
Novo-G#: Large-Scale Reconfigurable Computing
with Direct and Programmable Interconnects

Alan D. George∗, Martin C. Herbordt†, Herman Lam∗, Abhijeet G. Lawande∗, Jiayi Sheng†, and Chen Yang†
∗NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida
†Computer Architecture and Automated Design Lab (CAAD)

Department of Electrical and Computer Engineering, Boston University

Abstract—While High-Performance Computing is ever more
pervasive and effective, computing capability is currently only a
small fraction of what is needed. Three fundamental issues limit-
ing performance are computational efficiency, power density, and
communication latency. All of these issues are being addressed
through increased heterogeneity, but the last in particular by
integrating communication into the accelerator. This integration
enables direct and programmable communication among com-
pute components. Novo-G# is a large-scale FPGA-centric cluster
being built to investigate and develop architectures, system and
tool infrastructure, and applications for this model. In this report
we discuss the motivation behind and particular objectives of
Novo-G#, the work completed so far, the products of that work,
and their potential impact. We end with a description of and an
invitation to join the Novo-G# Forum, the project users group.

I. INTRODUCTION

The overall goal of the Novo-G# project (pronounced Novo-

Gee sharp) is to develop and demonstrate innovations that give

the high-performance computing (HPC) user community the

capability to conduct transformative research via scalable, cost

effective, high-performance, general-purpose systems built

from off-the-shelf components. The particular objective is to

build a compute cluster and related infrastructure that facili-

tates computational science research and advances supporting

computer systems. Specifically, Novo-G# is an enhancement of

Novo-G, an accelerator-based reconfigurable compute cluster

developed and housed at the University of Florida. A key

aspect of the project is addressing the problem of strong

scaling in high-performance computing through accelerator-

centric clusters, that is, clusters where the accelerators them-

selves are the central components and communicate directly

with one another. The specific accelerator technology we are

investigating is the FPGA: they are currently the only COTS

component that combines innate communication support, high-

compute capability, low power, and an installed application

base.

This work was supported in part by the National Science Foundation
through Awards CNS-1405695, #CCF-1618303/7960, EEC-0642422, and IIP-
1161022; by a grant from Microsoft by Altera through donated FPGAs,
tools, and IP; by Gidel through discounted FPGA boards and daughter cards;
and through tools provided by Mirabilis Design. This article is a progress
report and outreach activity of the Novo-G# Community Resource project. All
intellectual contributions have appeared elsewhere as cited in the text. Email:
(jysheng|cyang90|herbordt)@bu.edu, (george|hlam|lawande)@chrec.org

The construction, demonstration, and dissemination of

Novo-G#, together with building and organizing the associ-

ated communities, are the primary activities of this project.

Novo-G# is designed to support research projects in vari-

ous disciplines. These areas can broadly be classified into

applications research (molecular dynamics, graph processing,

bioinformatics, and artificial neural networks), and systems

research (Exascale emulation, reconfigurable networks, and

application-specific routing). Our goal is to reduce the barrier

to entry of multi-FPGA design and enable researchers to use

Novo-G# and similar systems as a platform for accelerating

their research. In this report, we will discuss the motivation

and particular objectives of the project, the work completed

so far, the products of that work, and their potential impact.

We end with a description of and an invitation to join the

Novo-G# Forum, the project users group.

II. CONTEXT

A. Motivation and project overview

Together with theory and experiment, computer simulation

now constitutes the third pillar of scientific inquiry, enabling

researchers to build and test models of complex phenomena

that either cannot be replicated or would be prohibitively

expensive to be replicated in the laboratory. Applications

range from the practical, such as designing more efficient

aircraft and effective drugs, to basic research in understanding

the molecular basis of diseases such as Alzheimer’s. Yet

computing capability is currently only a small fraction of

what is needed: e.g., detailed biological simulations are limited

to small numbers of macro-molecules; additional factors of

millions are needed to simulate cells and far more than that

for larger structures.

Three fundamental issues limiting performance are compu-

tational efficiency, power density, and communication latency.

All of these issues are being addressed through increased het-

erogeneity, but the last in particular by integrating communi-

cation into the accelerator. This integration enables direct and

programmable communication among compute components.

Direct links enable the bypassing of CPU, network interface,

and even device memory. Programmable communication en-

ables data transfers to proceed with high efficiency even under

substantial loads.

The Novo-G# infrastructure consists of the physical system

and hardware, but also software and configurations, existing

and under development, to enhance both general usability and

the enabled research projects. Another aspect of this infrastruc-

ture, as with the Novo-G, is the community of collaborators

(the Novo-G# forum) who are contributing applications, tools,

evaluation, and feedback.

The end-goal of this project is to advance the capabilities

of scientific computing. The nearer-term goal over the next

few years is to provide a system testbed for transformative

research in a variety of areas in Computer Science and Engi-

neering including programmable network components, proces-

sor/network interfaces especially for accelerators, FPGA-based

systems, applications in reconfigurable computing, architec-

ture of clusters with direct and programmable communication,

and libraries and tools to support such clusters.

