops different tools to optimally leverage

their different devices and architectures for machine-learning
apps. The first is a fork of Caffe known as Intel-Optimized
Caffe or Caffe*. For more information, the reader is referred
to [26].

The OpenVINO toolkit from Intel provides another
method for accelerating machine-learning apps on Intel CPUs,
GPUs, FPGAs, and other accelerators. For more information,
the reader is referred to [27].

I. Handwritten Chinese Character Recognition (HCCR)
In order to test the FPGA frameworks fully, the machine-

learning app must be challenging enough to require a deep
network with many layers. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) is a competition in which
neural networks classify images from typically 200 categories.
This competition poses as a standard benchmark for stressing
neural-network performance. There is a demand to understand
the performance of optical character recognition on FPGAs,
so classifying Chinese characters from thousands of different
classes could potentially be as challenging as ILSVRC.
Specifically, the Institute of Automation of Chinese Academy
of Sciences has a handwritten database of 7653 different
Chinese characters [28]. Classifying images from 7653
distinct classes is a difficult task that requires large neural
networks in order to accurately extract distinct, relevant
features from the handwritten images.

J. Caffe-Accelerator Model
Many of the frameworks and devices serve similar roles in

the acceleration of the HCCR app. Figure 1 visualizes the
acceleration model between Caffe, accelerators, frameworks,
CNN models, and data. The Caffe forks, such as NVCaffe and
Intel Caffe*, can be substituted for Caffe on the CPU in this

model. OpenVINO is the only instance where the framework
is the same for both CPU and accelerator combination. In the
case of Intel Caffe*, the Intel MKL is used for accelerating the
application on the CPU itself, so no offloading occurs. In
Figure 1, the underlined values are used in this research and
nonunderlined values show other common examples.

III. RELATED WORK
Previous work has informed this research by exploring

complex classification problems such as HCCR. In order to
fully understand the capabilities of the frameworks in this
study, it is important to stress them in many ways. While the
developers of the acceleration frameworks claim strong
performance on well-known CNN models like AlexNet and
GoogLeNet, it is important to understand how these
frameworks perform with custom CNNs. Using custom CNNs
will remove optimizations the frameworks have for specific
CNNs. Previous work has shown that AlexNet and a variant
of GoogLeNet can be used to perform high-performance,
online, handwritten Chinese character recognition at high
accuracies [29] [6]. These DCNN models demand high-
performance from the frameworks which stress their
capabilities. The custom variant of GoogLeNet was developed
because the full depth of GoogLeNet is not required for the
HCCR application [6]. This variant uses 14 layers as opposed
to the 22 layers in the standard version.

For more information on previous work accelerating
CNNs on FPGAs, the reader is referred to [2], [3], [4], [5],
[30].

IV. METHODOLOGY
The main focus of this research is to benchmark existing

frameworks for accelerating CNNs on FPGAs, GPUs, and
CPUs for a performance comparison of the architectures on
machine-learning apps. Two different versions of the same
HCCR app are used. The first is a C++ app that loads bitmap
image files from a directory and uses the Caffe API to classify
the images in batched mode, evaluating a specific number of
images at each execution step. The second C++ app is similar
to the first, except that it uses the OpenVINO API in order to
classify the batched images. In each case, the app is executed
using batch sizes of 1, 2, 4, 8, 16, 32, 64, 96, 128, 256, 512,
1024, and 2048 where applicable. For the OpenVINO results,
batch sizes are limited to 8 for the general variant and 96 for
the optimized variants. The app classifies 252,545 images
which are a subset of the CASIA database. The app runs 50
iterations of classifications on the entire dataset before
averaging the resulting performance. Previous research has
been done on this application by [6] and [29]. They showed

that variants of GoogLeNet and AlexNet can be used to
accurately classify handwritten Chinese characters. In order to
fairly evaluate the frameworks and platforms, 16-bit
operations were used for inferencing using the same
handwritten database, CNNs, and pretrained models as the
previous work. The OpenVINO toolkit does not support 16-
bit operations with the CPU plugin, resulting in the
OpenVINO Xeon CPU operations being 32-bit. Additionally,
the GTX 1080 Ti upgrades FP16 operation to FP32, so the
results for this device also use 32-bit, floating-point precision
[31].

