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Abstract—Reconfigurable computing with FPGAs can be highly 
effective in terms of performance, adaptability, and power for 
accelerating space applications, but their configuration memory 
must be scrubbed to prevent the accumulation of single-event 
upsets. Many scrubbing techniques currently exist, each with 
different advantages, making it difficult for the system designer 
to choose the optimal scrubbing strategy for a given mission. This 
paper surveys the currently available scrubbing techniques and 
introduces the SOAP method for predicting system availability 
for various scrubbing strategies using Markov models. We then 
apply the method to compare hypothetical Virtex-5 and Virtex-6 
systems for blind, CRC-32, and Frame ECC scrubbing strategies 
in LEO and HEO. We show that availability in excess of 5 nines 
can be obtained with modern, FPGA-based systems using 
scrubbing. Furthermore, we show the value of the SOAP method 
by observing that different scrubbing strategies are optimal for 
different types of missions. 
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I.  INTRODUCTION 
Reconfigurable computing with field-programmable gate 

arrays (FPGAs) is known to perform well in space-based 
processing applications such as hyperspectral imaging, 
synthetic aperture RADAR, and software-defined radio. 
FPGAs often outperform general-purpose CPUs with respect 
to operations per second and power consumption, while 
offering advantages over ASICs in non-recurring engineering 
cost and adaptability. Unfortunately, these devices are highly 
susceptible to radiation effects [1]. Because FPGA hardware 
in a reconfigurable system is configured by on-chip SRAM, 
single-event upsets (SEUs) in this memory can corrupt the 
operation of the device and lead to errors or failure if 
unmitigated.  

Configuration scrubbing is the process of quickly repairing 
these upset configuration bits before they can accumulate in 
the configuration memory. Several techniques for scrubbing 
have been deployed in aerospace missions, but each performs 
differently with respect to detection and correction time, 
coverage of different upset patterns, fault localization, and 
other factors. Further complicating the problem of choosing an 
optimal scrubbing system, the system designer may need to 
combine several techniques to achieve the target performance 
in terms of system availability and other mission goals. This 
scenario presents a large design space that is difficult to 

explore without implementation and testing on a specific 
target platform. 

In this work, we develop and present the method of 
scrubbing optimization via availability prediction (SOAP), 
which allows the system designer to predict the performance 
of a set of scrubbing strategies for a given system and mission 
using only analytical data. Traditionally, scrubbing strategies 
have been designed around system requirements and tested in 
the implementation phase. With SOAP, the optimal scrubbing 
strategy for a given mission can be selected during the design 
phase and the system designed around its requirements, 
maximizing the potential system availability. 

II.  BACKGROUND 
FPGAs are configurable logic devices that implement logic 

circuits with a fabric that includes lookup tables (LUTs) for 
implementing logic equations, memories for sequential logic 
and storage, and routing resources that connect the LUTs and 
memories [2]. Although one-time programmable FPGAs exist 
and have been widely deployed in space, reconfigurable 
FPGAs offer several advantages with their lower cost, greater 
ease of prototyping, larger and faster available devices, and 
ability to be reconfigured after deployment. In a 
reconfigurable FPGA, the configuration memory is a 
collection of bits called a bitstream. These bits set LUT values, 
flip-flop and memory initialization values, and states of switch 
and connection boxes that route signals through the FPGA. 

For the Virtex family of devices from Xilinx, the 
configuration memory is composed of SRAM cells that are 
arranged in frames of 32-bit configuration words. There are 41 
words per frame for Virtex-5 (V-5) [3] and 81 words per 
frame for Virtex-6 (V-6) [4]. Since the frame is the smallest 
addressable unit of configuration memory, any reads or writes 
on the configuration must be performed frame-wise. Several 
interfaces are provided for accessing configuration memory. 
The JTAG interface is typically used for initial configuration, 
and the Xilinx-specific SelectMAP interface is used for 
runtime readback and reconfiguration. The SelectMAP 
interface can be configured for a bus width of 8, 16, or 32 bits. 
In the Virtex-II and newer devices, Xilinx provides the 
internal configuration access port (ICAP), which exposes the 
SelectMAP interface to user logic. The ICAP allows the 



FPGA to read back and reconfigure itself, eliminating the need 
for an external runtime-configuration manager. 