B. Previous and current work

As of 2016 we are in an era where large FPGA clusters

are not yet commonplace—outside niche areas such as circuit

simulation, high-frequency trading, and security—but have

been well-studied with perhaps dozens of examples.

The following is a by-no-means exhaustive list; we have

somewhat arbitrarily begun this survey from 2004. An early

FPGA cluster with 96 FPGAs was the Heterogeneous HPC

computer (HHPC) at the Air Force Research Laboratory/ Infor-

mation Directorate (AFRL/ID) Distributed Center [1]. Large

research systems were also built at the University of Edinburgh

(Maxwell) [2], UNCC by the Sass Group (RCC) [3], and

Imperial College (Cube) [4] and (AXEL) [5]. COPACABANA

is a large cluster of FPGAs built and commercialized for

cryptanalysis [6]. The RAMP series of projects used FPGA

clusters, e.g., for circuit simulation [7]. IBM has also been

using FPGA clusters for circuit simulation [8]. Compared to

the above, Novo-G# uses high-end Stratix V FPGAs and a 3D

interconnect that can provide an aggregate bandwidth of 240

Gbps to and from each accelerator. Furthermore, we aim to

upgrade Novo-G# in the near future with a new generation of

FPGAs that will also feature hardware floating-point units.

Some FPGA cluster projects have had an emphasis on

exploring issues with direct FPGA-FPGA communication,

including RCC [3], and by a group at UCSD [9]. Blue-

hive is an FPGA cluster with direct communication built

for modeling ensembles of neurons [10]. The Grape series

of ASIC- and FPGA-based clusters has targeted N-Body

and Molecular Dynamics most recently with the MDGrape-

4 [11]. Other projects have investigated issues in FPGA-

based communication including work at Toronto (TMD-MPI)

[12] and Los Alamos (PetaFlops Router) [13]. In general,

the use of FPGA in commercial routers is well-known [14]

with Arista recently giving access to the internal FPGA [15].

NetFPGA is an educational platform for Gigabit switching and

routing [16]. Novo-G# shares many of the advantages of these

systems, but is also designed to be flexible at all levels of the

communication and application stacks. With Novo-G# we aim

to explore existing communication IP, network architectures,

and application-aware communication protocols, therefore we

have designed the system to be as reconfigurable as possible.

More recently, the Catapult system [17], deployed in their

Cloud by Microsoft, encompasses 1632 servers with one mid-

sized FPGA per server. FPGAs are interconnected directly

through their transceivers in 6x8 tori. Catapult has been

demonstrated to be cost-effective in a non-traditional appli-

cation for FPGAs, page ranking, and also for security and

deep learning. Extensive work was done to demonstrate not

only performance, but holistic cost-effectiveness: connectivity,

resilience, form factor, power, and cooling. Being an experi-

mental system, Novo-G# is better suited for exploring cluster

architecture as it is not wedded to any particular application

or system integration.

As a major goal of the Novo-G# project is integrated

communication and computation, we very briefly mention

some of the prior work in that area. Certainly prior to the

microprocessor, especially in the SIMD arrays of the 1980s,

there was little distinction between the two. Dally’s J-Machine

(and its successors) was premised on communication latency

of just a few cycles [18]. Physicists have long been building

such systems for QCD, including the QCDOC [19], which

was the basis of the first BlueGene [20]. Anton (now Anton

2) integrates communication and computation for Molecular

Dynamics [21].

III. SYSTEM

A. Background and overview

Novo-G [22], [23] began in 2009 as an effort to create a

research cluster using high-density FPGA boards to accelerate

scientific applications. The original machine began with a

head node and 24 Linux servers, each featuring a quad-FPGA

board from Gidel [24], for a total of 96 Altera Stratix III

E260 FPGAs. Over subsequent years, the machine has been

upgraded annually and now stands at 192 Stratix III E260

FPGAs in 24 servers, 192 Stratix IV E530s in 12 servers,

64 Stratix V GSMD8s in 16 servers, and a second set of 64

Stratix V GSMD8s in 16 servers under construction. Each

server features dual Intel Xeon multicore processors. Server

connectivity is provided by gigabit Ethernet and DDR/QDR

InfiniBand within the system, and a 10 Gb/s connection to the

Florida LambdaRail.

At CHREC (NSF Center for High-Performance Recon-

figurable Computing), Novo-G has been used for a vari-

ety of application acceleration projects from the domains

of bioinformatics [25], image processing [26], and financial

computing [27]. The common factor among the above ap-

plications is that they are embarrassingly parallel and can

therefore scale almost linearly with the available hardware

resources. A greater challenge is accelerating communication-

intensive applications like Molecular Dynamics. Traditionally,

such communication makes use of centralized networks such

as Ethernet or InfiniBand, and entails multiple interactions

between the FPGA and the host. The increased latency, and

communication bottleckneck in such applications emphasize

the need for a better solution.

