A+f |

-3 -‘.i] - - -
,j*& National Science Foundation’s |1,}'* *| Industry/ Smx rersity Cooperative Research (I/UCRC) Progr: Un" ’b

Lessons Learned with Performance
Prediction and Design Patterns on

Molecular Dynamics

{HICHREC

. NSF Center for High-Performance

I Reconfigurable Computing Brian Holland
Karthik Nagarajan
UF UFYS?&BA Saumil Merchant

Herman Lam

Virginia o
P BYP Alan D. George

BN BRIGI
HINIC INSTITUTE
A4

ECE Department, University of Florida
NSF CHREC Center

Outline of Algorithm Design Progression

= Algorithm decomposition Feb ‘07
a Design flow challenges
» Performance prediction Jun 07

o RC Amenability Test (RAT)
a Molecular dynamics case study
o Improvements to RAT

= Design patterns and methodology fsepo7
o Introduction and related research

o Expanding pattern documentation
a Molecular dynamics case study

= Conclusions ~—
Design Evolution
CHREQC UF\”FNL‘B'ii'ﬁ)”A g}

NSF Center for High-Performance 2 WM BYU TuEGrORGE
Reconfigurable Computing washi

‘ Design Flow Challenges

= Original mission —
o Create scientific applications for FPGAs as case studies to mvestlgate
topics such as portability and scalability
= Molecular dynamics is one such application
= Goal is not application implementation but lessons learned from app.

o Maximize performance and productivity using HLLs and high-
performance reconfigurable computing (HPRC) design techniques

= Applications should have significant speedup over SW baseline
= Challenges
o Ensure speedup over traditional implementations
= Particularly when researcher is not an RC engineer

o Explore application design space thoroughly and efficiently
= Several designs may achieve speedup but which should be used?

IIIIIIIIII
CHREC UF FLORIDA &
NSF Center for High-Performance 3 ngﬁm BYU ,““-M"
Reconfigurable Computing o . WASHING TON

‘ Algorithm Performance

= Motivation
o (Re)designing applications is expensive
= Only want to design once and even then, do it most efficiently
o Scientific applications can contain extra precision
= Floating point may not be necessary but is used as a SW “standard”
o Optimal design may overuse available FPGA resources
= Discovering resource exhaustion mid-development is expensive

= Need

o Performance prediction

= Quickly and with reasonable accuracy estimate performance of a
particular algorithm on a specific FPGA platform

= Use simple analytic models to make prediction accessible to novices

‘UNIVERSITY of (BB
CHREDC UF FLORIDA @
NSF Center for High-Performance 4 'Iéch BYU Tur ..l-onc.v
Reconfigurable Computing . wasiii

RC Amenability Test (RAT) -V

“A methodology for fast and accurate RC performance prediction of a specific
application on a specific platform before any hardware coding”

= Throughput Test I ﬁ

a Algorithm and FPGA platform \\{"TART// @
are parameterized g " usufiicien

. . // entity kernel, \\\ J/ comm. B
create design on / or com

o Equations are used to predict k\\ te desig /) /Throu ghput rcomp.
speedup NEw Test

. . . J T e
. NUmerlCa| PreC|S|0n TeSt \ ——_— \/ D:stle M/n/}jngm
L. y m X periormance precision)

o RAT user should explicitly em /N;me"_;éﬂ\ Unrealzabl
examine ImpaCt Of redUCing \\\\ ‘\\g(efjfioqlrggg,,,,/" requirement
preCISIOH on Computatlon /B;d/—l-lv;_‘;]-lui \\\ /:\fcceptablibezance of

. el e performance and precision
o Interrelated with throughput test “gimulate dosign” eouros Tess', Insuffien
= Two tests essentially proceed 4 N e e
simultaneously " Verifyon \
e . . HWplatform -
= Resource Utilization Test /o

o FPGA resources usage is _
estimated to determine Overview of RAT Methodology
scalability on FPGA platform

