
Scrubbing Optimization via Availability Prediction
(SOAP) for Reconfigurable Space Computing

Quinn Martin, Alan D. George
NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida
Gainesville, Florida

{martin, george}@chrec.org

Abstract—Reconfigurable computing with FPGAs can be highly
effective in terms of performance, adaptability, and power for
accelerating space applications, but their configuration memory
must be scrubbed to prevent the accumulation of single-event
upsets. Many scrubbing techniques currently exist, each with
different advantages, making it difficult for the system designer
to choose the optimal scrubbing strategy for a given mission. This
paper surveys the currently available scrubbing techniques and
introduces the SOAP method for predicting system availability
for various scrubbing strategies using Markov models. We then
apply the method to compare hypothetical Virtex-5 and Virtex-6
systems for blind, CRC-32, and Frame ECC scrubbing strategies
in LEO and HEO. We show that availability in excess of 5 nines
can be obtained with modern, FPGA-based systems using
scrubbing. Furthermore, we show the value of the SOAP method
by observing that different scrubbing strategies are optimal for
different types of missions.

Keywords: scrubbing; FPGA; reliability; aerospace

I. INTRODUCTION
Reconfigurable computing with field-programmable gate

arrays (FPGAs) is known to perform well in space-based
processing applications such as hyperspectral imaging,
synthetic aperture RADAR, and software-defined radio.
FPGAs often outperform general-purpose CPUs with respect
to operations per second and power consumption, while
offering advantages over ASICs in non-recurring engineering
cost and adaptability. Unfortunately, these devices are highly
susceptible to radiation effects [1]. Because FPGA hardware
in a reconfigurable system is configured by on-chip SRAM,
single-event upsets (SEUs) in this memory can corrupt the
operation of the device and lead to errors or failure if
unmitigated.

Configuration scrubbing is the process of quickly repairing
these upset configuration bits before they can accumulate in
the configuration memory. Several techniques for scrubbing
have been deployed in aerospace missions, but each performs
differently with respect to detection and correction time,
coverage of different upset patterns, fault localization, and
other factors. Further complicating the problem of choosing an
optimal scrubbing system, the system designer may need to
combine several techniques to achieve the target performance
in terms of system availability and other mission goals. This
scenario presents a large design space that is difficult to

explore without implementation and testing on a specific
target platform.

In this work, we develop and present the method of
scrubbing optimization via availability prediction (SOAP),
which allows the system designer to predict the performance
of a set of scrubbing strategies for a given system and mission
using only analytical data. Traditionally, scrubbing strategies
have been designed around system requirements and tested in
the implementation phase. With SOAP, the optimal scrubbing
strategy for a given mission can be selected during the design
phase and the system designed around its requirements,
maximizing the potential system availability.

II. BACKGROUND
FPGAs are configurable logic devices that implement logic

circuits with a fabric that includes lookup tables (LUTs) for
implementing logic equations, memories for sequential logic
and storage, and routing resources that connect the LUTs and
memories [2]. Although one-time programmable FPGAs exist
and have been widely deployed in space, reconfigurable
FPGAs offer several advantages with their lower cost, greater
ease of prototyping, larger and faster available devices, and
ability to be reconfigured after deployment. In a
reconfigurable FPGA, the configuration memory is a
collection of bits called a bitstream. These bits set LUT values,
flip-flop and memory initialization values, and states of switch
and connection boxes that route signals through the FPGA.

For the Virtex family of devices from Xilinx, the
configuration memory is composed of SRAM cells that are
arranged in frames of 32-bit configuration words. There are 41
words per frame for Virtex-5 (V-5) [3] and 81 words per
frame for Virtex-6 (V-6) [4]. Since the frame is the smallest
addressable unit of configuration memory, any reads or writes
on the configuration must be performed frame-wise. Several
interfaces are provided for accessing configuration memory.
The JTAG interface is typically used for initial configuration,
and the Xilinx-specific SelectMAP interface is used for
runtime readback and reconfiguration. The SelectMAP
interface can be configured for a bus width of 8, 16, or 32 bits.
In the Virtex-II and newer devices, Xilinx provides the
internal configuration access port (ICAP), which exposes the
SelectMAP interface to user logic. The ICAP allows the

FPGA to read back and reconfigure itself, eliminating the need
for an external runtime-configuration manager.