The Novo-G# system [28], which has been under devel-

opment for the last two years, features high-density Stratix

V FPGAs connected by a 3D torus network that connects

the FPGAs, enabling direct, low latency, and high-speed

communication among the FPGAs. The hardware is supported

by an easy-to-use, but efficient, protocol stack that packetizes,

routes and buffers data, allowing coomunication-intensive,

multi-FPGA applications to be developed rapidly. We have

also recently added support for OpenCL-based, multi-FPGA

apps that can also utilize the inter-FPGA communicaiton links.

B. Architecture

The Novo-G# system is part of our effort to create an FPGA

cluster that can handle communication-intensive applications.

In keeping with that theme, the system features ProceV boards,

which are PCIe-based accelerator boards from Gidel populated

with Stratix V GSMD8 FPGAs from Altera. The GS-series

devices are optimized for high performance, high bandwidth

applications with support for up to 36 on-chip transceivers that

can operate up to 12.5 Gbaud. Each FPGA is connected to

two 8GB DDR3 SODIMM and two 36-Mbit SRAM memory

banks and communicates with the host CPU via PCIe v3. The

FPGAs are housed in a 4U chassis with two Xeon E5-2620V2

(Ivy Bridge) processors per server. The servers themselves are

interconnected via Gigabit Ethernet and QDR InfiniBand.

Our FPGA platform vendor Gidel has provided invaluable

assistance by designing a custom daughterboard that allows

external access to 24 high-speed transceivers. The transceivers

are grouped into six bidirectional links, each link consisting of

four parallel channels, enabling the construction of a 3D torus

of arbitrary size. Physical connectivity between the boards is

provided by a COTS CXP-3QSFP+ split cable that enables

each FPGA to be connected in six different directions. Initial

deployment of the Novo-G# system was completed in the

second half of 2014 with 32 Stratix V boards housed in eight

chassis and supporting up to a 2×4×4 torus, and an upgrade

to 64 nodes (4× 4× 4 torus) was completed in August 2015.

C. Protocol stack

A part of the hardware resources on each FPGA is used to

implement a network stack that services the 3D torus network.

The network stack is responsible for accepting data from the

application logic, packetizing the data, routing packets across

the 3D torus network by the shortest route, and delivering the

data to the application logic at its destination. These functions

represent a subset of the services provided by the lowest three

layers of the OSI reference model (i.e. physical, data link, and

network layers).

Figure 1 depicts our initial implementation of the 3D

torus network stack on Novo-G#, and the network services

associated with each component. The IP cores used for the

transceiver interfaces are primarily supplied by Altera and

interface directly with hardware resources attached to each

transceiver channel. The remaining blocks are implemented

as RTL code and therefore do comprise a resource overhead

for each FPGA. Data generated by the application logic is

Ext. Rx

Ext. Rx

Ext. Rx

Negative
Router

Ext. Tx

Ext. Tx

Ext. Tx

Int.
Tx.

Int.
Rx.

App logic

Ext. Rx

Ext. Rx

Ext. Rx

Ext. Tx

Ext. Tx

Ext. Tx

-X

-Y

-Z

+X

+Y

+Z

-X

-Y

-Z

+X

+Y

+Z

Positive
Router

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

Trans-
ceiver

router_clk
domain

xcvr_clk
domain

xcvr_clk
domain

256

256

256

256

10
 G

bp
s

10
 G

bp
s

Internal
Router

app_clk
domain

Network layer
Dimension-order routing

Source data buffering

Data-link layer
Physical addressing

Packet switching
Data framing

Physical layer
Clock recovery

Line coding
Multi-lane sync.

Ext. Rx.: External Receiver
Int. Rx.: Internal Receiver

Ext. Tx.: External Transmitter
Int. Tx.: Internal Transmitter Se

rv
ic

es
Pr

ov
id

ed

FPGA

Fig. 1. Novo-G# node architecture detailing the 3D torus network stack.
Services provided to the user through RTL or third-party IP are also shown.

packetized by the internal receiver block and stored in a

FIFO. Similarly, the external receiver blocks accept packets or

streaming data from the transceiver IP. One or more routers

are used to route packets from the receiver to the transmitter

blocks, which transmit the data further along the network or

to the application at the destination node.

Traditionally, the router block is the bottleneck in such

network architectures and much research has been done on

optimizing on-chip network architectures. In our previous

work on Novo-G# performance prediction [29] we observed

that the internal bandwidth provided and latency incurred by

the network architecture has the greatest effect on execution

time. Our approach uses a centralized single-level router

network that can be customized based on hardware resources

available and expected utilization of the 3D torus network.

