
Pseudo-Constant Logic Optimization

Aaron Landy and Greg Stitt
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL, USA

landy@hcs.ufl.edu, gstitt@ece.ufl.edu

Abstract—Constant folding reduces area and enables greater
parallelism, but requires circuits with constant inputs. In this
work, we extend constant folding to support pseudo-constants,
which are values that change with low frequency. We present a
method of pseudo-constant logic optimization based on
dynamically reconfigurable capabilities of FPGAs, which
optimizes logic for different pseudo-constant values and then
reconfigures the logic whenever the pseudo-constant changes.
Although not beneficial for all logic, we show this optimization
achieves up to a 1.25x increase in functional density on Xilinx
Virtex 5 FPGAs.

Keywords—FPGA; pseudo-constants; logic minimization;
dynamic reconfigurability; run-time reconfiguration

I. INTRODUCTION
Constant folding [5] is a widely studied logic-

minimization strategy for FPGAs. Unfortunately, circuit
designers often avoid constants to enable as many use cases
as possible, limiting constant-folding applicability.

However, circuits often use signals that exhibit near-
constant behavior where the value is rarely changed, which
we define as pseudo-constant. For example, many signal-
processing applications initially set a pseudo-constant
convolution kernel, which remains the same for the duration
of the application. Alternatively, each frame of a low frame-
rate video may also be considered pseudo-constant. These
pseudo-constants are often inputs to highly replicated logic
components such as adders, multipliers, comparators, and
muxes (e.g., [2][8]), which could benefit from constant
folding to reduce area and/or increase replication.

In this paper, we introduce pseudo-constant logic
optimization. To account for invalidated logic resulting from
changes in a pseudo-constant value, we exploit lookup-table
(LUT) reconfigurability to dynamically modify the logic. We
show that for common types of logic, pseudo-constant logic
optimizations can achieve area savings from 27%-50% on
Xilinx Virtex 5 FPGAs. Additionally, we show that pseudo-
constant optimized multiplexers match the functional density
of traditional synthesis in as few as 128 operations per
invalidation, and approach up to 1.25x greater functional
density for infrequent invalidations.

II. PREVIOUS WORK
Previous studies have demonstrated a concept similar to

pseudo-constants by using partial reconfiguration for run-

time logic minimization [4][7][9][11]. Previous work also
showed that partial reconfiguration can have prohibitive
reconfiguration times, implementation complexity, and
limitations on reconfiguration granularity [3][10][11]. This
past work examined trade-offs between area and
reconfiguration time when using run-time logic optimization,
and included a functional density metric to quantify the
trade-offs. We extend past work by reducing reconfiguration
times and implementation complexity via the LUT-based
RAM primitives provided by most FPGAs.

III. PSEUDO-CONSTANT LOGIC OPTIMIZATION

A. Overview
Pseudo-constant and traditionally optimized circuits are

identical after elaboration but differ significantly after
technology mapping. Consider a 4:1 multiplexer with a
constant or pseudo-constant select input. Traditional constant
folding would replace the multiplexer with a direct
connection. However, pseudo-constant mapping requires
more resources to enable changes due to invalidations.

To allow for changes, technology mapping for pseudo-
constant logic is restricted to FPGA primitives that support
runtime reconfiguration. In this paper we focus on common
primitives in existing Xilinx Virtex 5 devices: LUT RAM and
LUT shift registers. Pseudo-constants are also possible on
Altera devices but are outside the scope of this paper.

After technology mapping, the resulting circuit requires a
small bitfile that implements the logic for each pseudo-
constant value. In the case of LUT primitives, this bitfile is
simply the truth table stored in the LUT. We currently focus
on offline bitfile creation as overcoming the complexity and
overhead of online creation is beyond the scope of this paper.
Offline creation is possible when a synthesis tool can pre-
compute the bitfiles for all possible pseudo-constant values.
At runtime, the circuit loads the correct bitfile upon a
pseudo-constant invalidation. For a 4:1 mux with a pseudo-
constant select, a synthesis tool could statically determine
four separate bitfiles and store them in a block RAM. As
another example, one input to a 32-bit comparator may only
have two different possible values (e.g., runtime-specified
thresholds), requiring only two separate bitfiles.

B. Pseudo-Constants Primitives for Xilinx Virtex 5
General-purpose logic resources in Xilinx Virtex 5 devices

are composed of columns of configurable logic blocks
This work was supported in part by the I/UCRC Program of the

National Science Foundation under Grant Nos. EEC-0642422 and IIP-
1161022.

(CLB). Each CLB is composed of two SLICEs, each of
which contains four LUTs (A, B, C, and D). Paired with each
LUT is dedicated carry-chain logic and a flip-flop. Figure 1
shows the simplified functional architecture of the Virtex 5’s
six-input, two-output LUT.