Since the FPGA configuration is stored in volatile SRAM,
it can be corrupted by interaction with high-energy radiated
particles such as protons, neutrons, and heavy ions that are
abundant in aerospace environments. The effects of these
particles on electronics are well understood and are
collectively known as single-event effects (SEE). Several
types of SEE are relevant to FPGAs. Single-event upsets
(SEUs) occur when one or more bits in memory changes state
due to a radiation event. Since the state of the FPGA
configuration memory specifies the application architecture,
SEUs in the configuration memory are particularly harmful to
system operation. If exactly one bit is affected by the event, it
is called a single-bit upset (SBU). Otherwise, it is a multi-bit
upset (MBU). As silicon feature size has decreased, MBUs
have become more common. Double-bit and triple-bit upsets
(DBUs and TBUs) now account for nearly 10% of all upsets in
V-5 [5]. Similar to SEU, a single-event functional interrupt
(SEFI) occurs when a critical device resource is upset such
that device operation is seriously impaired, usually requiring
system reset. Although reliable space systems must be able to
recover from SEFIs, these events are several orders of
magnitude less frequent, so the focus on improving FPGA
reliability in space is SEU mitigation.

Many bits in the bitstream are used for routing or device
resources that are not employed in a given design. Only a
small portion, critical bits, directly affect operation of the
design if upset. According to Xilinx, these make up about 10%
of the configuration memory for an average design [6]. These
critical bits can only be identified by a thorough fault-injection
campaign. However, Xilinx allows generation of a mask file
that identifies essential bits to a design, of which the critical
bits are a subset [7].

A. Scrubbing
Since for most applications the FPGA is configured upon

power-up, the desired state of the configuration memory will
be known for such applications. This setup makes it possible
to repair upset bits through scrubbing. The scrubber can be
implemented as an external device, such as a radiation-
hardened microprocessor, or internal to the FPGA using the

fabric and ICAP [8]. External scrubbing, especially with
radiation-hardened parts, is reliable but can be expensive in
terms of power, size, and cost because it requires at least one
additional processor. Internal scrubbing is superior with
respect to these constraints, but requires additional care in
implementation because the scrubber itself is vulnerable to
SEUs and SEFIs.

A scrubbing technique is a single algorithm that can be
used in a system to mitigate configuration-memory upsets.
There are two types of techniques, detection techniques and
correction techniques, each having properties such as error
coding, coverage, granularity, and redundant data source that
influence performance of the scrubber. A scrubbing strategy is
composed of one or more correction techniques and,
optionally, a number of detection techniques. Blind scrubbing
is a scrubbing strategy with no detection technique, whereas a
scrubbing strategy with at least one detection technique is
called readback scrubbing, because the current state of
configuration memory is read back from the device to detect
an upset. The scrubbing strategy may also include a controller
to process the information from various detection mechanisms
and arbitrate access to the configuration interface among
detection techniques, correction techniques, and application
reconfiguration needs [9]. Fig. 1 illustrates a simple scrubbing
strategy where a correction technique is triggered by a timer
(blind) or a detection technique (readback). If the detection
technique triggers the correction, it also passes localization
information to the correction technique. Fig. 2 shows a more
complex readback strategy with multiple detection and
correction techniques and a controller.

B. Correction Techniques
All scrubbing strategies employ at least one technique for

correcting upset configuration bits. Correction techniques use
data redundancy to recall or calculate the original
configuration and then write this configuration to the device.
In general, these techniques differ in their coverage of various
upset types (e.g., SBU vs. MBU), granularity of correction
(e.g., frame vs. device) and correction data source (e.g., off-

Figure 1. Detection and correction scrubbing techniques

Figure 2. Complex scrubbing strategy with controller

chip vs. on-chip memory). Depending on the chosen scrubbing
strategy, the correction technique may be triggered
continuously, by a simple timer delay, or by a detection
technique.