Figure 1 shows one such configuration with three routers, each

servicing a different subset of output ports. In this manner

more routers can be instantiated (up to the number of output

ports) to increase the internal bandwidth available without

increasing latency, but at the expense of hardware resources.

Further optimization of the router and network design will be

explored in future work.

The transceiver blocks in Figure 1 are low-level IP blocks

provided by Altera that instantiate various portions of the

hardwired transceiver channel. In our aim to make Novo-G#

as flexible and reconfigurable as possible, we provide support

for the use of the Low Latency, Custom, and Interlaken PHYs

from Altera, which can be substituted without affecting the

rest of the network architecture. The Low Latency PHY IP

provides the lowest inter-FPGA latency, but has no word

alignment or DC balancing features, making it difficult to

use without additional hardware. Conversely, the Interlaken

PHY IP does automatic word alignment, 64b/67b encoding,

scrambling, and multi-lane synchronization, but the inter-

FPGA latency is the highest, and varies due to the addition of

framing words into the datastream. The Custom PHY provides

word alignment through 8b/10b encoding and considerably

lower inter-FPGA latency than the Interlaken PHY, but the

25% overhead of 8b/10b encoding only makes this PHY useful

for small packets.

D. Alternative routing support

We now describe another of our routing mechanisms. Our

goal is to create general infrastructure that supports a variety

of routing modalities. For example, for a specific application,

its decomposition and communication is often known a priori
(see, e.g., [30]). Therefore the routes and timing of each packet

could be optimized prior to execution, i.e., statically or offline.

We adopt table-based routing to support offline routing [31],

[32] including collectives [33]; we show this and the internals

of the switches.

1) Routing Mechanism: Table-based routing can be imple-

mented in two ways: source routing and node-table routing

[34]. Since source routing needs to carry the table indexes

along with the packets, which consumes extra bandwidth, we

adopt node-table routing. The routing table preserves a table

entry for each incoming packet (see Figure 2).

Processing
unit Exit

X+
1

Index
2

Idx:1 Payload
Multicast Table on

Local Port

Node A

Exit
Y+
X+
Y+

0
1
2

Index
7
3
2

Node B

Payload

Exit
-X
+X

LOC

0
1
2

Index
4
1
0

Index: 2 Payload

Processing
unit

Index: 0 Payload

Exit
X-

Z+

0

2

Index
3

1

Node C Node D

Multicast

Type
Unicast

Y+ 1Unicast
Idx:2

Unicast Table on X-
Port

Unicast

Type
Unicast
Unicast
Unicast

UnicastPayloadIdx:1Unicast

Unicast Table on Y-
Port

Unicast Table on Local
Port

Type
Unicast
Unicast1 LOC 0
Unicast

Processing
unit

Type
Unicast
Unicast
Unicast

Index: 0 Payload

Fig. 2. The table-based routing scheme

In this example, node A dispatches a multicast packet that

carries three fields: packet type, table index, and payload.

The router routes the packet to either a unicast, multicast, or

reduction table based on the packet type. In the corresponding

table, multicast in this example, the router looks up the table

entry based on the index field in the packet. The multicast

table entry has slots for each of the six possible fan outs. In

this example, the multicast packet has two fan outs. For the

first fan out, the table entry shows that it is a unicast packet,

that it should be routed to the X+ port, and that its table index

for next node is 2. The router then generates a unicast type

packet and routes it to the X+ port, after which it goes to X-

port on node B. On node B, since it is a unicast packet, the

router looks up in the unicast rather than the multicast table.

The table entry shows that this packet should be routed to the

Y+ port of node B. In the same manner, the router on the

Node B sends it to the Y- port of Node D, at which point it is

ejected. Similarly for the second fan out, the packet is routed

to the Y- port of Node C, where it is ejected.

Table-based routing enables implementation of any oblivi-

ous routing scheme by simply entering values in the routing

table. Examples include simple patterns, such as dimension-

order routing, and complex patterns, such as certain optimal

routes that achieve congestion-free communication even under

heavy loads [35].
2) Switch Architecture: Our switch architecture is based on

the classic four-stage pipelined Virtual-Channel switch [36].

By adding support for multicast and reduction, the four-stage

pipeline is extended to seven-stage pipeline. Its architecture is

illustrated in Figure 3

Input
Handler

Input
Handler

Input
Handler

Local
Processing

Unit

+_

Priority-
based

Comparison

…
…

Packet Assembler

…
…

Routing table

Output
handler

Output
handler

Output
handler

`

…...
…...

…... …...

…...

…
...

…
...

Input
Handler

Output
handler

+x -x +z -z -y +y

+x -x +z -z -y +y

+_

+_+_

+_

+_

7 7 7

7

Mulitcast
unit 7

7

7

If multicast
packet

Input
buffer

Mux

Reduction
unit

If reduction
packet

Mux

(a)

(b) (c)

VC VC VC VC VC VC VC

Fig. 3. Switch architecture: (a) The switch is connected by seven input
handlers and seven output handlers. (b) The input handler has four stages:
input buffer consumption, routing table lookup, multicast table lookup, and
virtual channel allocation. (c) The output handler has three stages: switch
allocation, reduction table lookup, and reduction table write-back.