Since the FPGA configuration is stored in volatile SRAM, 
it can be corrupted by interaction with high-energy radiated 
particles such as protons, neutrons, and heavy ions that are 
abundant in aerospace environments. The effects of these 
particles on electronics are well understood and are 
collectively known as single-event effects (SEE). Several 
types of SEE are relevant to FPGAs. Single-event upsets 
(SEUs) occur when one or more bits in memory changes state 
due to a radiation event. Since the state of the FPGA 
configuration memory specifies the application architecture, 
SEUs in the configuration memory are particularly harmful to 
system operation. If exactly one bit is affected by the event, it 
is called a single-bit upset (SBU). Otherwise, it is a multi-bit 
upset (MBU). As silicon feature size has decreased, MBUs 
have become more common. Double-bit and triple-bit upsets 
(DBUs and TBUs) now account for nearly 10% of all upsets in 
V-5 [5]. Similar to SEU, a single-event functional interrupt 
(SEFI) occurs when a critical device resource is upset such 
that device operation is seriously impaired, usually requiring 
system reset. Although reliable space systems must be able to 
recover from SEFIs, these events are several orders of 
magnitude less frequent, so the focus on improving FPGA 
reliability in space is SEU mitigation.  

Many bits in the bitstream are used for routing or device 
resources that are not employed in a given design. Only a 
small portion, critical bits, directly affect operation of the 
design if upset. According to Xilinx, these make up about 10% 
of the configuration memory for an average design [6]. These 
critical bits can only be identified by a thorough fault-injection 
campaign. However, Xilinx allows generation of a mask file 
that identifies essential bits to a design, of which the critical 
bits are a subset [7].  

A. Scrubbing 
Since for most applications the FPGA is configured upon 

power-up, the desired state of the configuration memory will 
be known for such applications. This setup makes it possible 
to repair upset bits through scrubbing. The scrubber can be 
implemented as an external device, such as a radiation-
hardened microprocessor, or internal to the FPGA using the 

fabric and ICAP [8]. External scrubbing, especially with 
radiation-hardened parts, is reliable but can be expensive in 
terms of power, size, and cost because it requires at least one 
additional processor. Internal scrubbing is superior with 
respect to these constraints, but requires additional care in 
implementation because the scrubber itself is vulnerable to 
SEUs and SEFIs.  

A scrubbing technique is a single algorithm that can be 
used in a system to mitigate configuration-memory upsets. 
There are two types of techniques, detection techniques and 
correction techniques, each having properties such as error 
coding, coverage, granularity, and redundant data source that 
influence performance of the scrubber. A scrubbing strategy is 
composed of one or more correction techniques and, 
optionally, a number of detection techniques. Blind scrubbing 
is a scrubbing strategy with no detection technique, whereas a 
scrubbing strategy with at least one detection technique is 
called readback scrubbing, because the current state of 
configuration memory is read back from the device to detect 
an upset. The scrubbing strategy may also include a controller 
to process the information from various detection mechanisms 
and arbitrate access to the configuration interface among 
detection techniques, correction techniques, and application 
reconfiguration needs [9]. Fig. 1 illustrates a simple scrubbing 
strategy where a correction technique is triggered by a timer 
(blind) or a detection technique (readback). If the detection 
technique triggers the correction, it also passes localization 
information to the correction technique. Fig. 2 shows a more 
complex readback strategy with multiple detection and 
correction techniques and a controller.  

B. Correction Techniques 
All scrubbing strategies employ at least one technique for 

correcting upset configuration bits. Correction techniques use 
data redundancy to recall or calculate the original 
configuration and then write this configuration to the device. 
In general, these techniques differ in their coverage of various 
upset types (e.g., SBU vs. MBU), granularity of correction 
(e.g., frame vs. device) and correction data source (e.g., off-

 
Figure 1. Detection and correction scrubbing techniques 

 
Figure 2. Complex scrubbing strategy with controller 



chip vs. on-chip memory). Depending on the chosen scrubbing 
strategy, the correction technique may be triggered 
continuously, by a simple timer delay, or by a detection 
technique.  

The two correction techniques widely used for scrubbing 
are golden copy correction and error syndrome correction. In 
golden copy correction, a trusted “golden” copy of the original 
configuration is maintained off-chip in non-volatile storage, 
such as a radiation-hardened PROM, and used to reconfigure 
the FPGA as needed. Blind scrubbing strategies that employ 
only golden copy correction are widely used in FPGA-based 
space platforms because of their effectiveness and simplicity. 
These strategies continuously or periodically reconfigure the 
FPGA with the golden copy to repair errors quickly after they 
occur. This method can correct any configuration upset, but 
such radiation-hardened memories may have limited 
bandwidth, such that the configuration clock often can not be 
run at its maximum frequency. 