The two correction techniques widely used for scrubbing
are golden copy correction and error syndrome correction. In
golden copy correction, a trusted “golden” copy of the original
configuration is maintained off-chip in non-volatile storage,
such as a radiation-hardened PROM, and used to reconfigure
the FPGA as needed. Blind scrubbing strategies that employ
only golden copy correction are widely used in FPGA-based
space platforms because of their effectiveness and simplicity.
These strategies continuously or periodically reconfigure the
FPGA with the golden copy to repair errors quickly after they
occur. This method can correct any configuration upset, but
such radiation-hardened memories may have limited
bandwidth, such that the configuration clock often can not be
run at its maximum frequency.

To avoid the memory-access penalty of golden copy
correction, as well as the expense of additional off-chip
memory, the error syndrome correction technique can be used.
In this case, the correction technique decodes an error
syndrome to determine the original configuration. In practice,
Hamming error-correcting codes (ECC) are often used to
correct upsets. In Virtex-II devices and above, Xilinx embeds
a single-error correcting, double-error detecting (SECDED)
Hamming code in each configuration frame at the time of
configuration bitstream generation [3]. Xilinx also provides a
Frame ECC primitive that reports the error syndrome as each
frame is read back over the SelectMAP interface. This error
syndrome can then be used to correct a single error in the
damaged frame and reconfigure the device.

C. Detection Techniques
For Xilinx FPGAs, readback scrubbing strategies use the

SelectMAP interface to read back the current configuration
and detect errors. This readback process combined with an
error-detection algorithm forms a detection technique.
Although there are many reasons to want upset detection,
certain types of missions require detection in order to trigger a
system reset, shutdown, or restoration of state to prevent
catastrophic failure. We refer to these missions as upset-
critical (UC) and distinguish between these and non-UC
missions in our treatment of scrubbing strategies. The reset
times for UC missions are highly system dependent and can
vary from milliseconds for a purely hardware-based system to
tens of seconds for a system with a master controller running
the Linux operating system, for example.

Error detection using test vectors, such as CRC-32 and
Hamming codes, has gained popularity because the redundant
data accessed for detection is greatly compressed compared to
the original bitstream. This approach allows for much quicker
detection of certain upset types (e.g., burst errors and SBUs).
However, MBU rates are increasing with smaller feature size,
to the point that 3-bit upsets are no longer uncommon. If the
upsets occur in the same frame and Frame ECC alone is used
the MBU can go undetected (if the number of upsets is a

multiple of 4) or even be corrected erroneously (for an odd
number of bits upset greater than 1). The fact that Frame ECC
alone allows errors to accumulate has caused recent interest in
more robust codes.

The first test vectors proposed for error detection on
FPGAs were cyclic redundancy check (CRC) codes [10]. A
32-bit CRC code can detect up to a 32-bit burst error, making
it much more robust against MBUs than Frame ECC.
Increasing MBU susceptibility of newer devices has prompted
Xilinx to include built-in, 32-bit readback CRC hardware on
Virtex devices since the V-5. This fixed-logic hardware
constantly reads back frame data from the configuration
interface whenever it is not in use. It calculates a CRC over
the entire device configuration and compares this value with a
golden value calculated upon issuing a special “Reset CRC”
SelectMAP command. When a CRC mismatch is detected, it
is reported on a pin of the Frame ECC primitive. This method
of error detection is robust against the accumulation of errors
because even if there is a detection code collision with the
current upset pattern it is improbable that the next upset will
be missed.

D. Markov Availability Modeling
Markov models can be used to model systems with several

states, each of which have constant transition rates to one or
more other states [11]. By solving these models, we can find
the time spent in each state over a simulated run of the system.
Discrete solvers such as SHARPE can solve complex Markov
models in a small amount of real time [12]. They are useful in
modeling reliability for systems with constant failure and
repair rates, because we can find the amount of time spent in
functional or “up” states for the system. Using this
information, we can find the availability, A, of the system by

𝐴 = !"#$%&

!"#$% !"#$%&'
 . (1)

Since the availability for reliable systems is very close to 1, it
is common to express it as the number of nines in the decimal
representation of the availability, e.g., .99990 would be
exactly 4 nines of availability.

