
Manning 1 32nd Annual AIAA/USU

 Conference on Small Satellites

SSC18-WKVII-03

Machine-Learning Space Applications on SmallSat Platforms with TensorFlow

Jacob Manning, David Langerman, Barath Ramesh, Evan Gretok, Christopher Wilson, Alan George

NSF Center for Space, High-performance, and Resilient Computing (SHREC)

4420 Bayard Street, Suite #560, Pittsburgh, PA, 15213; 412-383-8122

jacob.manning@chrec.org

James MacKinnon, Gary Crum

NASA Goddard Space Flight Center

8800 Greenbelt Rd, Greenbelt, MD, 20771; 301-286-3713

james.mackinnon@nasa.gov

ABSTRACT

Due to their attractive benefits, which include affordability, comparatively low development costs, shorter

development cycles, and availability of launch opportunities, SmallSats have secured a growing commercial and

educational interest for space development. However, despite these advantages, SmallSats, and especially CubeSats,

suffer from high failure rates and (with few exceptions to date) have had low impact in providing entirely novel,

market-redefining capabilities. To enable these more complex science and defense opportunities in the future, small-

spacecraft computing capabilities must be flexible, robust, and intelligent. To provide more intelligent computing, we

propose employing machine intelligence on space development platforms, which can contribute to more efficient

communications, improve spacecraft reliability, and assist in coordination and management of single or multiple

spacecraft autonomously. Using TensorFlow, a popular, open-source, machine-learning framework developed by

Google, modern SmallSat computers can run TensorFlow graphs (principal component of TensorFlow applications)

with both TensorFlow and TensorFlow Lite. The research showcased in this paper provides a flight-demonstration

example, using terrestrial-scene image products collected in flight by our STP-H5/CSP system, currently deployed on

the International Space Station, of various Convolutional Neural Networks (CNNs) to identify and characterize newly

captured images. This paper compares CNN architectures including MobileNetV1, MobileNetV2, Inception-

ResNetV2, and NASNet Mobile.

I. INTRODUCTION

CubeSats (a subclass of SmallSats) were originally

proposed as teaching tools and early technology

demonstrations. However, since their inception with the

space community, their role has matured, extending into

more significant defense and science applications. This

evolutionary trend towards more significant missions

and goals led to a request from the National Aeronautics

and Space Administration (NASA) and the National

Science Foundation (NSF) to the National Academies of

Sciences, Engineering, and Medicine to form a

committee and conduct a review of the potential of the

CubeSat platform and make key recommendations to

improve the capabilities of the platform for future

missions. The survey [1] published in 2016 concluded

that CubeSats were already performing and meeting

valuable science goals. However, while all space-

science disciplines can benefit from CubeSat

innovations, these small platforms cannot address or be

a complete substitute for all platforms. The survey

described that CubeSat systems “excel at simple,

focused, or short-duration missions and missions that

need to be comparatively low cost or that require multi-

point measurements.”

The committee recommended focusing on maintaining

low-cost approaches as the cornerstone of CubeSat

development, while simultaneously stressing the

importance and benefit of operating CubeSats and other

SmallSats in swarms or constellations for multi-point

measurements and extended spatial and temporal

coverage. Combining these recommendations with the

strict constraints (size, weight, power, and cost) of the

small platform establishes a complex trade space to meet

challenging science and defense goals.

In addition to the management and autonomy challenges

of distributed satellite missions described in [1], many

organizations also emphasize a distinct need for data

analysis. The decadal strategy for Earth observation from

space [2] highlights the need for studying large datasets

captured by future constellations with semi-automated or

autonomous capabilities for hazard detection and

monitoring, hazard mapping, and hazard forecasting.

Similarly, in his keynote address to the Small Satellite

Manning 2 32nd Annual AIAA/USU

 Conference on Small Satellites

Conference, Robert Cardillo, director of the National

Geospatial-Intelligence Agency (NGA) noted that, with

increasing data and imagery, new emphasis needs to be

placed on smart and efficient analysis. He stated that

NGA has moved from “… staring at pictures and

reporting, to programming algorithms and automation

to drive production [3].” Finally, these key objectives for

future missions are repeated in the Long-Term Science

and Technology Challenges [4] described by the Air

Force Space Command (AFSPC). Critical defense focus

areas for AFSPC include the study of autonomous, deep-

learning, and highly adaptive systems, with additional

interagency collaboration for small-satellite technology

and big-data analysis.