CHRELC UF|FLORIDA |
Retanaurane Companma" > g BYU e

‘ Original RAT Analytic Model

Communication time

l‘ l‘ + l’ elements bytes/ element _ elements bytes/element
— . read ~ ite
comm read write Q,poq “throughput,,,, " «a . -throughput,,,
Computation time
Single Buffered
N -N 0 . N
¢ elements ops | element Comm) R1 | ‘W1 R2 | w2 | R3 ‘W3
comp Comp s | c2 c3 ;
Jetour throughput ., e ’----‘.‘;:;;‘;‘.‘;‘.‘ o
Double Buffered, Computation Bound
TOtal RC execution time < Comm| R1 | R2 W1IR3 |W2{R4 }Wé'riiis" TWZE
comp| | €1 c2 ¢ c4a |
tey, = N, (comm T twmp) “““““ Toub.e?uﬁeredCOmmun.caﬁonsoum
~ Comm R1 | RZ | Wi]RS]W}J]M]WJ]RS """ w 4*
trcDB Nzter MCZX(comm’tcomp) _ Comp ¢ c2 CSJ C4RJ ’ "
------------------- Legend: _.‘_?_ = Read, W = Write, C = Compute

Speedup

tsoft

speedup =

tRC

Communication and Computatlon Overlap
for Single or Double Buffering

Application and RC platform attributes are parameterized
and used in these equations to estimate performance.

CHREC

NSF Center for High-Performance
Reconfigurable Computing

UF ‘ UNIVERSITY f

FLORIDA R
V%M BYU :

(AARZERERELLER R}]
(AARZERERELLER R}]
LAEEXEXERELERER N]
LAEEXEXERELERER N]
LAEEXEXERELERER N]
LAEEXEXERELERER N]
V000000000000 000
(XXETIEXTRETTRY YR}
(AARZERERELLER R}]
0000000000000 000

 Molecular Dynamics

void ComputeAccel () {

double dr (3], £, £oval, rxCut, rx, £i2, £i6, £1; = Simulation of interactions of a
set of molecules over a given
;ZEI(ILEESE:?Z?EH) for (k=0;k<3;k++) ra[n][k] = 0.0; time interval
potsnerey = 0.0 a Based upon code provided by
rer (42ediri; stenmvom: 124) Oak Ridge National Lab (ORNL)
e A A AL AR = Challenges for accurate
o (Rt ot k1 i (11 1R o 1 performance prediction of MD

rr = rr + dr[k]*dr[k];
}
if (rr < rrCut) {
ri2 = 1.0/rr; ri6é = ri i2*ri2; rl = sqrt(rr);
fcval = 48.0*ri2*ri6* (ri6-0. + Duc/rl;
for (k=0; k<3; k++) {
f = fcval*dr[k];
ra[jl] [k] = ra[jl][k] + £;

o Large simulation datasets

= Exhaust FPGA’s local memory

0 Sets of molecules are often on
order of 100,000s of atoms, with
dozens of time steps

 FelazlIx] = xal3zlh - £ o Nondeterministic runtime
potEnergy+=4.0*ri6* (ri6-1.0)- Uc - Duc* (rl1-RCUT); m Molecules beyond a Certain

. threshold are assumed to have

} zero impact
} SW Baseline Code o Certain sets require less comp.
UNIVERSITY of

CHRELDC UF [FLORIDA

NSF Center for High-Performance 7 mem BYU rucceonge

Reconfigurable Computing oot PAIGHAN YOUNG SHAMaRDX

 Molecular Dynamics

Dataset Parameters

] Algorithm Nelements, input (elements) 16384
a 16.384 molecule data set Nelements, output (elements) 16384
. : N I bytes/el 36
a Written in Impulse C bytes/element (bytes/element)
o XtremeData XD1000 platform Communication Parameters
n Altera Stratix || EPS2180 FPGA throughput(ideal) (Mbps) 500
n HyperTransport interconnect a(input) 0<a<t 0.9
o SW baseline on 2.4GHz Opteron a(output) O<ax<t 0.9
. Parameters Computation Parameters
o Dataset Parameters Nops/element (ops/element) 164000
= Model volume of data used by FPGA throughput(proc) (ops/cycle) 50
o Communication Parameters f(clock) (MHz) 75/100/150
n Model the HyperTransport interconnect Som 5 n
o Computation Parameters Tool otware ara('::z)ers G
n I\N/Iodel computational requirement of FPGA N (iterations) 1
= /element
P e 16384 10 0ps RAT Input Parameters of MD
a i.e. each molecule (element) takes 10ops/iteration
= Throughput;,. Predicted Predicted Predicted Actual
o 50 f(clock) 75 100 150 100
a i.e. operations per cycle needed for >10x speedup tcomm 262E-3 2.62E-3 2.62E-3 1.39E-3
o Software Parameters tcomp 717E-1 5.37E-1 3.58E-1 8.79E-1
= Software baseline runtime and iterations Ut’zcomm 909-4(;’/; 90555:/; 9057::/; 9062;/;
required to complete RC application utilcomp 6% -O% 3% 8%
9 P PP tRC 7.19E-1 5.40E-1 3.61E-1 8.80E-1
speedup 8 10.7 16 6.6
Performance Parameters of MD
UNIVERSITY of |
CHRELC UF |FLORID,
NSF Center for High-Performance 8 mem BYU T
Reconfigurable Computing wirsamossmy | BRIGHAN YOUNC i