A. Xilinx FPGA Acceleration
The Xilinx FPGA studied is the Xilinx Virtex UltraScale+

(XCVU9P). Two frameworks, xfDNN and Zebra, will be
evaluated on this device using the Caffe-based app on AWS.
The specific xfDNN version is using the 4×28 PEs, and Zebra
is configured using six soft cores. The Zebra configuration
was left unchanged as recommended by the documentation.
First, the xfDNN compiler is run using both AlexNet and
GoogLeNet, which creates the resulting JSON files for proper
network-specific acceleration on the xfDNN platform. Next,
the xfDNN quantizer is run to create additional JSON files
that specify scaling factors for the layers within each
corresponding CNN to calculate the network using 16-bit
operations. The xfDNN binary is loaded onto the Xilinx
FPGA on AWS. Next, the Caffe-based app then loads the
xfDNN library with the proper compiler and quantizer JSON
files to accelerate inferencing on the xfDNN platform. When
running the same app using the Zebra framework, no
additional compiler or quantizer is required to generate
additional files. Similar to xfDNN, the Zebra binary is loaded
onto the Xilinx FPGA on AWS. Additionally, like xfDNN,
the Caffe-based app loads the Zebra library and accelerates
inferencing on the Zebra platform.

B. Intel FPGA Acceleration
The Intel FPGA studied resides on the Programmable

Acceleration Card (PAC), which features an Arria 10 GX
(10AX115N). The OpenVINO toolkit is used on the Intel
FPGA on the Intel vLab cluster because Intel-based Caffe
support does not exist for Intel FPGAs. In order to run the
OpenVINO-based app, the CNNs are given to the OpenVINO
model-optimizer application to create corresponding XML
files for proper acceleration on the target device. For the Intel
PAC, 16-bit operation model-optimizer files are created. In
order to run the OpenVINO-based app on the Intel PAC, the
16-bit generic or network-optimized version of the
OpenVINO binary is loaded onto the PAC on vLab. Finally,
the OpenVINO-based app is run using the network-specific
model-optimizer XML files in heterogenous mode,
accelerating the app on the Intel PAC.

C. Intel CPU Acceleration
In order to compare the OpenVINO and Caffe results

from different architectures, the Caffe-based app will also be
executed on the Xeon CPU (SKL 8180) in addition to the
OpenVINO-based app. From this comparison, we will be able
to compare how the Caffe and OpenVINO frameworks
perform on the same architecture and application to infer how
the performance of the other architectures compare. For the
Xeon CPU running the OpenVINO-based app, the

Figure 1 Caffe Accelerator Model.

OpenVINO toolkit does not support 16-bit operations on the
CPUs resulting in 32-bit operations. To run the OpenVINO-
based app on the Xeon CPU, no additional steps are required
such as loading additional binaries, so the app is run in CPU
mode with the network-specific model-optimizer XML files.
When running the Caffe-based app, the Xeon CPU
specifically uses the Intel Optimized Caffe* and the Intel
MKL. The rest of the CPUs in this case study, KNL (7250)
and KNM (7295) provided by vLab, will only run the Caffe-
based app using the Intel Optimized Caffe* and the Intel
MKL.

D. NVIDIA GPU Accleration
The GPUs used in this study, as mentioned previously, are

the NVIDIA Tesla P100 provided by Google Cloud, NVIDIA
Tesla V100 provided by AWS, and the GTX 1080 Ti
provided by CRC. All of these devices will run the Caffe-
based app using NVCaffe and cuDNN. No additional steps
are required when using the GPU platforms such as the
xfDNN compiler and quantizer or the OpenVINO model-
optimizer.