To enable these large, distributed spacecraft missions,

numerous technological advances are required. This

paper proposes one such advance to benefit spacecraft

autonomy and analysis capability, through the

demonstration and planned flight verification of machine

learning (ML) on CubeSat-scale processors. To achieve

future mission objectives, more intelligent and capable

computing can mitigate some of these challenges:

“Onboard data processing, autonomous systems, and

navigation could further reduce the burden and cost of

the ground segment and mission operations in

CubeSats [1].”

II. BACKGROUND

This section provides a cursory overview to Artificial

Intelligence (AI) concepts and their uses in space

computing. Additionally, frameworks and models for

machine learning, a critical component for AI, are

discussed. This section also describes the challenges for

space computers to effectively run machine-learning

applications. Finally, several AI-related designs and

projects are highlighted.

Benefits for Space Applications

The concept of applying general, artificial-intelligence

(AI) techniques is not novel and has been proposed for

several decades. In [6], Girimonte from the European

Space Agency (ESA) surveys several research areas of

AI for space applications, specifically: distributed

artificial intelligence (including swarms); large data

analysis; enhanced situation self-awareness; and

decisions support for spacecraft system design. AI is a

broad subject, so for simplicity this paper highlights

more recent examples of AI applications in three relevant

categories: autonomy; communications; and analysis.

Spacecraft Autonomy is widely studied and includes a

broad spectrum of topics such as navigation,

coordination, planning and scheduling, and even

reliability. Mission designers desire autonomy for a

variety of reasons. One paramount motivator is round-

trip communication delay time between an operator and

a satellite. In scenarios, where the delay time of an

operator responding is considerable, the spacecraft must

be able to autonomously make decisions. Moreover,

these intelligent systems can help improve spacecraft

reliability by being trained to react to unexpected

situations and guide the spacecraft to safer operational

states with autonomous decision-making. Prominent

examples are demonstrated by the Mars rovers. Spirit,

one of the two rovers which landed on Mars in 2004, has

software called AutoNav for terrain assessment to

autonomously detect hazards based on imagery [7]. The

Opportunity rover and the ChemCam spectrometer of

Curiosity use automated data-collection software called

AEGIS (Autonomous Exploration for Gathering

Increased Science) to autonomously select high-value

science targets [8]. Autonomy is also critically essential

for future deep-space exploration, because these

spacecraft may be outside communication range for

extended periods of time and will encounter unknown

environmental conditions, requiring the need to react

accordingly. Chien describes flight software to enable

onboard autonomy for deep-space exploration in [9].

Finally, intelligence can assist in coordinating and

managing large swarms of spacecraft without causing

the number of necessary ground operators to scale

linearly as the constellation sizes increase. Coordination

of swarms is described as the “fleet-management”

problem in [1].

AI systems can be trained to reduce transmission

bandwidth and processing on spacecraft by recognizing

and capturing sensor data with pertinent information and

discarding ineffectual ones. For spacecraft

communications, such a requirement is essential to

improve the efficacy of the (possibly erratic)

communication link between a satellite and its ground

station. There are two relevant examples of using

machine learning to improve communication. The first is

called MEXAR2 [10] (Mars Express AI Tool) and is

used to determine the best schedule to optimize the

timing of transmitted data packets to improve downlink

capability. The second significant example is the Space

Communications and Navigation (SCaN) Testbed [11]

aboard the International Space Station (ISS). This

experiment is designed to explore cognitive radio, which

uses AI to find underused portions of the electromagnetic

spectrum for communication.

As described previously, machine intelligence can also

apply to performing on-board analysis for Earth-

observation tasks. These tasks typically include hazard

analysis (e.g. fire and flood detection), target detection,

area monitoring, and weather forecasting. In [12],

Manning 3 32nd Annual AIAA/USU

 Conference on Small Satellites

researchers at NASA Goddard used ML to detect

wildfires on MODIS (Moderate-resolution imaging

spectroradiometer) data.