‘ Parameter Alterations for Pipelining

(g . Dataset Parameters
M D Optl mlzatlon Nelements, input (elements) 16384
0 Each mo|e0u|ar pair’s leetme/nfs, out,?ut (elements) 1633684
. . . es/elemen bytes/el t
computation should be pipelined Y (ovtesielement
Individual molecules have Communication Parameters
nondeterministic workloads throughput(idea) (Mops) 500
)) a(input) 0<a<1 0.9
But, pairs of molecules will enter a(outout) O<a<t 0.9
the pipeline at a constant rate
Computation Parameters
P aram ete IS Nops/element (ops/element) 16400
0 Compu’[aUOn P arameters thr?ug.hput(pipeline) (ops/cycle) 0.33333
N Npipelines (ops/cycle) 15
opgl/%liggnt f(clock) (MHz) 75/100/150
o Strictly number of interactions per Software Parameters
element t(soft) (sec) 5.76
Ihms%%hp“tplpelme " Modified RAT Input Paramerers of MD
o Number of cycles needed to per Hclock) Pre:i;ted Pref(i,;ted Prefsi;ted A::Jl:)al
interaction. i.e. you can only stall tcomm | 2.62E-3 262E-3 2.62E-3 1.39E-3
pipeline for 2 extra cycles tcomp 717E-1 537E-1 3.58E-1 8.79E-1
N ineline utilcomm 0.4% 0.5% 0.7% 0.2%
P p1 5 uticomp | 99.6% 99.5% 99.3% 99.8%
. tRC 719E-1 5.40E-1 3.61E-1 8.80E-1
0 Guess based upon predicted speedup 8 107 16 6.6
area usage Performance Parameters of MD
UNIVERSITY of
CHRELC UF |FLORTDA R

NSF Center for High-Performance
Reconfigurable Computing

9 V“g’"u'fm BYU

‘ Pipelined Performance Prediction

= Molecular Dynamics
o If a pipeline is possible, certain

Dataset Parameters

Nelements (elements) | (16384)°
parameters become ObSO|ete_ _ Nclks/element (cycle/element) 3
= Number of operations in pipeline (i.e Npipelines 15
depth) is not important Depthpipeline cycles 100
= Number of pipeline stalls becomes f(clock) (MHz) 100
critical and is much more meaningful t(soft) (sec) 5.76
for non-deterministic apps
P Dataset Parameters
= Parameters tRC (550) 0537
0 NeIement Speedup 10.7
= 163842 Pipelined RAT Input Parameters of MD
= Number of molecular pairs
Q Nclks/element
u 3 — Nelements) Nclks/ element Deptlllli’i]?’eline
. tRC - + + tcomm
= i.e.up totwo cycles can be stalls Noer £
0 Npipelines Modified RC Execution Time Equation
= 15
= Same number of kernels as before
CHREC UF FLORIDA &
NSF Center for High-Performance 10 mem ‘ BYU l.'i.‘..‘.)'\‘:'.“'\'

Reconfigurable Computing

_J e {
“And now for something completely different”

-Monty Python

(Or is it?)

B H R E E: Image from “Monty Python and the Holy Grail”. UF ‘ Uﬁi‘&’ﬁ'fﬁg w &

For academic purposes only. —
PP g gra BYU oo

NSF Center for High-Performance 11
Reconfigurable Computing

‘ Leveraging Algorithm Designs Z—f=t\ 7/&‘%\

Gilin

o Molecular dynamics provided several lessons learned
= Best design practices for coding in Impulse C
= Algorithm optimizations for maximum performance

= Memory staging for minimal footprint and delay
0 Sacrificing computation efficiency for decreased memory accesses

= Introduction

= Motivations and Challenges

a Application designs should educate the researcher
= Successes and mistakes are retained to expedite future apps.
= Application designs should also train other researchers

a Unfortunately, new designing can be expensive

= Collecting application knowledge into design patterns provides
distilled lessons learned for efficient application

UUUUUUUUUUU

CHREC UF FLORIDA

NSF Center for High-Performance 12 ng@ﬁ‘léch BYU e
Reconfigurable Computing) WASHING TON

What are Design Patterns?