III. APPROACH
The broad array of scrubbing options available to system

designers can be daunting, and this problem is worsened by
conflicting opinions on the efficacy of various scrubbing
techniques. We propose the method of scrubbing optimization
via availability prediction (SOAP) by which to compare
scrubbing strategies and choose the best strategy for a given
mission (Fig. 3). Using availability as a metric, we develop
Markov models to describe scrubbing strategies of interest.
We then populate the models using three types of parameters:
environmental parameters, system parameters, and scrubbing
parameters. Some parameters are fixed for a given system
choice, while others can be varied to achieve optimal
performance. The parameters are developed analytically in this
paper, but could also be derived experimentally to obtain
greater prediction accuracy.

A. Environmental Parameters
The environmental parameters are the upset rates (λ) in

various orbits of interest, and the MBU coefficients (α).
These parameters are different for each device family, because
upset rates are highly dependent on device process technology
and architecture. We used CREME96 with radiation cross-
sections from [5] to find the per-bit upset rates for the V-5 in
the ISS LEO orbit and the Molniya HEO orbit (Table 1). We
used the linear regression method proposed in [13] to estimate
cross-sections for the V-6 and found the upset rates for the
same LEO and HEO orbits. From [5], we estimated the MBU
coefficients for the V-5 device. MBU data was not available
for the V-6 device, but general trends from the Virtex to V-5
indicate an increase in MBU rates with smaller process
technology [14]. The equations for calculating the device
upset rate, λdevice, and adjusted MBU rates, λMBU, from these
parameters are given in (2) and (3). Using these equations, we
derive the rates λSBU, λDBU, and λTBU.

𝜆!"#$%" = 𝜆!"# × # 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠 % 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (2)

𝜆!"# = 𝜆!"#$%" × 𝛼!"# (3)

B. System Parameters
The system parameters are the SelectMAP bus width, B,

and the configuration clock frequency, fCCLK. These
parameters are set by the system designer and are generally
limited by the configuration memory bandwidth and the
available routable pins on the device. Increasing either of these
parameters has a direct effect on availability, since they are

further used to calculate the detection and correction rates.
Here, we assume a conservative hypothetical system using a
radiation-hardened memory with an 8-bit bus at 33 MHz.

C. Scrubbing Parameters
The scrubbing parameters, μ and γ , describe the

correction and detection rates of the system respectively. We
derive these parameters from the particular scrubbing
technique characteristics combined with the system
parameters. These rates can be found experimentally be
injecting faults into the system and measuring the time delay
to detection and correction of the fault. Fortunately, we can
usually estimate these rates analytically for a given technique,
assuming an efficient hardware implementation.

 𝜇!"#$%" =

! × !!!"#
!"#$% !"#$%&'()*%"# !"#$

 (4)

 𝜇!"#$% =

! × !!!"#
!"#$% !"#$!"# !"#$%

 (5)

 𝛾!"! =

!" × !!!"#
!"#$% !"#$%&'()*%"# !"#$

 (6)

Each correction technique available for use in a scrubbing
system has a corresponding correction rate, μ, which is the
reciprocal of the time taken to repair an upset once the
technique is triggered. The correction rate equations for device
and frame golden copy correction are shown in (4) and (5),
respectively. In this case, μ ECC = μ frame because the
reconfiguration time is the same, assuming reconfiguration is
performed in parallel with accessing the golden copy memory.
Detection techniques have a corresponding detection rate, γ,
which is the reciprocal of the time taken to detect an upset
once it has occurred. The detection rate for CRC-32 detection
is shown in (6), assuming the readback bus width is set at 32
because the fixed-logic CRC circuit is used. For these devices,
γECC = μdevice, because the time to read back the entire
configuration memory is approximately the same as the
reconfiguration time. In all cases, we neglect the overhead
contributed by configuration command sequences. Correction
and detection rates for several devices are shown in Table 3.