In the classic switch, there are four stages: routing compu-

tation (RC), virtual channel allocation (VA), switch allocation

(SA), and switch traversal (ST). The first change is that we

divide RC into three stages: input buffer consumption, routing

table lookup, and multicast table lookup. When a packet is

injected into the switch input buffer, we spend one cycle to

fetch it from the buffer. By examining its header, we get its

routing table index so in the routing table lookup stage, we find

its routing table entry. We then know whether it is a multicast

packet or not. If it is, then in the next stage we look up its

multicast table entry, based on the index from the routing table.

Our switch also contains a VA stage, in which we allocate VCs

to all the multicast children generated in the previous stage.

If VA fails, then the router generates backpressure to stall

the pipeline. In the SA stage, there might be multiple packets

(up to 7) requesting the same output port. The packet with

the highest priority wins the contention. The priority field is

attached to each packet at the routing table lookup stage; our

priority scheme is typically farthest-first.

Another change from the classic switch is that we divide

ST into two stages: reduction table lookup and reduction

table write-back. If the packet is not a reduction packet, it

spends two cycles going through the two stages and leaving

the switch. If the packet is a reduction packet, it is routed

to the reduction unit, which contains a reduction table. We

allocate one entry in the table for each reduction operation.

In the reduction table lookup stage, the reduction packet finds

its corresponding entry. It then checks whether the expected

number of downstream packets has arrived or not. If not, then

the reduction operation is executed, and the reduction table

entry is updated. If all of the expected downstream packets

have arrived, then the reduction unit dispatches a new packet

and injects it into the upstream link.

IV. SAMPLE APPLICATION

The 3D FFT is a core application across diverse scientific

and engineering domains. Of particular interest to the Novo-

G# project, the 3D FFT can be on the critical path for long

timescale Molecular Dynamics (LTMD) simulations on large

clusters [37]. Since MD has previously been shown to be

highly amenable to acceleration with single FPGAs [38]–[40],

demonstrating the efficiency of the 3D FFT on FPGA-centric

clusters is a critical step in implementing LTMD on the Novo-

G#. Due to its importance to our respective research programs,

both BU [31], [32] and UF groups [29] have implemented

solutions; both the approaches and results are similar.

The difficulty with accelerating the relatively small 3D FFTs

used in LTMD, typically 323 to 1283, is scalability. Few pub-

lished results show much speed-up beyond a small number of

processors; one exception is the ASIC-based Anton processor

family, which was designed with this application in mind [37].

We show that the Novo-G# can perform comparably to Anton,

and an order of magnitude better than the best published results

for non-ASIC-based clusters.

Our previous work proposed a generalized mapping method

for the 3D FFT of an arbitrary size onto FPGA clusters

with arbitrary numbers of nodes. By knowing the routing

information, it is possible to schedule each packet to minimize

the congestion in the network. In the BU version, we have so

far tested on a subset of nodes (2×2) and with a cycle-accurate

simulator (for large clusters). The simulation results, and the

comparisons with other technologies, are shown in Table I.

The results demonstrate that even with conservative simulation

settings (see [31], [32] for details), the Novo-G# 3D FFT is

able to achieve the same order of magnitude latency as the

ASIC implementation [37].

In the UF version, the IP cores are fed data by a Nios II

soft-core processor. The processor is also connected to the

internal transmitter and receiver nodes, and is responsible

for aggregating FFT inputs coming in from other FPGAs,

dispatching FFT data to available IP blocks, and consolidating

1D FFT outputs into packets for transmission to other FPGAs.

The design has been implemented on 8 FPGAs connected in a

2×2×2 network configuration and the performance measured

and validated using the UF Novo-G# performance model. On

scaling up the system size to 64 nodes, the model predicts

a speedup of 6-19 times that of a BlueGene/Q system of

the same size, for FFT sizes ranging from 32 × 32 × 32 to

128× 128× 128 elements.

V. WORK IN PROGRESS

In this Section we give an overview of a selection of the

many projects currently under way under the direction of the

authors and collaborators.

A. OpenCL

The push for better HLS tools for FPGAs in the past

few years indicates that programmability and usability have

become important issues for the RC community to address.

Altera OpenCL (AOCL) has presented an end-to-end solution

that tries to address both issues. This tool allows GPU-based

OpenCL code to be readily ported to FPGAs, while also

simplifying the FPGA design process and reducing turnaround

time. While Altera OpenCL currently only provides support

for single-FPGA design, we are in the process to extending

it to support our 3D torus network, and thereby enable

productive use of the Novo-G# network. This extension would

also allow Novo-G# users to leverage the existing OpenCL

framework and tools to verify, debug and profile their designs.