= Objected-oriented software engineering:

o “A design pattern names, abstracts, and
identifies the key aspects of a common design
structure that make it useful for creating a
reusable object-oriented design” 1]

= Reconfigurable Computing

o “Design patterns offer us organizing and
structuring principles that help us understand
how to put building blocks (e.g., adders,
multipliers, FIRs) together.” 12!

. Gamma, Eric, et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
Boston, 1995.

. DeHon, Andre, et al., “Design Patterns for Reconfigurable Computing”, Proceedings of 12" [IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM’04), April 20-23, 2004, Napa, California.

UF‘ IIIIIIIIIII f i*'
CHREC FLORIDA
NSF Center for High-Performance 13 Vugnﬁm BYU TuEGrORGE
Reconfigurable Computing oscweme PRIGHAM YOUNG SEUSERY

Classification of Design Patterns — OO Textbook [1]

= Pattern categories

o Creational

Describing Patterns

|
sk o Pattern name
= Abstract Factory Tm i o Intent
= Prototype e, g o Also know as
= Singleton W oot o Motivation
= elc. o
o Applicability
N Strxgtural = | B o Structure
: Brizgteer W m 0 Participant.s
« Proxy | L e 0 Collaborations
- etc. epsﬁe o Consequences
a Behavioral w o Implementation
= lterator o Sample code
= Mediator = s ———— Faeao | o Known uses
= Interpreter 5 o Related patterns
= etc.
CHREGQG UF FLORIDA &

NSF Center for High-Performance
Reconfigurable Computing

14

"g”w“am BYU 700
e = WASHINGTON
VIRGSNA POLYTECHNC INSTITUTE BRIGHAM YOUNCG UNIVERSITY

Sample Design Patterns — RC Paper [2]

= 14 pattern Categories: = 89 patterns identified (Samples)
o Coarse-Grained Time Multiplexing

Area-Time Tradeoffs
. o Synchronous Dataflow

o Expressing Parallelism a Multi-threaded
o Implementing Parallelism o Sequential vs. Parallel Implementation
a Processor-FPGA Integration (hardware-software partitioning)
a Common-Case Optimization 2 SIVD
. - o Communicating FSMDs
o Re-using Hardware Efficiently a Instruction augmentation
o Specialization o Exceptions
a Partial Reconfiguration a Pipelining _
c L o Worst-Case Footprint
o Communications o Streaming Data
o Synchronization o Shared Memory
a Efficient Layout and Communications @ Synchronous Clocking
o Implementing Communication o Asynchronous Handshaking
o Cellular Automata
o Value-Added Memory Patterns a2 Token Ring
o Number Representation Patterns o etc.
CHRELC UF!”F”IZ‘B’ii'fbA !

NSF Center for High-Performance 15 .'Iéc_h BYU rutGronae
Reconfigurable Computing was

.......................

‘ Example — Datapath Duplication

* Replicated computational structures for parallel processing

H w8 o = = i
| Paralieidatainput [<---------

J

= Intent — Exploiting computation parallelism in "“
sequential programming structures (loops)

i

= Motivation — Achieving faster performance

through replication of computational structures ki

Loy
ML

= Applicability — data independent
» No feedback loops (acyclic dataflow)

» Participants — Single computational kernel

!

r=]

=

- L - L=
K ke---1 = |

<

A

| Py

T
I

I .
Ir Buffer/Accumulator |-<

A

» Collaborations — Control algorithm directs dataflow and synchronization
= Consequences — Area time tradeoff, higher processing speed at cost of

increased implementation footprint in hardware

= Known Uses — PDF estimation, BbNN implementation, MD, etc.
» Implementation — Centralize controller orchestrates data movement and

synchronization of parallel processing elements

CHREC

NSF Center for High-Performance 16
Reconfigurable Computing

UF FLORIDA R

V“g’@m BYU "'

‘ Example Design Pattern: Pipelining

Description i Structure

= Name AN

a2 Pipelining (a.k.a. Instruction Pipelining) muuu ﬂ
Instructions

T|me

Instructions m[:
= Motivation ‘exeotion : m@
o Instruction throughput could be increased -~
if design allows possibility to execute .
more instructions per unit of time Implementation

Pseudo HLL code

a “Chain’-like instruction execution 2> ford Bipeine function ().
increased processing speeds e
Instruction 3;
= Consequences e 2
o Stall or wasted cycle.s for.non- | fggijj;/'e;‘i;’:l";f:;fsamplecéde .
independent instructions in design T (oL in st legiovector (31 downte 01