V. RESULTS
The main metric of the study is performance in terms of

images-per-second. Accuracy is not focused on specifically in
this study because the performance of the neural networks
should be similar no matter the network input. That said, this
research did observe the Top-1 accuracies for AlexNet and
GoogLeNet to vary between 94-96% and 96-97%,
respectively, across the devices studied.

Table 1 shows the breakdown of xfDNN, NVIDIA Tesla
V100, Tesla P100, GTX 1080 Ti, Intel PAC, Xeon Skylake
8180, Xeon Phi KNL 7250, and Xeon Phi KNM 7295
performance in terms of total operations-per-second. Similar
metrics were not provided by Mipsology for Zebra. Additional
information is included about another framework for
accelerating CNNs on Micron boards featuring Xilinx FPGAs
known as Snowflake; however, hardware was not available to
benchmark [32].

Figure 2 shows the performance of GoogLeNet and
AlexNet across the different frameworks and devices at their
respective maximum performing batch sizes. The xfDNN
framework fails to run with AlexNet, so data is not present.
Similarly, the Tesla P100 fails to run the custom-variant
GoogLeNet at a batch size greater than 1, limiting throughput.

Figure 3 shows the efficiency characteristics in terms of
performance-per-Watt of each network across varying

frameworks and platforms. The total device power (TDP) for
the devices in the study can be found in Table 1. For the Zebra
framework, documentation claims the maximum power
consumption is below 40W, where the TDP for the XCVU9P
FPGA is around 65W [33]. As Xilinx gives no guarantee
about power consumption, we use the TDP of the FPGA,
65W, for xfDNN. AWS does not provide access to FPGA
power information. We use TDP to compare each device
because of the potential each device has to use peak power.

Table 1 Maximum FP16 OPS Performance of Frameworks/Devices and
Power Consumption

Device
Configuration

FP16 Giga-
Operations-

per-
Second-

per-Core

Total
Number
of Cores

FP16 Giga-
Operations-
per-Second

Device
Power

(W)

xfDNN v2 – 2
PE [18] 1702.4 2 3,404.8 65

xfDNN v2 – 4
PE [18] 896 4 3,584 65

Mipsology
Zebra (2018)

[15]
N/A 6 N/A 40

Tesla V100
[19] 195 640

(Tensor)
125,000
(Tensor) 300

Tesla P100 [34] 5.2 3,584 18,700 300

GTX 1080 Ti
[31] 3.2 3,584

11,340
(upgrade

FP32)
250

Snowflake –
512-510 [32] 0.37 512 191 24

Snowflake –
1k-511 [32] 0.5 1,024 512 48

Snowflake –
1k-852 [32] 0.5 1,024 512 150

Intel PAC [16]
[35] N/A N/A 1,500 45

Xeon Skylake
8180 [25] [36] 80 56 4,480 410

Xeon Phi KNL
7250 [22] 46.2 68 3,141 215

Xeon Phi KNM
7295 [23] 49.5 72 3,564 320

Figure 2 Maximum Throughput Performance of Frameworks/Devices at Batch Size for Maximum Performance

VI. DISCUSSION
When comparing the neural networks, GoogLeNet and

AlexNet, we can see that AlexNet consistently achieves
higher performance than GoogLeNet. This higher
performance of AlexNet is because of the shorter latency
AlexNet has from input to output layers having only five
layers compared to GoogLeNet’s 14 layers, allowing for faster
image classification. Since AlexNet has fewer layers than
GoogLeNet, more RAM can be used for the images being
classified, which allows for larger batch sizes. The smaller
number of layers gives AlexNet higher performance at the
slightly lower accuracy. For this application, we have
observed the average Top-1 accuracies of AlexNet and
GoogLeNet to be similar as 95.3% and 96.5%, respectively.

A. Device Performance
Comparing Xilinx FPGA frameworks, we can see that

Mipsology Zebra outperforms xfDNN across both neural
networks. As Zebra also provides much more portability than
xfDNN, this feature gives a greater advantage to Zebra over
xfDNN for accelerating machine-learning apps on Xilinx
FPGAs.