Figure 3. Concept diagram for the SOAP method

TABLE I. ENVIRONMENTAL PARAMETERS

TABLE II. SYSTEM PARAMETERS

TABLE III. SCRUBBING PARAMETERS

D. Markov Availability Modeling
We use Markov models to describe the scrubbing strategy

algorithm using one or more correction techniques and zero or
more detection techniques. In this work, we explore three
different scrubbing strategies: blind; readback CRC-32; and
Frame ECC. The strategy of blind scrubbing with simple upset
correction is shown in Fig. 4. In this model, we have an “Up”
state denoting a functional system and an “Upset” state to
indicate failure. The failure rate of transitioning from “Up” to
“Upset” is described by theλdevice factor, while the repair rate
of moving from “Upset” to “Up” is μdevice. For the other two
strategies, we build on the blind scrubbing model. In the CRC-
32 scrubbing strategy (Fig. 5) we add a state to represent
upsets detected by the built-in readback CRC-32, with a
transition rate defined byγCRC. Finally, we propose a Frame
ECC-based scrubbing strategy (Fig. 6) that uses Frame ECC
detection and correction with a CRC-32 “safety net” for

catching falsely corrected three-bit upsets. In this strategy, the
CRC-32 is run each time after using the error syndrome
correction method, and if it still detects an upset then a TBU is
assumed and the entire device is reconfigured.

For the analytical model, we assume the worst-case
scenario that all MBUs occur within a single frame. Further,
we assume that only one SEU occurs before the fault is
detected, and that the upset frame, current reconfiguration
frame, and current readback frame are selected at random.
These assumptions provide an accurate estimate as long as the
SEU rate is low compared to the total detection and correction
time.

IV. EXPERIMENTATION
We evaluated the three scrubbing strategies for steady-state

availability using the SHARPE reliability-modeling tool. For
these tests, we choose the largest V-5 and V-6 devices, and
test them for both non-UC and UC mission conditions. For the
non-UC mission, we assume that only 10% of upsets are
critical and result in a failure. We scale the upset rates by this
factor before evaluating the models, except in the case of
three-bit upsets in the Frame ECC method since these could
trigger a false correction affecting a critical bit. For the UC
mission we assume that all detected upsets result in reset, and
measure the availability for various system reset times.
However, UC missions can use the essential bits file to
determine if a detected SBU or DBU is critical. Of the
scrubbing strategies under test, it can only be used with Frame
ECC with the CRC-32 safety net, because this strategy
identifies the upset bit, which can then be correlated with the
mask file. We add this “Essential Bits” method as an
additional test case, and scale the SBU and DBU rates
accordingly assuming 10% essential bits. We do not test blind
scrubbing for the UC mission because UC missions require
detection.

A. Non-UC Results
Results for non-UC missions are shown in Table 4. The

same trends hold for both devices in both orbits, so we observe
that optimal scrubbing strategies may be independent of
device and environment. We see that blind scrubbing offers
the highest overall availability because we do not wait to
correct errors until they are detected. We recommend CRC-32
scrubbing in cases where detection is desired, because it offers
comparable availability with little additional implementation
effort. Finally, the Frame ECC method offers the lowest
availability for V-5, because TBUs can result in improper
correction leading to increased downtime.

Figure 4. Markov model for blind scrubbing

Blind scrubbing

Figure 5. Markov model for CRC-32 scrubbing

CRC-32 scrubbing

Figure 6. Markov model for Frame ECC scrubbing with CRC-32

TABLE IV. AVAILABILITY FOR NON-UC MISSIONS

B. UC Results
For the UC mission (Figs. 7 and 8), similar trends hold to

the non-UC mission, with the exception of the new Frame
ECC method using the essential bits mask. This approach
offers roughly one additional nine of availability over CRC-32
or Frame ECC without the essential bits mask. We recommend
this method for mission-critical systems that need the highest
availability, despite the additional implementation effort and
parts required for readback and essential bits mask storage and
comparison. Overall availability decreases across the board
with increased system reset time. For HEO orbits, the V-6
device shows particularly low availability because of its large
λbit in HEO and large number of total configuration bits.