——————) end Pipelining_SampleCode;

a EXtra reg'SterS and ﬂlp'ﬂops |n data path architecture arch of Pipelining_SampleCode is

—-signal declarations for intermediate values / buffers

u Known uses begi:empl<=1nstruction 1;
. . . . temp2<=Instruction 2 (templ);
o Algorithm/program with instruction temp3<-Instruction 3 (cemp?);
|ndependency |n |tS Structure ——Control algorithm for buffer/ dependency management

end arch;

CHRELC UF!”F“chE)'ii'fi'j’A @

NSF Center for High-Performance 17 WM BYU
Reconfigurable Computing SN

Description

Name

“xample Design Pattern: Memory Dependency

o Memory dependency resolution for efficient pipeline implementations

Motivation

o Resolve memory dependencies in computations for efficient pipeline implementations

Applicability

o Memory dependency may arise due to
= Multiple reads from same memory in a single clock cycle.
= Multiple reads and writes to a memory in a single clock cycle.
= Multiple writes to a memory in a single clock cycle.
o Memory dependency resolutions
= Two parallel reads can be implemented using dual-ported

memories where possible

= Modifying operations to serialize memory accesses

Consequences

o Increasing number of pipeline stages
= Not a problem for large number of iterations

for (i=0; i<n-1; i++) {

c[i] = a[i] + a[i+1];

$

for (i=0; i<n; i++) {

a0 = al;
al = a[i];
if(i>0) {c[i] = a0 + al;}

CHREC

NSF Center for High-Performance
Reconfigurable Computing

@

UF FLORIDA &

WASHINGTON

| System-level Patterns for MD

[N N = W‘.:_ R

RO 0 Ly

| ~ a

/ A i 5
] for (i=0; i<n; i++) { | I I] PN
| === | g
1 Kernel | -
P | A 4

) | i L | ;

\ J I i

a
| BufferiAccumiiator F
Visualization of Datapath Duplication
= When design MD, initial goal is “What do customers buy after

decompose algorithm into parallel viewing this item?”

kernels 67% use this pattern
o “Datapath duplication” is a

. : 37% alternatively use
potential starting pattern M | 4~
a MD will require additional ay we also recommend.
modifications since computational Pipelining
structure will not divide cleanly Loop Fusion

“On-line Shopping” for Design Patterns

CHRELC UF\”FNLIVE)'ii'fbA ﬁ

NSF Center for High-Performance 19 M BYU rurcros
Reconfigurable Computing .

Kernel-level optimization patterns tor MD

void ComputeAccel () {
double dr (3], f, fcval, rrCut,rr,ri2, ri6, rl;
int j1,32,n,k;

rrCut = RCUT*RCUT;
for (n=0; n<nAtom;n++) for (k=0;k<3;k++) ral[n][k] = 0.0;
potEnergy = 0.0;

}
if (rr < rrCut) {
ri2 = 1.0/rr; ri6 = ri2*ri2*ri2; rl = sqgrt(rr);
fcval = 48.0*ri2*ri6* (ri6-0.5) + Duc/rl;
for (k=0; k<3; k++) {
f = fcval*dr(k];

}
potEnergy+=4.0*ri6* (ri6-1.0)—- Uc - Duc* (r1-RCUT);
}
}
}

Pattern Utilization
2-D arrays
o SW addressing is handled
by C compiler
o HW should be explicit
Loop fusion
o Fairly straightforward in
explicit languages
o Challenging to make
efficient in other HLLs
Memory dependencies
o Shared bank

= Repeat accesses in pipeline
cause stalls

o Write after read

= Double access, even of
same memory location,
similarly causes stalls

CHREC

NSF Center for High-Performance 20
Reconfigurable Computing

UNIVERSITY of
UF/FLORIDA &
" BYU 555

p——
mmmmmmmmmmmmmm

Design Pattern Effect

Type Stall Cycles

@ Nested Loop d*N

pipeline depth * outer loop iterations

@ Possible bank conflict
3 iterations * 1 extra access each

3

- Accumulation conflicts
Energy calc is longest

18

void ComputeAccel() {
double dr[3].f,fcVal,rrCut,rr,ri2,ri6,r1;
int j1,j2,n,k;
rrCut = RCUT*RCUT;
for(n=0;n<nAtom;n++) for(k=0;k<3;k++) ra[n][k] = 0.0;
potEnergy = 0.0;
for (j1=0; j1<nAtom-1; j1++) {
for (j2=j1+1; j2<nAtom; j2++) {
for (rr=0.0, k=0; k<3; k++) {
dr[k] = r{j1][k] - r{j2][k];
dr[k] = dr[k] - SignR(RegionH[k],dr[k]-RegionH[Kk])
- SignR(RegionH[k],dr[k]+RegionH[Kk]);
rr = rr + dr[k]*dr[k];