By extending the existing capabilities of AOCL on the

ProceV boards, we have created a multi-FPGA OpenCL

framework that allows AOCL kernels to communicate with

each other within the OpenCL model. We have also established

and tested an MPI-based framework to run AOCL programs

on multiple OpenCL devices. Finally, we have benchmarked

and evaluated the framework through three varied case studies

and devised the most effective manner in which to make use

of the channels efficiently, achieving a measured data rate of

24 Gbps on every inter-FPGA channel.

There are a number of improvements that can be made to

this framework in the future. Adding the ability to tune the

transceiver parameters at runtime could potentially allow the

inter-FPGA channels to operate closer to the 40 Gbps line rate.

Additionally, integrating the network-layer router from [28]

would allow for transparent packet routing within the 3D torus

network. Both of these improvements, however, are unlikely

to fit within the established AOCL model or the OpenCL 2.0

specification and would therefore require significant changes

to the AOCL hardware and runtime to support them.

B. Middleware integration

Another approach is to provide middleware support for

FPGA developers. Again, FPGAs offer attractive power con-

sumption, flexibility, and performance compared with CPUs

and GPUs and much lower cost than ASICs. But programma-

bility and portability are still obstacles: it is often challenging

TABLE I
RESULTS FOR VARIOUS TECHNOLOGIES AND PROBLEM SIZES

Implementation Technology Perf. in μs

Model Parallelism Date Code 163 323 643

2005 era technology
Blue Gene/L 512 or 4096 04/Q4 FFTW NA 100 200

2008 era technology
Intel Nehalem 4 cores 09/Q1 MKL 38 116 983
NVIDIA Tesla 240 SPs 08/Q3 CUFFT 54 66 257
Altera StratixIII single FPGA 08/Q2 report 4.5 NA NA
DE Shaw Anton 512 PEs 08/Q3 report NA 4 13

2012 era technology
Intel Sandy Bridge 8 cores 12/Q1 MKL 22 55 288
NVIDIA Kepler 2688 SPXs 12/Q4 CUFFT 25 29 92
Xilinx Virtex-7 single FPGA 12/Q2 report 3.6 21 216
Altera StratixV 64 or 512 FPGAs 12/Q3 report 1.63 2.24 6.72

Anton is fixed point, other results are for single-precision floating point. All times are in microseconds. Release dates are from corporate announcements
of availability in quantity. Stratix V times are our simulation results calibrated with our prototype cluster. Anton results are from [37]. Blue Gene/L results
are from [41]. All others are from our previous work [32], [42].

to get a complex application working on a single FPGA, let

alone a large FPGA cluster. The LEAP environment from

Intel [43] is one of several active projects that builds an

FPGA OS that allows users more focus on algorithm level

while retaining full flexibility in the design. LEAP builds on

the idea of latency-insensitive channels (LI) as the primary

communication primitive to abstract the communication inside

one FPGA and among multiple FPGAs.

Current work by one of the authors (Sheng) has the goal of

providing a similar interface that hides the low-level details in

inter-FPGA communication, but includes flexibility in modes

of synchronization, timing, and handshaking. The link should

be as transparent as a UNIX-style pipe to users. Our current

progress, described in Section 3, has already facilitated part of

this goal. The difference is that the latency is not insensitive;

for HPC applications, we do care the latency and so we would

like the latency to be manageable by users. One solution is to

provide several communication link abstractions that provide

different latencies and QoS. For example, a heavyweight

abstraction ensures lowest error probability, but with longest

latency, while a lightweight abstraction provides the lowest la-

tency but the QoS is not 100% reliable. In the latter case, some

error correction at a higher level would be necessary. Another

project focuses on portability by integrating the higher level

routing mechanism (e.g., the global communication described

above) with LEAP or other layer that facilitates abstract pipes.

VI. OUTREACH: THE NOVO-G# FORUM

Given recent advances, such as the introduction of FPGAs

into the cloud [17], we are entering a time where clusters such

as Novo-G# will be ubiquitous. We have organized the Novo-

G# Forum based on the highly successful Novo-G Forum

model, which had over 20 members across four continents,

as a mechanism to foster participation and collaboration.

The Novo-G# Forum is comprised of an international group

of academic researchers and technology providers working

collaboratively on applications and tools to establish and show-

case advantages of reconfigurable supercomputing at scale

with unprecedented levels of performance, productivity, and

sustainability.