1) Distributed LUT RAM
To implement the LUT RAM pseudo-constant primitive,

we use Xilinx Distributed RAM. Each Xilinx LUT allows
read and write access to the 64 SRAM bits in either 64x1-bit
or 32x2-bit configurations. Multiple LUTs per slice can be
grouped together to create wider or deeper memories. The
write addresses for all four LUTs are driven by LUT D’s six
logic and read inputs, placing significant limitations on the
efficiency of LUT RAM structures. For example, a dual-
ported 64x1 RAM requires two LUTs (50% area penalty).

To achieve maximum area efficiency, a LUT RAM
primitive using Virtex 5 distributed RAM should use all four
LUTs in a single SLICE. Inputs D[1:6] drive the common
write address and are used to configure LUTS A, B and C,
which can then be used as three independent LUTs, while
LUT D’s inputs are consumed by serving as the write-
address for LUTs A, B, and C. Using LUT RAM, each
SLICE yields either three 6-input, 1-output functions, or
three 5-input, 2-output functions. If inputs D[1:6] could be
driven by both logic during normal operation and
configuration hardware during reconfiguration, then four 6:1
or 5:2 functions could be realized per SLICE.

2) Shift Register
LUT shift-register primitives can be implemented using

Xilinx SRL primitives. When configuring LUTs as shift
registers, configuration bits for many LUTs can be shifted
serially in a single configuration chain.

Using the SRL32, a single LUT can be configured as a
five-input, one-output function. Configured as two SRL16s,
each LUT can be configured as a four-input, two-output
function. Unlike SRL32, each SRL16 must be driven by an
independent configuration input; multiple SRL16 primitives
cannot be combined to form a longer configuration chain.

C. Architectural Extensions
The pseudo-constant primitives for the Virtex 5,

described above, show that the number of inputs and outputs
to an FPGA’s LUTs are a key limitation of pseudo-constant
logic packing and place an upper bound on the achievable
area reduction.

For example, in the design of an adder circuit, described
in the next section, the key design limitation was the number
of outputs from a LUT. While all inputs needed to produce
up to five sum outputs and a carry could drive a single LUT,
at most two outputs per LUT could be generated. The
availability of only one set of fast carry logic and flip-flop
per LUT limits the achievable maximum clock speed when
using two outputs per LUT. Using LUT RAM primitives,
one LUT per SLICE is consumed solely by the use of its

address pins by the RAM write address, and cannot be used
for logic.

To improve amenability for pseudo-constant
optimization, we also evaluate a hypothetical FPGA
architecture that is augmented to improve efficiency of
wider-output functions, such as those found in many
arithmetic operations. Additional outputs per LUT and fast
carry logic and flip-flop pairs for each LUT output could
greatly improve the efficiency of wide-output functions. An
extra set of address pins per SLICE to serve as the common
write address input would prevent the 25 percent loss of
functional density in LUT RAM based designs.

IV. EXPERIMENTS
To evaluate pseudo-constant logic optimization, we

manually technology mapped commonly replicated functions
onto pseudo-constant primitives for Xilinx Virtex 5 FPGAs.
Because Virtex 5, Virtex 6, and Virtex 7 devices all employ
an identical CLB architecture, the results also apply to those
devices. To determine benefits, we also synthesize each
circuit without the proposed optimization to a Xilinx Virtex
5 LX50 FPGA using Xilinx ISE 14.2.

We evaluate the same circuits on a theoretical device
incorporating the modifications proposed in Section III.C.
This device’s SLICEs are composed of four six-input, two-
output LUTs identical to those of a Virtex 5. We added
carry-logic and flip-flop stages to both outputs of each LUT.
An additional set of common write-address inputs for LUT
RAM primitives was also added. We assume Virtex 5 timing
and switching characteristics [12]. Further design tradeoffs
of such a device are outside the scope of this study.

A. Case Studies
In this section, we evaluate logic that is commonly

replicated in large numbers by many FPGA applications,

WE

CLK

Shift In 1

WA8

WA2

WA1

A4

A3

A2

A1

A6

A5

A6
A1-A5

A1-A5

Logic
Inputs

Write
Address
Inputs

W
rit

e
Ad

dr
es

s
D

ec
od

er

R
ea

d
D

ec
od

er

Shift Out

Write Data In,
Shift In 2

32x1
RAM

16-bit
Addressable
Shift Register

R
ea

d
D

ec
od

er

32x1
RAM

16-bit
Addressable
Shift Register

Read
Address
Inputs

Logic
Outputs

O6

O5

Figure 1: Functional architecture of a Xilinx Virtex 5 LUT. Each LUT

can be configured as a 64x1 dual-ported RAM, a single variable-length shift
register up to 32-bits long, or two independent variable-length shift registers

up to 16-bits long each.

including an adder, a comparator, and a multiplexer. Figure
2 summarizes the results.