}
if (rr < rrCut) {
ri2 = 1.0/rr; ri6 = ri2*ri2*ri2; r1 = sqrt(rr);
fcVal = 48.0*ri2*ri6*(ri6-0.5) + Duc/r1;
for (k=0; k<3; k++) {
f = fcVal*dr[k];
ra[j1][k] = ra[j1][K] + f;
\ ra[j2][k] = ra[j2][k] - f;
potEnergy+=4.0*ri6*(ri6-1.0)- Uc - Duc*(r1-RCUT);

s on MD

for (i=0; i<num*(num-1); i++){
cg_count_ceil_32(1,0,i==0,num-2,&Kk);
cg_count_ceil_32(1,0,i==0,num-2,&j2);
cg_count_ceil_32(j2==0,0,i==0,num,&j1); if(j2 >= j1) j2++;

if(j2==0) rr = 0.0;
split_64to32_fit_flt(AL[j1],&j1y,&j1x);
split_64to32_fit_flt(BL[j1],&dummy,&j1z);
split_64to32_fit_flt(CL[j2],&j2y,&j2x);
split_64to32_fit_flt(DL[j2],&dummy,&j2z);

if(j1 <j2) {dr0=j1x-j2x;dr1 =jly-j2y;dr2 = j1z - j2z;}
else {dr0 =j2x - j1x; dr1 = j2y - jly; dr2 = j2z - j1z;}

dr0 = dr0 - (dr0 > REGIONHO ? REGIONHO : MREGIONHO)
- (dr0 > MREGIONHO ? REGIONHO : MREGIONHO);

dr1 =dr1 - (dr1 > REGIONH1 ? REGIONH1 : MREGIONH1)
- (dr1 > MREGIONH1 ? REGIONH1 : MREGIONH1);

dr2 = dr2 - (dr2 > REGIONH2 ? REGIONH2 : MREGIONH2)
- (dr2 > MREGIONH2 ? REGIONH2 : MREGIONH2);

rr = dr0*dr0 + dr1*dr1 + dr2*dr2;

ri2 = 1.0/rr; ri6 = ri2*ri2*ri2; r1 = sqrt(rr);
fcVal = 48.0*ri2*ri6*(ri6-0.5) + Duc/r1;

fx = fcVal*dr0; fy = fcVal*dr1; fz = fcVal*dr2;

if(j2 <j1) {fx = -fx; fy = -fy; fz = -fz; }

fp_accum_32(fx, k==(num-2), 1, k==0, &ja1x, &err);
fp_accum_32(fy, k==(num-2), 1, k==0, &jaly, &err);
fp_accum_32(fz, k==(num-2), 1, k==0, &jalz, &err);
if(rr<rrCut) {
comb_32to64_flt_fit(jaly,ja1x,&EL[j1]);
comb_32to64_fit_flt(0,ja1z,&FL[j1]);
fp_accum_32(4.0*ri6*(ri6-1.0) - Uc - Duc*(r1-RCUT),

\ } i==lim-1,j1<j2, i==0, &potEnergy, &err);
}
}
} C baseline code for MD Carte MD, fully pipelined, 282 cycle depth
UNIVERSITY of
CHRELC UF |FLORTDA
NSF Center for High-Performance 21 irgini

Reconfigurable Computing

Vigitia BYU

. BRIGHAM YOUNC

Q.

/\

‘ Conclusions ~
= Performance prediction is a powerful technique for
improving efficiency of RC application formulation
o Provides reasonable accuracy for rough estimate
o Encourages importance of numerical precision and resource
utilization in performance prediction
= Design patterns provide lessons-learned documentation

o Records and disseminates algorithm design knowledge
o Allows for more effective formulation of future designs

= Future Work
o Improve connection b/w design patterns and performance prediction
o Expand design pattern methodology for better integration with RC
o Increase role of numerical precision in performance prediction

UUUUUUUUUUU /B

CHREC UF [FLORIDA

NSF Center for High-Performance 22 V“g“ﬁm BYU TuEGrORGE
Reconfigurable Computing e imere BRIGEBAMTOUNG TEEE