TensorFlow and TensorFlow Lite

There is an abundance of terrestrial research and

development into employing AI for everyday life, such

as self-driving automobiles. TensorFlow [13] is a

popular, open-source, machine-learning framework

developed by Google for research on many of the latest

autonomous systems. In late 2017, Google released the

developer preview of TensorFlow Lite, a framework for

ML inference on embedded devices. The challenge for

space vehicles also adopting such software frameworks

is that these ground-based applications are typically

executed on powerful CPU processors or GPU co-

processors with high performance and maintainability.

Small spacecraft, and CubeSats specifically, face

challenges imposed by platform constraints on size,

weight, and power, which limit processing capability,

and prevent them from easily adapting the same designs.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of

type of neural network most commonly used to analyze

visual data. One of the very first CNNs, named as LeNet-

5, was proposed in 1998 [14]. The core components of a

CNN are small matrices of “weights.” A convolutional

layer in a CNN consists of one or more of these matrices.

The output of one of these layers is the result of the

convolution of the layer’s kernels with the input. Typical

CNNs use an activation layer after a convolutional layer.

Activation layers apply a nonlinearity function to allow

the network to approximate nonlinear functions. Some

activation functions have been shown to decrease the

time required to train some networks [15]. Popular

activation functions include sigmoid, tanh, and the

rectified linear unit (ReLU) [16]. The final layers of a

typical CNN tend to be “fully connected” layers, which

act as classifiers by reducing the feature map from the

convolutional layers to a vector of output classes by a

series of matrix multiplications. The output with the

largest activation value is chosen as the result. The

weights of each convolutional kernel as well as each

fully connected layer are learned during the training

process via backpropagation [17]. CNNs have emerged

as the leader in image-processing tasks with Machine

Learning since 2012 [18]. Extensive research has been

performed to determine the optimal architecture for

CNNs [19-21]. Figure 1 shows a basic CNN architecture.

*https://adeshpande3.github.io/A-Beginner%27s-Guide-

To-Understanding-Convolutional-Neural-Networks/

Figure 1: A Basic CNN Architecture*

In practice, the use of CNNs is composed of two main

tasks: training and inference. Training is the process of

“learning” the optimal set of weights that maximize

accuracy of the desired task (e.g. image classification,

object detection, semantic segmentation). Training is a

highly compute-intensive process often accelerated by

GPUs. Inference is the process of using a trained model

(where parameters are no longer modified) to make

decisions on novel data. Inference is a less compute-

intensive process than training and has be performed on

CPUs, GPUs, and FPGAs.

Computing Challenge

The most defining challenges for more advanced and

capable artificial intelligence on satellites stem from the

constraints imposed by small spacecraft computers.

Unfortunately, due to the hazards of a radiation-filled

space environment, radiation-hardened (rad-hard)

computers are most commonly used in critical missions.

However, these rad-hard computers are prohibitive due

to cost and capability. Rad-hard devices are too

expensive for missions, like CubeSats, that prioritize

cost, and because they are expensive to develop, are

typically outdated in both performance and features

when compared to state-of-the-art commercial designs.

Alternatively, mission developers can choose to fly

commercial devices, which offer improved performance

and energy efficiency over rad-hard devices but are

susceptible to radiation effects. An overview of SmallSat

computing and related challenges can be found in [22].

Consequently, these computing limitations are

particularly challenging to ML because a significant

amount of progress in deep learning and modern

networks has been specifically conducted using GPUs.

Many state-of-the-art network models require high-end

GPU devices to run in inference, and even more

capability to train. While there is some progress towards

developing these networks for mobile applications

(phones specifically), the most impressive results are

attributed to high-end GPU systems [20]. Deep network

models require significant amounts of processing

Manning 4 32nd Annual AIAA/USU

 Conference on Small Satellites

capability for matrix operations, and extensively strain

the memory bandwidth and capacity of even the most

capable systems.