1) 32-bit Full Adder
When synthesized into FPGA LUTs, adder circuits are

output-bound. Synthesis in Xilinx ISE for a Virtex 5 uses the
dedicated fast carry logic to create ripple-carry adders. Each
LUT adds the ith bit of each input A and B, generating a sum
and carry output to drive the carry logic, which combines
these signals with Ci-1 to generate a Si and Ci.

If the add operation had one pseudo-constant input and
one variable input, the pseudo-constant value can be folded
into each full adder. Suppose three bits of the non-constant
input, [Ai,,Ai-2], along with a carry input Ci-3, were connected
to two LUTs. The four available outputs from this structure
can then implement outputs [Si, Si-2] and Ci. This structure
allows the internal carry values to be calculated without
consuming LUT outputs and implements a 3-bit adder using
only two LUTs, yielding a 33% area savings. Using the
SRL16-based four-input, two-output pseudo-constant LUT
primitive, many such pseudo-constant 3-bit adders can be
chained together. When synthesized using the pseudo-
constant based design, a 32-bit adder consumes only 22
LUTs—an area savings of 31%. Because the Virtex 5 CLB’s
fast carry logic is accessible by only one output from each
LUT, the optimized design cannot benefit from the fast carry
logic. Despite a shorter overall combinational path, 11 logic
stages rather than 32, the longer path between neighboring
LUTs increases the circuit’s combinational delay by 5x, from
2.515 ns for traditional logic to 10.377 ns using the pseudo-
constant design.

 When the pseudo-constant design is instead mapped
onto the modified architecture from Section III.C, a 32-bit
ripple carry adder can be mapped to the modified
architecture using 22 LUTs with a combinational delay of
1.343 ns. This delay for the pseudo-constant-optimized adder
is 47% faster than a traditionally synthesized adder.

2) Multiplexer
Using traditional synthesis methods, a four-input mux

requires one LUT on a Virtex 5. Multiple four-input muxes
can be combined using dedicated SLICE mux hardware to
create up to one 16-input mux per SLICE.

If the select input to a mux were found to be pseudo-
constant, using the SRL32 five-input, one-output LUT
primitive, a five-input mux consumes only one LUT, and a
20-input mux can be created in each SLICE, yielding a 25
percent increase in functional density. Additionally, a four-
input, two-output mux can be designed using the SRL16
four-input, two-output LUT primitive consuming only one
LUT, yielding up to 50 percent LUT savings.

Using the LUT RAM-based primitive in the modified
architectures, a six-input, one-output mux uses just one LUT,
with up to a 24-input mux per SLICE. There is no difference
in timing performance between each design.

3) 32-bit Comparator
Suppose a circuit must compare two 32-bit numbers, A

and B. When synthesized to the Virtex 5 architecture, this
circuit requires 11 LUTs, with a delay of 4.658 ns.

If input B was pseudo-constant, its value can be folded
into the function implemented by the circuit’s LUTs using
the SRL32-based five-input, one-output LUT primitive
described above. The inputs to each LUT are comprised of
four consecutive bits of the variable input, along with a
“carry-out” from the previous group. The outputs from these
groups are cascaded together to create a 32-bit wide
comparator using only 8 LUTs for an area savings of 27%,
with an increased in propagation delay of 6.556 ns.

B. Functional Density
In [11], Wirthlin et al. present a functional density metric,

D, defined as the inverse of the product of a circuit’s area, A,
and operating time, T. Additionally, [11] presents a
specialized form of this metric for use with run-time
reconfigurable circuits. By adding reconfiguration time,
tconfig, divided by operations per reconfiguration, n, to the
operating time term, the metric accounts for the performance
effects of reconfiguration at a given invalidation frequency.

Figure 3 plots functional density for each of the three
adder circuits as the number of operations between
invalidations (i.e., the inverse of invalidation frequency)
increases logarithmically. This figure shows that while the
combinational delay overhead on the Virtex 5 architecture
prevents the pseudo-constant circuit from matching the
functional density of the traditional adder, on the modified
architecture the pseudo-constant circuit surpasses the
functional density of the traditional adder after only 19
operations between reconfigurations. Reconfiguration
overhead per operation reaches nearly zero after only 214
operations, a small figure considering FPGA clock
frequencies in the hundreds of megahertz. For infrequent
invalidations, the functional density of the pseudo-constant
adder on the modified architecture approached 2.7x.

Circuit Method
LUTs Delay(ns)

Traditional 32 2.515
PC Virtex 5 22 10.377

PC Modified Arch 22 1.343
LUTs Delay(ns)

Traditional 11 4.658
PC Virtex 5 8 6.556

PC Modified Arch 6 4.783

Per LUT Per Slice
Traditional 4 16
PC Virtex 5 5 20

PC Modified Arch 6 24

Adder

Comp

Mux N:1

Max N

Results

Figure 2: Comparison of LUT utilization for each evaluated circuit

with traditional synthesis and pseudo-constants (PC).