To avoid the memory-access penalty of golden copy 
correction, as well as the expense of additional off-chip 
memory, the error syndrome correction technique can be used. 
In this case, the correction technique decodes an error 
syndrome to determine the original configuration.  In practice, 
Hamming error-correcting codes (ECC) are often used to 
correct upsets. In Virtex-II devices and above, Xilinx embeds 
a single-error correcting, double-error detecting (SECDED) 
Hamming code in each configuration frame at the time of 
configuration bitstream generation [3]. Xilinx also provides a 
Frame ECC primitive that reports the error syndrome as each 
frame is read back over the SelectMAP interface. This error 
syndrome can then be used to correct a single error in the 
damaged frame and reconfigure the device.  

C. Detection Techniques 
For Xilinx FPGAs, readback scrubbing strategies use the 

SelectMAP interface to read back the current configuration 
and detect errors. This readback process combined with an 
error-detection algorithm forms a detection technique. 
Although there are many reasons to want upset detection, 
certain types of missions require detection in order to trigger a 
system reset, shutdown, or restoration of state to prevent 
catastrophic failure.  We refer to these missions as upset-
critical (UC) and distinguish between these and non-UC 
missions in our treatment of scrubbing strategies. The reset 
times for UC missions are highly system dependent and can 
vary from milliseconds for a purely hardware-based system to 
tens of seconds for a system with a master controller running 
the Linux operating system, for example. 

Error detection using test vectors, such as CRC-32 and 
Hamming codes, has gained popularity because the redundant 
data accessed for detection is greatly compressed compared to 
the original bitstream. This approach allows for much quicker 
detection of certain upset types (e.g., burst errors and SBUs). 
However, MBU rates are increasing with smaller feature size, 
to the point that 3-bit upsets are no longer uncommon. If the 
upsets occur in the same frame and Frame ECC alone is used 
the MBU can go undetected (if the number of upsets is a 

multiple of 4) or even be corrected erroneously (for an odd 
number of bits upset greater than 1). The fact that Frame ECC 
alone allows errors to accumulate has caused recent interest in 
more robust codes. 

The first test vectors proposed for error detection on 
FPGAs were cyclic redundancy check (CRC) codes [10]. A 
32-bit CRC code can detect up to a 32-bit burst error, making 
it much more robust against MBUs than Frame ECC. 
Increasing MBU susceptibility of newer devices has prompted 
Xilinx to include built-in, 32-bit readback CRC hardware on 
Virtex devices since the V-5. This fixed-logic hardware 
constantly reads back frame data from the configuration 
interface whenever it is not in use. It calculates a CRC over 
the entire device configuration and compares this value with a 
golden value calculated upon issuing a special “Reset CRC” 
SelectMAP command. When a CRC mismatch is detected, it 
is reported on a pin of the Frame ECC primitive. This method 
of error detection is robust against the accumulation of errors 
because even if there is a detection code collision with the 
current upset pattern it is improbable that the next upset will 
be missed. 

D. Markov Availability Modeling 
Markov models can be used to model systems with several 

states, each of which have constant transition rates to one or 
more other states [11]. By solving these models, we can find 
the time spent in each state over a simulated run of the system. 
Discrete solvers such as SHARPE can solve complex Markov 
models in a small amount of real time [12]. They are useful in 
modeling reliability for systems with constant failure and 
repair rates, because we can find the amount of time spent in 
functional or “up” states for the system. Using this 
information, we can find the availability, A, of the system by 

 
𝐴 = !"#$%&

!"#$%  !"#$%&'
 . (1) 

 
Since the availability for reliable systems is very close to 1, it 
is common to express it as the number of nines in the decimal 
representation of the availability, e.g., .99990 would be 
exactly 4 nines of availability.  

III.  APPROACH 
The broad array of scrubbing options available to system 

designers can be daunting, and this problem is worsened by 
conflicting opinions on the efficacy of various scrubbing 
techniques. We propose the method of scrubbing optimization 
via availability prediction (SOAP) by which to compare 
scrubbing strategies and choose the best strategy for a given 
mission (Fig. 3). Using availability as a metric, we develop 
Markov models to describe scrubbing strategies of interest. 
We then populate the models using three types of parameters: 
environmental parameters, system parameters, and scrubbing 
parameters. Some parameters are fixed for a given system 
choice, while others can be varied to achieve optimal 
performance. The parameters are developed analytically in this 
paper, but could also be derived experimentally to obtain 
greater prediction accuracy. 