As described in [22], modern space computers would

struggle to meet the minimum requirements for complex,

deep-learning architectures. Additionally, there are a

scarce number of GPUs that have been evaluated to work

in a space environment, while simultaneously meeting

the low-power restrictions of SmallSat platforms. These

computing challenges are further emphasized by Robert

Laudati, the managing director of commercial products

at Harris Space and Intelligence Systems. He comments

that the future is to move more computing to space (with

onboard computing), and that “he does not see that

capability coming to the market any time soon.”†

Related Research

Despite the considerable challenge posed by the

computational requirements of ML, there are several

related works that explore the state-of-the-art networks

for embedded systems and satellites. In [23], Schartel

trained the SqueezeNet model on a terrestrial system and

planned to transfer the model to an embedded system;

however, the entire design was not fully implemented. In

[24], researchers at the University of New Mexico

partnered with Stinger Ghaffarian Technologies and Air

Force Research Laboratory Space Vehicles Directorate

to demonstrate image classification on the Nvidia TX1.

In their demonstration, a desktop GPU is used to train the

model, and inference is performed on the TX1 with the

CUDA Deep Neural Network (cuDNN) library and

TensorRT. Lastly, in [25], SRC Inc., developed their

own deep CNN framework for use on a Xilinx Artix-7

FPGA platform. With their design, they studied image

classification and compared their results against the IBM

TrueNorth NS1e development board, a neuromorphic

computer with machine-learning capabilities.

III. APPROACH

In comparison to related research, our approach focuses

on developing a machine-learning solution that can run

on existing flight hardware with TensorFlow. For our

testbed and experiment, we focus on the Xilinx Zynq-

7020 which is the featured technology of the CSPv1

flight computer described in [22]. To test the

computational capability of the Xilinx Zynq-7020 for

ML inference, we trained CNNs for image classification

and benchmarked the accuracy, execution time, and

runtime memory usage of four target CNN architectures

on the Digilent ZedBoard development system.

† http://spacenews.com/artificial-intelligence-arms-race-accelerating-in-space/

Dataset

Our dataset consists of images collected by our flight

system on the ISS. Our mission, known as STP-H5/CSP

[26] launched on the SpaceX CRS-11 in February 2017.

Since its launch, STP-H5/CSP has been collecting and

downlinking images. Over the past year, we have

downloaded approximately eight thousand thumbnails,

each a 489×410 pixel image. The images from CSP were

used to create a small dataset to train image-

classification models. Most of the images depict one of

five classes: black (Example of Images in Each

ClassFigure 2a); cloud/water (Figure 2b); distorted

(Figure 2c); land (Figure 2d); or white (Figure 2e). Each

of the 8000 images was downloaded from CSP and

labeled as one of the classes cited above.

Figure 2: Example of Images in Each Class

Transfer learning is the process of using a trained ML

model to bootstrap a model for a related task. In the case

of a CNN, transfer learning means freezing previously

trained weights for convolution layers and only learning

the weights for the classification layers [27]. Despite

having thousands of images in the STP-H5/CSP

collection, this data is considered limited for training

deep CNNs. Thus, training a CNN such as MobileNet or

Inception from scratch with only this limited dataset was

Manning 5 32nd Annual AIAA/USU

 Conference on Small Satellites

deemed impractical. However, transfer learning provides

a method to use a relatively small dataset in the training

process. To bootstrap our models, we used CNNs pre-

trained on ImageNet, a massive, industry-standard

dataset for image classification [19].

Target CNN Architectures

We compare the classification accuracies of four modern

CNN architectures (MobileNetV1, MobileNetV2,

Inception-ResNetV2, and NASNet Mobile) on our

dataset. Table 1 shows the reported top-1 and top-5

accuracies of each target architecture and their variants

on ImageNet data.