Faculty and students in each academic research team can

contribute innovative applications and/or tools research on

the Novo-G# machine based on their unique interests. This

commitment will consist of four steps. 1) One or more

FPGA boards of the type in Novo-G# will be procured

for local research use via help from Altera (donated or

discounted devices) and Gidel (discounted boards). 2) One

or more promising applications and/or tools activities will

be completed and optimized for maximum speedup (versus

a common CPU reference) on the local board(s). 3) The

preceding achievements will then be moved and scaled onto

multiple nodes in the Novo-G# machine. 4) Finally, applica-

tions successfully optimized for Novo-G# will be measured

(in terms of performance, productivity, and sustainability) and

compared versus conventional supercomputers to showcase

overall achievement. Each technology provider will provide

equipment and/tools (as donation or at discounted cost) to the

academic research teams for this effort, including a reasonable

level of technical support for their products, and directly

participate in forum activities and discussions as they choose.

REFERENCES

[1] K. Tomko, “Feasibility of FPGA co-processor acceleration of FDTD
codes,” High Performance Computing Modernization Program, Tech.
Rep. GSA Contract No. DAAD05-01-C-0033, 2004.

[2] R. Baxter, et al., “Maxwell - A 64 FPGA Supercomputer,” in Second
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2007,
pp. 287–294.

[3] R. Sass, et al., “Reconfigurable computing cluster (RCC) project: Inves-
tigating the feasibility of FPGA-based petascale computing,” in Proc.
IEEE Symp. on Field Programmable Custom Computing Machines,
2007, pp. 127–138.

[4] O. Mencer, et al., “Cube: A 512-FPGA Cluster,” in Proc. Southern
Programmable Logic Conference, 2009.

[5] K. Tsoi and W. Luk, “Axel: A Heterogeneous Cluster with FPGAs and
GPUs,” in Proc. ACM Symp. on Field Programmable Gate Arrays, 2010.

[6] T. Guneysu, T. Kasper, M. Novotny, C. Paar, and A. Rupp, “Cryptanal-
ysis with COPACABANA,” IEEE Trans. on Computers, vol. 57, no. 11,
2008.

[7] J. Wawrzynek and K. Asanovic, “Field Programmable Gate Array
(FPGA) Emulation for Computer Architecture,” Air Force Research
Laboratory, Tech. Rep. AFRL-RY-WP-TR-2009-1281, 2009.

[8] M. Kapur, “FPGA-based acceleration platform for chip verification,”
Talk at RAMP Retreat, August 2008.

[9] T. Bunker and S. Swanson, “Latency-Optimized Networks for Clus-
tering FPGAs,” in Proc. IEEE Symp. on Field Programmable Custom
Computing Machines, 2013.

[10] S. Moore, P. Fox, A. Markettos, and A. Majumdar, “Bluehive–A Field
Programmable Custom Computing Machine for Extreme-Scale Real-
Time Neural Network Simulation,” in Proc. IEEE Symp. on Field
Programmable Custom Computing Machines, 2012.

[11] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“MDGRAPE-4: a special purpose computer system for molecular dy-
namics simulations,” Philosophical Transactions of the Royal Society A,
vol. 372, no. 20130387, 2014.

[12] M. Saldana, A. Patel, C. Madill, D. Nunes, D. Wang, P. Chow, R. Wittig,
H. Styles, and A. Putnam, “MPI as a Programming Model for High-
Performance Reconfigurable Computers,” ACM Trans. on Reconfig-
urable Technology and Systems, vol. 3, no. 4, pp. 1–28, 2010.

[13] Z. Baker, T. Bhattacharya, P. Graham, R. Gupta, J. Inman, A. Klein,
G. Kunde, A. McPherson, M. Stettler, and J. Tripp, “The PetaFlops
Router: Harnessing FPGAs and Accelerators for High Performance
Computing,” in Proc. High Performance Embedded Computing, 2009.

[14] J. Bolaria and J. Byrne, A Guide to FPGAs for Communications. The
Linley Group, 2009.

[15] Arista Networks, Inc., http://www.aristanetworks.com/
en/products/7100series/7124fx/, accessed 10/2013.

[16] J. Lockwood, et al., “NetFPGA - An Open Platform for Gigabit-
rate Network Switching and Routing,” in Proc. IEEE Int. Conf. on
Microelectronic System Education, 2007.

[17] A. Putnam, et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. Int. Symp. on Computer Architecture, 2014,
pp. 13–24.

[18] W. J. Dally and et al., “The Message-Driven Processor: A multicomputer
processing node with efficient mechanisms,” IEEE Micro, vol. 12, no. 2,
pp. 194–205, 1994.

[19] Boyle, P.A., et al., “Status of the QCDOC project,” in Proc. Lattice
2001, 2001.

[20] D. Chen, N. Eisley, and P. Heidelberger, “The IBM Blue Gene/Q Inter-
connection Network and Message Unit,” in Proc. ACM/IEEE Int. Conf.
for High Performance Computing, Networking, Storage and Analysis –
Supercomputing, 2011.

[21] D.E. Shaw et al., “Anton 2: raising the bar for performance and
programmability in a special-purpose molecular dynamics supercom-
puter,” in SC ’14: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2014, pp. 41–53.