V. CONCLUSIONS
We have observed that the common scrubbing strategies in

use for aerospace FPGA systems can be decomposed into
correction and detection techniques for detailed analysis.
Scrubbing parameters can be found for these techniques by
simple analytical equations and combined with environmental
and system parameters to populate a Markov model describing
the scrubbing strategy. This model can be solved to find
system availability, which we use as a metric to compare the
various strategies across different environments and possible
systems to find the best solution for a given set of parameters.
This method allows us to design a system for maximum

availability given our design constraints, rather than designing
a scrubbing strategy around an implemented system.

By employing the SOAP method for hypothetical cases of
V-5 and V-6 systems, we found that blind scrubbing, the
simplest method, was also the most effective for non-UC
missions. However, Frame ECC with the essential bits mask
offered the highest availability for UC missions, although the
implementation complexity is high. With increasing FPGA
size, it will become even more difficult to maintain high
availability for large designs in UC systems, necessitating
faster and more advanced scrubbing techniques. Furthermore,
as silicon feature size decreases, MBUs will become more
prevalent and require more robust techniques to scrub them.
The SOAP method aids the development of these new
techniques by allowing designers to test and compare many
hypothetical techniques through modeling rather than
implementation.

ACKNOWLEGMENTS
This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022. The authors gratefully
acknowledge vendor equipment and tools provided by Xilinx
and the SHARPE tool from Duke University that helped make
this work possible.

REFERENCES
[1] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A.

Salazar, “Radiation test results of the Virtex FPGA and ZBT SRAM for
Space Based Reconfigurable Computing,” 1999 MAPLD.

[2] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” in ACM Computing Surveys, vol. 34, no. 2, June
2002, pp.171-210.

[3] “Virtex-5 FPGA configuration user guide,” Xilinx UG191 (v3.9.1), Aug.
20, 2010.

[4] “Virtex-6 FPGA configuration user guide,” Xilinx UG360 (v3.4), Nov.
18, 2011.

[5] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, “Static
proton and heavy ion testing of the Xilinx Virtex-5 device,” Radiation
Effects Data Workshop, 2007 IEEE.

[6] K. Chapman, “SEU strategies for Virtex-5 devices,” Xilinx XAPP864
(v2.0), Apr. 2010.

[7] R. Le, “Soft error mitigation using prioritized essential bits,” Xilinx
XAPP538 (v1.0), Apr. 2012.

[8] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, et al.,
“Effectiveness of internal vs. external SEU scrubbing mitigation
strategies in a Xilinx FPGA: Design, test, and analysis,” 2007 RADECS.

[9] J. Heiner, N. Collins, M. Wirthlin, “Fault tolerant ICAP controller for
high-reliable internal scrubbing,” 2007 MAFA.

[10] R. Andraka, P. Brady, J. Brady, “A low complexity method for detecting
configuration upset in SRAM based FPGAs,” 2003 MAPLD.

[11] I. Koren and C. Krishna, Fault-Tolerant Systems. San Francisco, CA:
Morgan-Kaufman, 2007.

[12] R. Sahner, S. Trivedi, “Reliability modeling using SHARPE,” in IEEE
Transactions on Reliability, vol. R-36, no. 2, June 1987, pp. 186-193.

[13] N. Wulf, A. George, and A. Gordon-Ross, “A framework to analyze,
compare, and optimize high-performance, on-board processing
systems,” IEEE Aerospace Conference, 2012.

[14] H. Quinn, P. Graham, J. Krone, M. Caffrey, et al., “Radiation-induced
multi-bit upsets in Xilinx SRAM-based FPGAs,” 2005 MAPLD.

Figure 8. Availability vs. reset time in HEO for UC mission

Figure 7. Availability vs. reset time in LEO for UC mission