According to the results from the GPUs, the performance
of the Tesla V100 is significantly higher than the other GPUs
in the study. It is clear that the parallel nature of the Tesla
V100, and its architecture featuring Tensor cores, greatly
helps throughput performance.

From the CPU results, the Xeon device has a significant
performance advantage over the Xeon Phi devices, even
though it features a smaller number of cores. However, the
cores of the Xeon devices operate at a maximum of 3.8GHz
versus 1.6GHz of both the KNL and KNM Xeon Phi devices
[22] [23] [25]. Additionally, comparing the Xeon Phi devices,
KNL slightly outperforms KNM consistently between both
CNNs and batch sizes. As KNM is targeted at acceleration
machine-learning apps, this result is concerning [37].
Although, preliminary data shows that backward-pass timing,
as opposed to forward-pass or inferencing, on the KNM
significantly outperforms KNL across CNNs and batch sizes.
This data means that the KNM devices show much better
performance in terms of CNN training than inferencing. In all
cases of the CPU testing, the system did not run out of
memory, but this out-of-memory error was a source of crashes
in the FPGA and GPU cases. The overall app execution time
became very slow and thus we limited the batch size to 2048
since no other framework or device achieved more.

For the Intel PAC FPGA results, there is an advantage to
using the network-specific optimized OpenVINO binaries
over the generic variant at every batch size and when
comparing maximum performance. The generic binary is
limited to eight images-per-batch which hurts overall
parallelism when trying to accelerate a custom CNN with
OpenVINO. Next, we observe the Xeon Skylake CPU’s
performance with OpenVINO against the PAC FPGA. We can
see the Xeon CPU outperforms the PAC FPGA at every batch
size and in terms of maximum performance. The OpenVINO
network-specific optimized binaries for the PAC FPGA are
limited to a maximum batch size of 96 images. This limit,
again, hurts overall parallelism when trying to accelerate one
of these CNNs on the PAC FPGA.

In order to get an understanding of the performance
characteristics of both Caffe and OpenVINO, we compared
the maximum performance of each framework on the Xeon
Skylake CPU. We can see from the results that both
frameworks perform similarly. OpenVINO has a slight
performance advantage over Caffe when running GoogLeNet;
however, Caffe has a more significant performance advantage
over OpenVINO when running AlexNet. From this
comparison, we can conclude that the framework
implementations are similar enough to justify a comparison of
the PAC FPGA results with the other devices in the study.
Observing that Zebra on the FPGA outperforms OpenVINO
on the Intel PAC FPGA by an average of 8.3×, the OpenVINO
framework is not competitive when accelerating CNNs on
FPGAs. This performance gap could be due to the technology
node disparity, 16-nm and 20-nm for the XVU9P and Intel
PAC respectively, and the limited batch sizes supported with
OpenVINO.

Comparing the results of the Xilinx FPGA using Zebra and
the Tesla V100 using cuDNN, we see there is a large disparity
in the performance between the Tesla V100 and the FPGA.
Our results indicate that the FPGA framework would need to
consume less than 22W of power in order to be more efficient
in terms of performance-per-Watt. To calculate the power
required for better efficiency, the performance of the Zebra
framework is divided by the efficiency of the Tesla V100.
When comparing the performance of individual cores of
xfDNN and the Volta architecture, the xfDNN cores can
achieve higher theoretical performance. The main reason why
the performance gap is so large is that xfDNN only instantiates
four cores on the FPGA whereas, the Volta architecture
contains 80 streaming multiprocessors, each with eight Tensor
cores.

Figure 3 Efficiency of Frameworks/Devices at Batch Size for Maximum Performance

When comparing the Zebra performance to the Xeon
Skylake CPU, we can see that there is less of a disparity
between the two than what was observed with Zebra and the
V100. However, the Xeon device still significantly
outperforms the Zebra framework. Naturally, this
performance of the Xeon device means that the V100 is
expected to outperform the Xeon device, which is what is
observed in the next comparison. The V100 outperforms the
Xeon device by an average factor of 2.6×.