A. Environmental Parameters 
The environmental parameters are the upset rates (λ) in 

various orbits of interest, and the MBU coefficients (α). 
These parameters are different for each device family, because 
upset rates are highly dependent on device process technology 
and architecture. We used CREME96 with radiation cross-
sections from [5] to find the per-bit upset rates for the V-5 in 
the ISS LEO orbit and the Molniya HEO orbit (Table 1). We 
used the linear regression method proposed in [13] to estimate 
cross-sections for the V-6 and found the upset rates for the 
same LEO and HEO orbits. From [5], we estimated the MBU 
coefficients for the V-5 device. MBU data was not available 
for the V-6 device, but general trends from the Virtex to V-5 
indicate an increase in MBU rates with smaller process 
technology [14]. The equations for calculating the device 
upset rate, λdevice, and adjusted MBU rates, λMBU, from these 
parameters are given in (2) and (3). Using these equations, we 
derive the rates λSBU, λDBU, and λTBU. 
 
𝜆!"#$%" = 𝜆!"#  ×   #  𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛  𝑏𝑖𝑡𝑠 %  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  (2) 
 

𝜆!"# = 𝜆!"#$%"  ×  𝛼!"#      (3) 

B. System Parameters 
The system parameters are the SelectMAP bus width, B, 

and the configuration clock frequency, fCCLK. These 
parameters are set by the system designer and are generally 
limited by the configuration memory bandwidth and the 
available routable pins on the device. Increasing either of these 
parameters has a direct effect on availability, since they are 

further used to calculate the detection and correction rates. 
Here, we assume a conservative hypothetical system using a 
radiation-hardened memory with an 8-bit bus at 33 MHz. 

C. Scrubbing Parameters 
The scrubbing parameters, μ  and γ , describe the 

correction and detection rates of the system respectively. We 
derive these parameters from the particular scrubbing 
technique characteristics combined with the system 
parameters. These rates can be found experimentally be 
injecting faults into the system and measuring the time delay 
to detection and correction of the fault. Fortunately, we can 
usually estimate these rates analytically for a given technique, 
assuming an efficient hardware implementation.  
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Each correction technique available for use in a scrubbing 
system has a corresponding correction rate, μ, which is the 
reciprocal of the time taken to repair an upset once the 
technique is triggered. The correction rate equations for device 
and frame golden copy correction are shown in (4) and (5), 
respectively. In this case, μ ECC = μ frame because the 
reconfiguration time is the same, assuming reconfiguration is 
performed in parallel with accessing the golden copy memory. 
Detection techniques have a corresponding detection rate, γ, 
which is the reciprocal of the time taken to detect an upset 
once it has occurred. The detection rate for CRC-32 detection 
is shown in (6), assuming the readback bus width is set at 32 
because the fixed-logic CRC circuit is used. For these devices, 
γECC = μdevice, because the time to read back the entire 
configuration memory is approximately the same as the 
reconfiguration time. In all cases, we neglect the overhead 
contributed by configuration command sequences. Correction 
and detection rates for several devices are shown in Table 3. 

 
Figure 3. Concept diagram for the SOAP method 

 

TABLE I. ENVIRONMENTAL PARAMETERS 

 

TABLE II. SYSTEM PARAMETERS 

 

TABLE III. SCRUBBING PARAMETERS 

 



D. Markov Availability Modeling 
We use Markov models to describe the scrubbing strategy 

algorithm using one or more correction techniques and zero or 
more detection techniques. In this work, we explore three 
different scrubbing strategies: blind; readback CRC-32; and 
Frame ECC. The strategy of blind scrubbing with simple upset 
correction is shown in Fig. 4. In this model, we have an “Up” 
state denoting a functional system and an “Upset” state to 
indicate failure. The failure rate of transitioning from “Up” to 
“Upset” is described by theλdevice factor, while the repair rate 
of moving from “Upset” to “Up” is μdevice. For the other two 
strategies, we build on the blind scrubbing model. In the CRC-
32 scrubbing strategy (Fig. 5) we add a state to represent 
upsets detected by the built-in readback CRC-32, with a 
transition rate defined byγCRC. Finally, we propose a Frame 
ECC-based scrubbing strategy (Fig. 6) that uses Frame ECC 
detection and correction with a CRC-32 “safety net” for 

catching falsely corrected three-bit upsets. In this strategy, the 
CRC-32 is run each time after using the error syndrome 
correction method, and if it still detects an upset then a TBU is 
assumed and the entire device is reconfigured. 

