Analysis of SEU-induced Errors in an FPGA-based Digital Communications System

Brian Pratt, Michael Wirthlin

Brigham Young University

Michael Caffrey, Paul Graham, Keith Morgan

Los Alamos National Laboratory

This work was supported in part by the I/UCRC Program of the National Science Foundation under the NSF Center for High-Performance Reconfigurable Computing (CHREC). Approved for public release by Los Alamos National Laboratory under LA-UR-08-05615; distribution is unlimited.

FPGA Reliability

- FPGAs are susceptible to radiation-induced single-event upsets (SEUs)
- SEUs can change the hardware implemented or the contents of user memory

Dynamic Cross-section

Full FPGA (static cross section):

12,288 Slices

5.8 Million configuration bits

FIR Filter (dynamic cross section):

1,869 Slices

149,696 configuration bits

Digital Communications

Bit Error Rate (BER)

- The measure of performance of a digital communications system
- Also called the Bit Error Ratio
- BER is defined as the number of erroneouslydecoded bits divided by the total number of bits sent

Sample BER Curves

Example: For QPSK, 1 bit error per million message bits at SNR (E_b/N_o) of 10.6 dB

BPSK System

- BPSK = Binary Phase-Shift Keying
- Very simple system, also called binary PAM
- Similar to popular QPSK (which is only slightly more complex)

BPSK bit assignments

Matched Filter – FIR Filter

- Main component in a simple BPSK/QPSK receiver
- Matched to the pulse-shaping filter on the transmitting side to maximize performance

Test Methodology

Record output of uncorrupted filter

Find all sensitive config bits (those used by the design)

Record output with each sensitive bit upset

Calculate loss in signal-to-noise ratio (SNR) at output


```
...
> noise = uncorrupt_out - corrupt_out;
> SNR_corrupt = power(uncorrupt_out)/power(noise);
> SNR_dB_corrupt = 10*log10(SNR);
> SNR_loss = SNR_dB_uncorrupt - SNR_dB_corrupt;
...
```

Test Design – FIR Filter

- 49 taps
- 24 multipliers (symmetric coefficients)
- Square-root raised cosine (SRRC) pulse shape with 50% rolloff
- 16-bit fixed-point input (Q2.14 format)
- 18-bit fixed-point output (Q4.14 format)
- 15% of Slices occupied on Virtex 1000 FPGA
- Total sensitive configuration bits: 149,696/5,810,024

Results – No input noise

69,160 /149,696 trials reduce output SNR by less than 0.1 dB 16,443/149,696 upsets caused **no difference** in output (11%)

Results – 20 dB SNR at input

121,370 /149,696 trials reduce output SNR by less than 0.1 dB

Results Table

Input SNR	Less than 0.1dB	Less than 1dB	Less than 3dB	Less than 6dB
	loss in SNR	loss in SNR	loss in SNR	loss in SNR
No noise	69,160 trials	81,419 trials	89,619 trials	95,134 trials
	(46.2%)	(54.4%)	(59.9%)	(63.6%)
20 dB	121,370 trials	129,223 trials	133,441 trials	136,230 trials
	(81.1%)	(86.3%)	(89.1%)	(91.0%)
10 dB	128,741 trials	135,997 trials	139,586 trials	142,135 trials
	(86.0%)	(90.8%)	(93.3%)	(94.9%)
5 dB	132,484 trials	139,126 trials	142,230 trials	143,825 trials
	(88.5%)	(92.9%)	(95.0%)	(96.1%)

• Total trials: 149,696

Number of sensitive configuration bits in the design

Impact of SNR Loss

SNR level	BER for BPSK/QPSK
10.6 dB	1 in 1.2 million
10.5 dB	1 in 923,000
10.4 dB	1 in 707,000
10.3 dB	1 in 545,000
10.2 dB	1 in 422,000
10.1 dB	1 in 330,000
10.0 dB	1 in 258,000

Application-specific Cross-section

Full FPGA
(static cross section):
12,288 Slices
5.8 Million config bits
(100%)

FIR Filter
(dynamic cross section):
1,869 Slices
149,696 config bits
(2.5%)

FIR Filter in a 20dB SNR environment tolerating 1dB additional SNR loss: 20,473 config bits (0.35%)

Conclusions

- When designing for reliability, knowledge of the application can be very important
- Systems with inherent error/noise tolerance may tolerate SEU-induced upsets
- Full TMR and similar approaches may be overkill for certain systems

Future Work

- Evaluate different types of errors
 - What type of faults cause catastrophic failures?
- Evaluate lower-cost mitigation techniques
 - Partial replication
 - Error-control coding