B. Device Efficiency
In terms of the efficiency of each device and framework,

we can see the V100 significantly outperforms every other
device and framework, even at a large power package of
300W. This efficiency at 300W shows how much higher the
V100 performs compared to each of the other devices and
frameworks.

Interestingly, the FPGA using Zebra has similar to greater
performance-per-Watt capabilities against both Pascal-based
architectures, the Tesla P100 and GTX 1080 Ti. The large
performance disparity between the Pascal and Volta
architectures is due to the inclusion of the Tensor cores in the
Volta architecture. The development of these frameworks for
accelerating CNNs on FPGAs is clearly relevant since they are
capable of being more efficient than general-purpose
architectures that lack specific accelerators for this domain.

According to the results, the Intel products, including all
Xeon and Xeon Phi CPUs, as well as the PAC FPGA, perform
the worst in terms of efficiency across Caffe, OpenVINO, and
different CNNs. These results are a magnitude less than the
rest of the Xilinx and NVIDIA device results, besides xfDNN,
which perform at around the same efficiency as the Intel
devices. The main reason for this poor efficiency on the CPU
side is the large power packages of the CPUs, similar to GPUs,
without the performance to match the GPUs. In the case of
OpenVINO and the PAC FPGA, the power package is one of
the lowest in the study; however, the performance is not close
to any of the other devices and frameworks.

VII. CONCLUSIONS
In this research, a machine-learning inferencing app was

developed to leverage many different HPC architectures and
frameworks, designed to compare these technologies to one
another. CNNs such as AlexNet and a custom 14-layer version
of GoogLeNet were used to classify handwritten Chinese
characters. The Caffe framework was used to leverage Xilinx
FPGAs, NVIDIA GPUs, and Intel Xeon and Xeon Phi CPUs.
The Intel platform-agnostic OpenVINO framework was used
with Intel PAC FPGAs and additionally with Intel Xeon CPUs
to gain an understanding of OpenVINO versus Caffe
performance.

It is clear that the Tensor cores significantly accelerate the
performance of machine-learning inference on NVIDIA
GPUs. Without significant improvements in performance to
FPGA frameworks for accelerating CNNs, FPGAs may need
to add additional hardware, similar to Tensor cores, to be more
competitive in the machine-learning domain. In fact, the next-
generation Xilinx architecture, known as Versal, is designed
with new “AI engines” consisting of long instruction word and
single instruction, multiple data processing engines [38].

Intel devices and frameworks are also lacking in the
machine-learning inferencing domain. CPUs are the most
general-purpose device in the study, posing significant

overhead, especially in terms of efficiency. It is challenging
for CPUs to tailor to one domain as they serve all computing
domains. Being the worst in every category, the OpenVINO
framework for PAC FPGAs needs significant improvements
in order to be competitive in this domain as well.

Some of these performance disparities may also be due to
the technology node of each device. The Volta architecture is
the smallest at 12-nm. The worst-performing architecture in
this study, the Arria 10, is also the largest at 20-nm. This factor
can of course have significant implications on performance of
the devices.

Overall, GPUs dominate performance and efficiency when
accelerating CNNs with Caffe. The next most efficient
devices, Xilinx FPGAs, need significant improvements for
accelerating machine-learning apps, especially since they
currently cannot perform training. Mipsology has mentioned
that they do plan to support training in the future [15]. The
Tesla V100 has significantly better performance with both
AlexNet and GoogLeNet at 12.38× and 13.81×, respectively,
over Zebra’s performance. Similarly, the Tesla V100 has
better efficiency with both AlexNet and GoogLeNet at 1.65×
and 1.84×, respectively, when compared to Zebra’s efficiency.
Although the Versal architecture is not set to be released until
late 2019, data from Xilinx shows Versal performing at 2×
over the Tesla V100 using GoogLeNet for machine-learning
inference with maximum batch size [38]. This architecture, in
combination with the next release of xfDNN v3 and Zebra, has
potential to make FPGAs more competitive with GPUs for
machine-learning inference and significantly more efficient.