For the analytical model, we assume the worst-case 
scenario that all MBUs occur within a single frame. Further, 
we assume that only one SEU occurs before the fault is 
detected, and that the upset frame, current reconfiguration 
frame, and current readback frame are selected at random. 
These assumptions provide an accurate estimate as long as the 
SEU rate is low compared to the total detection and correction 
time. 

IV.  EXPERIMENTATION 
We evaluated the three scrubbing strategies for steady-state 

availability using the SHARPE reliability-modeling tool. For 
these tests, we choose the largest V-5 and V-6 devices, and 
test them for both non-UC and UC mission conditions. For the 
non-UC mission, we assume that only 10% of upsets are 
critical and result in a failure. We scale the upset rates by this 
factor before evaluating the models, except in the case of 
three-bit upsets in the Frame ECC method since these could 
trigger a false correction affecting a critical bit. For the UC 
mission we assume that all detected upsets result in reset, and 
measure the availability for various system reset times. 
However, UC missions can use the essential bits file to 
determine if a detected SBU or DBU is critical. Of the 
scrubbing strategies under test, it can only be used with Frame 
ECC with the CRC-32 safety net, because this strategy 
identifies the upset bit, which can then be correlated with the 
mask file. We add this “Essential Bits” method as an 
additional test case, and scale the SBU and DBU rates 
accordingly assuming 10% essential bits. We do not test blind 
scrubbing for the UC mission because UC missions require 
detection.  

A. Non-UC Results 
Results for non-UC missions are shown in Table 4. The 

same trends hold for both devices in both orbits, so we observe 
that optimal scrubbing strategies may be independent of 
device and environment. We see that blind scrubbing offers 
the highest overall availability because we do not wait to 
correct errors until they are detected. We recommend CRC-32 
scrubbing in cases where detection is desired, because it offers 
comparable availability with little additional implementation 
effort. Finally, the Frame ECC method offers the lowest 
availability for V-5, because TBUs can result in improper 
correction leading to increased downtime. 

 
Figure 4. Markov model for blind scrubbing 

Blind scrubbing  

 
Figure 5. Markov model for CRC-32 scrubbing 

CRC-32 scrubbing  

 
Figure 6. Markov model for Frame ECC scrubbing with CRC-32 

TABLE IV. AVAILABILITY FOR NON-UC MISSIONS 

 



B. UC Results 
For the UC mission (Figs. 7 and 8), similar trends hold to 

the non-UC mission, with the exception of the new Frame 
ECC method using the essential bits mask. This approach 
offers roughly one additional nine of availability over CRC-32 
or Frame ECC without the essential bits mask. We recommend 
this method for mission-critical systems that need the highest 
availability, despite the additional implementation effort and 
parts required for readback and essential bits mask storage and 
comparison. Overall availability decreases across the board 
with increased system reset time. For HEO orbits, the V-6 
device shows particularly low availability because of its large 
λbit in HEO and large number of total configuration bits. 

V.  CONCLUSIONS 
We have observed that the common scrubbing strategies in 

use for aerospace FPGA systems can be decomposed into 
correction and detection techniques for detailed analysis. 
Scrubbing parameters can be found for these techniques by 
simple analytical equations and combined with environmental 
and system parameters to populate a Markov model describing 
the scrubbing strategy. This model can be solved to find 
system availability, which we use as a metric to compare the 
various strategies across different environments and possible 
systems to find the best solution for a given set of parameters. 
This method allows us to design a system for maximum 

availability given our design constraints, rather than designing 
a scrubbing strategy around an implemented system.  

By employing the SOAP method for hypothetical cases of 
V-5 and V-6 systems, we found that blind scrubbing, the 
simplest method, was also the most effective for non-UC 
missions. However, Frame ECC with the essential bits mask 
offered the highest availability for UC missions, although the 
implementation complexity is high. With increasing FPGA 
size, it will become even more difficult to maintain high 
availability for large designs in UC systems, necessitating 
faster and more advanced scrubbing techniques. Furthermore, 
as silicon feature size decreases, MBUs will become more 
prevalent and require more robust techniques to scrub them. 
The SOAP method aids the development of these new 
techniques by allowing designers to test and compare many 
hypothetical techniques through modeling rather than 
implementation. 
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Figure 8. Availability vs. reset time in HEO for UC mission 

 
Figure 7. Availability vs. reset time in LEO for UC mission 

 