In any pseudo-constant design using LUT RAM or shift-
register LUTs, reconfiguration can load the pseudo-constant
bitfile into each LUT either in serial (one LUT at a time) or
in parallel (all LUTs at once). Serial reconfiguration yields
the largest performance penalty while parallel
reconfiguration requires more reconfiguration resources. The
degree of parallelism can be adjusted to find an appropriate
Pareto-optimal design point for each design.

Figure 4 compares the functional density of each pseudo-
constant 32-input mux to traditional muxes using either fully
parallel or fully serial reconfiguration. The results show that
pseudo-constant muxes approach a functional density of
1.25x on the Virtex 5 architecture, and 1.5x on the modified
architecture, when compared to traditional synthesis.
Additionally, the graph shows that the break-even point, at
which functional density of the pseudo-constant optimized
and traditional circuits are equal, is approximately 128
operations per invalidation using fully parallel
reconfiguration, and fewer than 900 operations using fully
serial reconfiguration.

V. CONCLUSIONS
In this paper, we showed that pseudo-constant

optimizations can increase functional density of common
logic structures. While initial results indicate up to 1.25x
improvement in functional density on off-the-shelf FPGAs,
the experiments also show the difficulty of implementing
pseudo-constant designs on modern FPGAs. In particular,
restrictions on dynamic reconfigurability and narrow-output
functional units limit the effectiveness of pseudo-constant
optimizations. If future FPGA designs address these
concerns, pseudo-constant optimizations could be a viable
method of increasing functional density in FPGA designs,
with improvements as high as 2.7x density vs traditionally
synthesized designs.

REFERENCES
[1] Z. Baker, M. Gokhale, and J. Tripp. “Matched filter computation on

FPGA, cell and GPU.” In IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 207-218, 2007.

[2] A. Brant and G. Lemieux. “ZUMA: An open FPGA overlay
architecture.” In IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 93-96, 2012.

[3] S. Donthi and R. Haggard. “A survey of dynamically reconfigurable
FPGAdevices.” In System Theory. Proceedings of the 35th
Southeastern Symposium on, pp. 422-426, 2003.

[4] J. Eldredge and B. Hutchings. “Density enhancement of a neural
network using FPGAs and run-time reconfiguration.” In FPGAs for
Custom Computing Machines. Proceedings. IEEE Workshop on, pp.
180-188, 1994.

[5] P. Foulk. “Data-folding in SRAM configurable FPGAs.” In FPGAs
for Custom Computing Machines. Proceedings. IEEE Workshop on,
pp. 163-171, 1993.

[6] J. Fowers, G. Brown, P. Cooke, and G. Stitt. “A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications.” In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp.
47-56, 2012.

[7] B. Gunther, G. Milne, and L. Narasimhan. “Assessing document
relevance with run-time reconfigurable machines.” In FPGAs for
Custom Computing Machines, 1996. Proceedings. IEEE Symposium
on, pp. 10-17, 1996.

[8] A. Landy and G. Stitt. “A low-overhead interconnect architecture for
virtual reconfigurable fabrics.” In Proceedings of the 2012
international conference on Compilers, architectures and synthesis for
embedded systems, pp. 111-120, 2012.

[9] E. Lemoine and D. Merceron. “Run time reconfiguration of FPGA for
scanning genomic databases.” In FPGAs for Custom Computing
Machines, 1995. Proceedings. IEEE Symposium on, pp. 90-98, 1995.

[10] E. McDonald. “Runtime FPGA partial reconfiguration.” In Aerospace
Conference, IEEE, pp. 1-7, 2008.

[11] M. J. Wirthlin and B. L. Hutchings. “Improving functional density
through run-time constant propagation.” In ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp.
86-92, 1997.

[12] Xilinx Virtex-5 FPGA Data Sheet: DC and Switching Characteristics,
http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf

0

0.5

1

1.5

2

2.5

3

Fu
nc

tio
na

l D
en

si
ty

Operations Between Invalidations

Pseudo-Constant on Modified Arch

Pseudo-Constant on V5

Traditional

Figure 3: Functional density of a pseudo-constant adder compared to

a traditional adder as the invalidation frequency increases. Results are
shown for both the Virtex 5 and modified architectures.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2^0 2^2 2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22

Fu
nc

tio
na

l D
es

ni
ty

Operations Between Invalidations

PC Modified Arch Parallel

PC Modified Arch Serial

PC V5 Parallel

PC V5 Serial

Traditional

Figure 4: Functional density for each mux design is shown for both

fully parallel and fully serial reconfiguration.