This research has provided insight on throughput
performance and efficiency characteristics of a practical,
deep-learning app across many different architectures and
frameworks. The development of these apps can be
continually used as architectures and frameworks evolve to
understand their respective, relative performance. As focus
shifts from machine-learning training to inferencing
acceleration, this research provides critical information to
prepare app acceleration for the future of the machine-learning
domain.

ACKNOWLEDGMENTS
This work was supported by SHREC industry and agency

members and by the IUCRC Program of the National Science
Foundation under Grant No. CNS-1738783. We would also
like to thank AWS, Google Cloud, Pitt CRC, and Intel vLab
for access to their computing resources in the cloud. Finally,
we would like to thank Dr. Bryant Lam of the NSA.

REFERENCES
[1] M. Egmont-Petersen, D. de Ridder, H. Handels, "Image processing

with neural networks - a review," Pattern Recognition, vol. 35, no. 10,
pp. 2279-2301, 2002.

[2] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks," in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2015.

[3] K. Ovtcharov, O. Ruwase, Et. Al, "Accelerating Deep Convolutional
Neural Networks Using Specialized Hardware," Microsoft, February
2015. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/accelerating-deep-convolutional-neural-
networks-using-specialized-hardware/ . [Accessed November 2018].

[4] C. Farabet, C. Poulet, J. Y. Han and Y. LeCun, "CNP: An FPGA-based
processor for Convolutional Networks," International Conference on
Field Programmable Logic and Applications, September 2009.

[5] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun and E.
Culurciello, "Hardware accelerated convolutional neural networks for
synthetic vision systems," in IEEE International Symposium on
Circuits and Systems, Paris, 2010.

[6] Z. Zhong, L. Jin, Z. Xie, "High Performance Offline Handwritten
Chinese Character Recognition Using GoogLeNet and Directional
Feature Maps," in 13th International Conference on Document
Analysis and Recognition (ICDAR), 2015.

[7] Google, "Using GPUs for Training Models in the Cloud," 10 October
2018. [Online]. Available: https://cloud.google.com/ml-
engine/docs/tensorflow/using-gpus. [Accessed November 2018].

[8] J. Fowers, G. Brown, P. Cooke, G. Stitt, "A Performance and Energy
Comparison of FPGAs, GPUs, and Multicores for Sliding-Window
Applications," in ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA), 2012.

[9] L. Deng, D. Yu, "Deep Learning: Methods and Applications,"
Foundations and Trends in Signal Processing, vol. 7, no. 33-34, pp. 1-
99, 2014.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based
learning applied to document recognition," in IEEE, 1998.

[11] X. Glorot, A. Bordes, Y. Bengio, "Deep Sparse Rectifier Neural
Networks," in Fourteenth International Conference on Artificial
Intelligence and Statistics (PMLR), 2011.

[12] A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet Classification
with Deep Convolutional Neural Networks," Neural Information
Processing Systems, vol. 25, no. 2, 2012.

[13] C. Szegedy, W. Liu, Et. Al, "Going Deeper With Convolutions," in
IEEE Computer Vision and Pattern Recognition (CVPR), 2015.

[14] Xilinx, "Adaptive Inference Acceleration," November 2018. [Online].
Available: https://www.xilinx.com/applications/megatrends/machine-
learning.html. [Accessed November 2018].

[15] Mipsology, "Zebra," August 2017. [Online]. Available:
http://www.mipsology.com/zebra.html. [Accessed November 2018].

[16] Intel, "OpenVINO Whitepaper," November 2018. [Online]. Available:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/li
terature/wp/intel-vision-accelerator-design-with-FPGA-wp.pdf.
[Accessed November 2018].

[17] Y. Jia, E. Shelhamer, Et. Al, "Caffe: Convolutional Architecture for
Fast Feature Embedding," in 22nd ACM international conference on
Multimedia MM, 2014.

[18] E. Delaye, "Integrating AI into Your Accelerated Cloud Applications,"
2018.

[19] NVIDIA, "NVIDIA TESLA V100 GPU ARCHITECTURE," August
2017. [Online]. Available: http://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf. [Accessed
November 2018].