Table 1: ImageNet Image Classification Accuracies

of Relevant CNN Architectures

Network Top-1 Accuracy Top-5 Accuracy

MobileNetV1 70.6% 89.5%

MobileNetV2 74.7% 92.5%

GoogLeNet - 93.3%

ResNet 80.6% 96.4%

Inception-ResNetV2 80.1% 95.1%

NASNet 82.7% 96.2%

NASNet Mobile 74.0% 91.6%

MobileNetV1 was developed by Google in 2017. It is

considered a “mobile-first” (emphasizing phones and

embedded devices primarily) CNN architecture,

designed to be more efficient for inference than a typical

CNN. It replaces standard convolutions with depthwise-

separable convolutions. This approach drastically

reduces the number of trained parameters, which reduces

model size and improves inference performance [28].

MobileNetV2 [29] is a revision of MobileNetV1 which

adds inverted residuals and linear bottleneck

connections. Both versions of MobileNet use two

hyperparameters, a width multiplier and a resolution

multiplier, to specialize the architecture. The width

multiplier is a scaling factor applied to the number of

convolution filters in each layer of the network. The

typical values for the width multiplier are 0.25, 0.50,

0.75, and 1.0 for MobileNetV1. The resolution multiplier

is a scaling factor applied to the size of the input image

to the network. The typical values for the input image

resolution are 128, 160, 192, and 224.

Inception-ResNetV2 was also developed by Google and

combines the architectures of GoogLeNet, the winner of

the ILSVRC (ImageNet Large Scale Visual Recognition

Challenge) in 2014, and Microsoft’s ResNet, the 2015

ILSVRC winner [19]. Inception-ResNetV2 is a

‡ https://www.tensorflow.org/hub/

GoogLeNet architecture with Inception Modules and

residual connections. Inception Modules use a

combination of 1×1, 3×3, and 5×5 convolutions as well

as 3×3 max pooling with dimension reductions via 1×1

convolutions to lower computational complexity [19].

Residual connections allow layers to fit a residual

identity mapping between layers [19].

NASNet is a product of Google’s AutoML project.

NASNet is inspired by the Neural Architecture Search

(NAS) framework which uses a reinforcement learning

search method to optimize architecture configurations

[30]. The largest NASNet variant achieved the highest

published accuracy to date on ImageNet image

classification [30]. NASNet Mobile is a smaller variant

of NASNet.

As a starting point for re-training the target CNNs, we

used Google’s TensorFlow Hub models‡. TensorFlow

Hub is a collection of pre-trained models that can be used

for transfer learning and was released by Google in 2018.

Our dataset of 8000 images was divided into three sets,

training (70%), validation (10%), and testing (20%).

Each network was trained for 500 epochs with a learning

rate of 0.01 and a batch size of 100 images.

IV. RESULTS

In this section we present results of our studied networks

on our image dataset. We compare the results based on

accuracy of the network, followed by performance,

which is essential to embedded space systems.

Accuracy Results

For our displayed results, we measured the top-1

(prediction from the model matches the image label) and

top-2 (either of the two highest-probability predictions

from the model match the image label) accuracies of

each transfer-learned CNN on the test set. Each

MobileNetV1 and MobileNetV2 variant (all values for

width and resolution multipliers) was trained, however,

for brevity we only present the most accurate variants.

Manning 6 32nd Annual AIAA/USU

 Conference on Small Satellites

Figure 3: CNN Accuracy on STP-H5/CSP Images

Each CNN performed adequately on the dataset,

achieving over 90% top-1 accuracy and near-perfect top-

2 accuracy, as shown in Figure 3. MobileNetV1

outperformed the other CNNs, despite having the worst

accuracy on ImageNet in the set. It is worth noting that

the most-accurate MobileNetV1 variant was with the

width multiplier 1.0 and input image resolution 224×224

(i.e. no reduction in the number of convolution filters or

input image resolution).

Figure 4: Per-class Accuracy on

STP-H5/CSP Images

In addition to top-1 and top-2 accuracy, we measured

how accurate each model was on each of the classes in

our STP-H5/CSP dataset as displayed in Figure 4. For

the black, distorted, and white classes, each model

performed well as these classes are distinctive, with little

overlap in features. The cloud/water and land classes,

however, are more difficult for classification. There is

similarity between the cloud/water and land classes,

making it difficult for all tested models to distinguish

between the classes consistently, specifically because

many images contain some land, water, and clouds.