[20] NVIDIA, "NVCaffe," November 2018. [Online]. Available:
https://docs.nvidia.com/deeplearning/dgx/caffe-user-
guide/index.html. [Accessed November 2018].

[21] Google, "AI & Machine Learning Products," November 2018.
[Online]. Available: https://cloud.google.com/tpu/. [Accessed
November 2018].

[22] Intel, "KNL Product Specifications," 2018 November. [Online].
Available: https://ark.intel.com/products/94035/Intel-Xeon-Phi-
Processor-7250-16GB-1_40-GHz-68-core. [Accessed 2018
November].

[23] Intel, "KNM Processor Specification," November 2018. [Online].
Available: https://ark.intel.com/products/128690/Intel-Xeon-Phi-
Processor-7295-16GB-1-5-GHz-72-Core-. [Accessed November
2018].

[24] Intel, "Intel Knight’s Mill Microarchitecture," November 2018.
[Online]. Available:
https://en.wikichip.org/wiki/intel/microarchitectures/knights_mill.

[25] Intel, "Skylake Processor Specificaitons," November 2018. [Online].
Available: https://ark.intel.com/products/120496/Intel-Xeon-
Platinum-8180-Processor-38-5M-Cache-2-50-GHz-. [Accessed
November 2018].

[26] Intel, "Intel Optimized Caffe*," November 2018. [Online]. Available:
https://software.intel.com/en-us/articles/training-and-deploying-deep-
learning-networks-with-caffe-optimized-for-intel-architecture.
[Accessed November 2018].

[27] Intel, "OpenVINO," November 2018. [Online]. Available:
https://software.intel.com/en-us/articles/OpenVINO-InferEngine.
[Accessed November 2018].

[28] C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, "Online and Offline
Handwritten Chinese Character Recognition: Benchmarking on New
Databases," Pattern Recognition, vol. 46, no. 1, pp. 155-162, 2013.

[29] S. Lai, L. Jin, W. Yang, "Toward high-performance online HCCR: A
CNN approach with DropDistortion, path signature and spatial
stochastic max-pooling," Pattern Recognition Letters, vol. 89, February
2017.

[30] R. DiCecco, G. Lacey, Et. Al, "Caffeinated FPGAs: FPGA framework
For Convolutional Neural Networks," in International Conference on
Field-Programmable Technology (FPT), 2016.

[31] NVIDIA, "GEFORCE GTX 1080 Ti," August 2017. [Online].
Available: https://www.nvidia.com/en-
us/geforce/products/10series/geforce-gtx-1080-ti/ . [Accessed
November 2018].

[32] FWDNXT, "Snowflake," 2018. [Online]. Available:
http://www.fwdnxt.com . [Accessed November 2018].

[33] Xilinx, "Xilinx Power Estimator," November 2018. [Online].
Available:
https://www.xilinx.com/products/technology/power/xpe.html.
[Accessed November 2018].

[34] NVIDIA, "NVIDIA TESLA P100 ARCHITECTURE," August 2017.
[Online]. Available:
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-
datasheet.pdf . [Accessed November 2018].

[35] Intel, "Intel PAC," 16 October 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/documentat
ion/hhf1507759304946.html#vjb1508359354353. [Accessed
November 2018].

[36] J. Hennessy, D. Patterson, “Computer Architecture: A Quantitative
Approach,” 6 ed., San Francisco, CA: Morgan Kaufmann, 2017.

[37] Intel, "Knight's Mill: New Intel Processor for Machine Learning,"
2017. [Online]. Available: https://www.hotchips.org/wp-
content/uploads/hc_archives/hc29/HC29.21-Monday-
Pub/HC29.21.40-Processors-Pub/HC29.21.421-Knights-Mill-
Bradford-Intel-APPROVED.pdf. [Accessed November 2018].

[38] Xilinx, "Versal: The First Adaptive Compute Acceleration Platform
(ACAP," 2 October 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp505-
versal-acap.pdf. [Accessed November 2018.