MobileNetV1 is the only architecture that achieved over

90% accuracy on cloud/water images; it additionally

maintained nearly 80% accuracy on land images.

NASNet Mobile and Inception-ResNetV2 performed

best on land images, but both struggled with cloud/water

images. Finally, MobileNetV2 performed well on

cloud/water images, at the expense of low land-image

accuracy.

Performance Results

For our on-board performance analysis, we focused on

MobileNetV1 because it was the most accurate CNN on

the STP-H5/CSP test dataset. Using TensorFlow Lite,

we performed inference on all MobileNetV1 variants.

We also measured the execution time required to classify

an image and the amount of memory used during

classification. All tests were conducted on the Digilent

ZedBoard, which is regularly used as a facsimile

development kit for the CSPv1 flight computer.

Figure 5: MobileNetV1 Execution Time on ZedBoard

Figure 6: MobileNetV1 Memory Usage on ZedBoard

Both execution time (Figure 5) and memory usage

(Figure 6) scale linearly with respect to the number of

pixels in the input image and quadratically with the

width multiplier. The width multiplier (i.e. the number

of convolution filters in each layer) has a larger effect

than image resolution on both execution time and

runtime memory usage. The smallest MobileNetV1

variant (width multiplier 0.25 and input image resolution

128x128) achieves 11 FPS on the Zynq-7020 while using

just 8 MB of RAM. Our performance satisfies mission

93.2%
94.6%

95.9%
96.7%

99.6% 99.8% 99.4% 99.8%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

NASNet Mobile Inception-ResNetV2 MobileNetV2 MobileNetV1

A
cc

u
ra

cy

Network Architecture

Top-1 accuracy Top-2 accuracy

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Black Cloud/water Distorted Land White

A
cc

u
ra

cy

Class Label

NASNet Mobile Inception-ResNetV2 MobileNetV2 MobileNetV1

89 125 156
208212

293
367

469
363

481

624

793
737

913

1140

1383

0

200

400

600

800

1000

1200

1400

1600

128 160 192 224

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Image Resolution (px per dimension)

Width multiplier

0.25 0.5 0.75 1

8.2 8.3 9.1 9.5

14.9 15.6 16 16.7

25 26.1 26.9 27

38 39.1 40.1 41

0

5

10

15

20

25

30

35

40

45

128 160 192 224

M
em

o
ry

 U
sa

ge
 (

M
B

)

Image Resolution (px per dimension)

Width multiplier

0.25 0.5 0.75 1

Manning 7 32nd Annual AIAA/USU

 Conference on Small Satellites

requirements and falls well within the memory

constraints of our space system.

V. CONCLUSIONS

SmallSats in general and CubeSats in particular face

arduous challenges in achieving more significant science

and defense goals. To meet new mission objectives, on-

board data analysis is rapidly becoming the key focus

area for SmallSat development. AI systems can enable

more efficient use of some system resources and perform

crucial processing tasks for autonomous operation on a

spacecraft. However, modern ML frameworks are

typically executed on resource-intensive GPUs, making

their deployment on these space systems very limited.

Using a dataset of collected space images from our STP-

H5/CSP mission on the ISS, this paper demonstrates that

we can achieve reasonable performance with modern

ML models on a low-memory, low-power, space-grade,

embedded platform. Our results show it would be

feasible for the TensorFlow Lite framework to be used

for deploying deep-learning models in future space

missions on similar space-computing platforms.

Additionally, leveraging CNNs pre-trained on ImageNet

is shown to be effective for image-classification tasks on

terrestrial-scene images.

Future Work

This research establishes the foundation towards

additional extensions into AI-capable small spacecraft.

The immediate next step is to upload the inferred CNNs

directly onto the STP-H5/CSP system, thereby enabling

us to filter undesirable images (i.e. images classified as

white, black, and distorted) in real-time. Thus, AI can

prevent the system from wasting bandwidth by sending

insignificant images. To extend the classification, more

complex image-processing tasks will be studied, such as

object detection and semantic segmentation. Since our

NSF SHREC Center is regularly proposing new missions

and apps, this research can be used for more complex

science classifications with smaller GSD (Ground

Sample Distance) technologies to be featured on future

mission proposals. Finally, future extensions could

include adding accelerated TensorFlow Lite inference

operations using FPGAs (e.g., in CSP) and incorporating

other hardware accelerators within the design.

Acknowledgments

This research was funded by industry and government

members of the NSF SHREC Center and the National

Science Foundation (NSF) through its IUCRC Program

under Grant No. CNS-1738783. The authors would also

like to thank additional CSP team contributors including

Sebastian Sabogal and Antony Gillette, and NASA

Goddard contributors Troy Ames and Dan Mandl.

References

1. Board, S. S., and National Academies of Sciences,

Engineering, and Medicine, Achieving Science with

CubeSats: Thinking Inside the Box, Washington, DC:

National Academies Press, 2016.

2. National Academies of Sciences, Engineering, and

Medicine, Thriving on Our Changing Planet: A

Decadal Strategy for Earth Observation from Space.

Washington: National Academies Press, Jan 2018.

3. Cardillo, R., “Small Satellite 2017 Keynote

Address,” 31st Annual AIAA/USU Conference on

Small Satellites, Logan, UT, Aug 7, 2017.

https://www.nga.mil/MediaRoom/SpeechesRemarks

/Pages/Small-Satellites---Big-Data.aspx

4. Sanchez, M., “AFSPC Long-Term Science and

Technology Challenges,” Space and Cyberspace

Innovation Summit, Aug 23-24, 2016.

http://www.defenseinnovationmarketplace.mil/resou

rces/Innovation_Summit_Phase1_Intro.pdf

5. Copeland, M., “What’s the Difference Between

Artificial Intelligence, Machine Learning, and Deep

Learning?,” NVIDIA Blog, Jul 29, 2016.

https://blogs.nvidia.com/blog/2016/07/29/whats-

difference-artificial-intelligence-machine-learning-

deep-learning-ai/

6. Girimonte, D and D. Izzo, “Artificial Intelligence for

Space Applications,” in Intelligent Computing

Everywhere, Springer, London, 2007, pp. 235–253

7. Leger, C., Trebi-Ollenu, A., Wright, J., Maxwell, S.,

Bonitz, R., Biesiadecki, J., Hartman, F., Cooper, B.,

Baumgartner, E., and M. Maimone, “Mars

exploration rover surface operations: Driving Spirit

at Gusev crater,” 2005 IEEE Conference on Systems,

Man, and Cybernetics, Oct 2005, pp. 1815-1822.

8. Estlin, T., Bornstein, B., Gaines, D., Anderson, R. C.,

Thompson, D., Burl, M., Castano, R., and M. Judd,

“AEGIS automated targeting for the mer

opportunity,” ACM Transactions on Intelligent

Systems and Technology, Vol. 3, No. 3, May 2012,

pp. 1–19.

9. Chien, S., Bue, B., Castillo-Rogez, J., Gharibian, D.,

Knight, R., Schaffer, S., Thompson, D. R., and K. L.

Wagstaff, “Agile science: Using onboard autonomy

for primitive bodies and deep space exploration,”

Proceedings of the International Symposium on

Artificial Intelligence, Robotics, and Automation for

Space, Montreal, Canada, Jun 2014.

10. Cesta, A., Cortellessa, G., Denis, M., Donati, A.,

Fratini, S., Oddi, A., Policella, N., Rabenau, E., and

Manning 8 32nd Annual AIAA/USU

 Conference on Small Satellites

J. Schulster, “Mexar2: AI Solves Mission Planner

Problems,” IEEE Intelligent Systems, Vol. 22, No. 4,

July 2007, pp. 12–19.

11. Reinhart, R., “Space Communications and

Navigation Testbed: Communications Technology

for Exploration,” ISS Research and Development

Conference, Denver, CO, Jul 16-18, 2013.

12. Mackinnon, J., Ames, T., Mandl, D., Ichoku, C.,

Ellison, L., Manning, J., and B. Sosis, “Classification

of Wildfires from MODIS Data using Neural

Networks,” Machine Learning Workshop, Aug 2017.

13. Abadi, M., Barham, P, Chen, J., Chen, Z, Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Iving, G., Isard,

M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,

Murray, D. G., Steiner, B., Tucker, P., Vasudevan,

V., Warden, P., Wicke, M., Yu, Y., and X. Zheng,

“TensorFlow: A System for Large-Scale Machine

Learning,” 12th USENIX Syposium on Operating

Systems Design and Implementations, Savannah,

GA, Nov 2-4, 2016.

14. Lecun, Y., Bottou, L., Bengio, Y., and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, Vol. 86, No.

11, Nov 1998, pp. 2278-2324.

15. Clevert, D. A., Unterthiner, T., and S. Hochreiter,

“Fast and accurate deep network learning by

exponential linear units (elus),” arXiv preprint

arXiv:1511.07289, 2015.

16. Nair, V., and G. E. Hinton, “Rectified linear units

improve restricted boltzmann machines,”

Proceedings of the 27th international conference on

machine learning (ICML-10), Haifa, Israel, Jun 21-

24, 2010, pp. 807-814.

17. Rumelhart, D. E., Hinton, G. E., and R. J. Williams,

“Learning representations by back-propagating

errors,” Nature International Journal of Science, Vol.

323, No. 6088, Oct 1986, pp. 533–536.

18. Krizhevsky, A., Sutskever, I., and G. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Proceedings of the 25th

International Conference on Neural Information

Processing Systems, Vol. 1, Dec 2012, pp. 1097-

1105.

19. He, K., Zhang, X., Ren, S., and J. Sun, “Deep residual

learning for image recognition,” arXiv:1512.03385,

2015.

20. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf,

K., Dally, W. J., and K. Keutzer, “SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters

and < 0.5 MB model size,” arXiv preprint

arXiv:1602.07360, 2016.

21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and A.

Rabinovich, “Going Deeper with Convolutions,”

arXiv:1704.04861, 2014.

22. George, A. D., and C. Wilson, “Onboard Processing

with Hybrid and Reconfigurable Computing on

Small Satellites,” Proceedings of the IEEE, Vol. 106,

No. 3, Mar 2018, pp. 458–470.

23. Schartel, A., “Increasing Spacecraft Autonomy

through Embedded Neural Networks for Semantic

Image Analysis,” M.S. thesis, Luleå University of

Technology, Luleå, Sweden, 2017.

24. Buonaiuto, N., Kief, C., Louie, M., Aarestad, J.,

Zufelt, B., Mital, R., Mateik, D., Sivilli, R., and A.

Bhopale, “Satellite Identification Imaging for Small

Satellites Using NVIDIA,” Proceedings of the

AIAA/USU Conference on Small Satellites, Launch,

SSC17-WK-56.

25. Grabowski, J., “Neuromorphic Computing for

Classification in Optical and SAR Data with IBM

TrueNorth and Xilinx FPGAs,” 10th Workshop on

Fault-Tolerant Spaceborne Computing Employing

New Technologies, Albuquerque, NM, May 30 – Jun

2, 2017.

26. Wilson, C., Stewart, J., Gauvin, P., MacKinnon, J.,

Coole, J., Urriste, J., George, A., Crum, G., Wilson,

A., Wirthlin, M., “CSP Hybrid Space Computing for

STP-H5/ISEM on ISS,” 29th Annual AIAA/USU

Conf. on Small Satellites, Logan, UT, August 8-13,

2015.

27. Pan, S., and Q. Yang, “A Survey on Transfer

Learning,” IEEE Transactions on Knowledge and

Data Engineering, Vol. 22, No. 10, Oct 2010, pp.

1345–1359.

28. Howard, A., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Andreetto, M., and H. Adam.

“Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.

29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A.,

and L.-C. Chen. “MobileNetV2: Inverted residuals

and linear bottlenecks,” arXiv preprint

arXiv:1801.04381, 2018.

30. Zoph, B., Vasudevan, V., Shlens, J., and Q. V. Le.,

“Learning transferable architectures for scalable

image recognition,” arXiv preprint arXiv:1707.

07012, 2017.