[22] A. George, “Novo-G Overview,” Presentation at CHREC: NSF Cen-
ter for High-Performance Reconfigurable Computing, 16 June 2010,
http://www.chrec.org/ george/Novo-G.pdf, 2010.

[23] A. George, H. Lam, and G. Stitt, “Novo-G: At the Forefront of Scalable
Reconfigurable Computing,” Computing in Science and Engineering,
vol. 13, no. 1, 2011.

[24] “Gidel Products,” retrieved on: 2015-02-25. [Online]. Available:
http://www.gidel.com/Products.htm

[25] B. C. Lam, C. Pascoe, S. Schaecher, H. Lam, and A. D. George, “BSW:
FPGA-accelerated BLAST-Wrapped Smith-Waterman aligner,” in 2013
International Conference on Reconfigurable Computing and FPGAs
(ReConFig). IEEE, Dec. 2013, pp. 1–7. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6732273

[26] S. Craciun, G. Wang, A. D. George, H. Lam, and J. C.
Principe, “A scalable RC architecture for mean-shift clustering,” in
2013 IEEE 24th International Conference on Application-Specific
Systems, Architectures and Processors. IEEE, Jun. 2013, pp.
370–374. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6567603

[27] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, “FPGA-Based
Reconfigurable Computing for Pricing Multi-asset Barrier Options,” in
2012 Symposium on Application Accelerators in High Performance
Computing. IEEE, Jul. 2012, pp. 34–43. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6319189

[28] A. G. Lawande, A. D. George, and H. Lam, “Novo-g#: a
multidimensional torus-based reconfigurable cluster for molecular
dynamics,” Concurrency and Computation: Practice and Experience,

vol. 28, no. 8, pp. 2374–2393, 2016, cpe.3565. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3565

[29] A. Lawande, H. Yang, A. George, and H. Lam, “Simulative Analysis of
a Multidimensional Torus-based Reconfigurable Cluster for Molecular
Dynamics,” in Proceedings of the International Conference on Parallel
Processing Workshops (ICPP) 2014. ACM Press, 2014.

[30] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural
requirements of parallel scientific applications with explicit communi-
cation,” in Proc. Int. Symp. on Computer Architecture, 1993, pp. 2–13.

[31] J. Sheng, B. Humphries, H. Zhang, and M. Herbordt, “Design of
3D FFTs with FPGA Clusters,” in IEEE High Performance Extreme
Computing Conference, 2014.

[32] J. Sheng, C. Yang, and M. Herbordt, “Towards Low-Latency Commu-
nication on FPGA Clusters with 3D FFT Case Study,” in Proc. Highly
Efficient and Reconfigurable Technologies, 2015.

[33] ——, “Collective Communication on FPGA Clusters with Static
Scheduling,” in Proc. Highly Efficient and Reconfigurable Technologies,
2016.

[34] M. Kinsy, M. Cho, K. Shim, and M. Lis, “Optimal and Heuristic
Application-Aware Oblivious Routing,” IEEE Trans. Computers, vol. 62,
no. 1, pp. 59–73, 2013.

[35] M. Herbordt and P. Swarztrauber, “Towards scalable multicomputer
communication through offline routing,” Department of Electrical and
Computer Engineering, Boston University, Tech. Rep. TR2003-01, 2003.

[36] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[37] C. Young, J. Bank, R. Dror, J. Grossman, J. Salmon, and D. Shaw,
“A 32x32x32, spatially distributed 3D FFT in four microseconds on
Anton,” in SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1–11.

[38] M. Chiu and M. Herbordt, “Molecular dynamics simulations on high
performance reconfigurable computing systems,” ACM Trans. Reconfig-
urable Tech. and Sys., vol. 3, no. 4, pp. 1–37, 2010.

[39] M. Chiu, M. Khan, and M. Herbordt, “Efficient calculation of pairwise
nonbonded forces,” in Proc. IEEE Symp. on Field Programmable Custom
Computing Machines, 2011.

[40] A. Sanaullah, A. Khoshparvar, and M. Herbordt, “FPGA-Accelerated
Particle-Grid Mapping,” in Proc. IEEE Symp. on Field Programmable
Custom Computing Machines, 2016.

[41] M. Eleftheriou, B. Fitch, A. Rayshubskiy, T. J. C. Ward, and R. Ger-
main, “Performance measurements of the 3D FFT on the Blue Gene/L
supercomputer,” in Proceedings of Euro-Par 2005 Parallel Processing,
2005, pp. 795–803.

[42] B. Humphries, H. Zhang, J. Sheng, R. Landaverde, and M. Herbordt,
“3D FFT on a Single FPGA,” in Proc. IEEE Symp. on Field Pro-
grammable Custom Computing Machines, 2014.

[43] K. Fleming, Y. Jung, M. Adler, and J. Emer, “The LEAP FPGA
operating system,” in Proc. IEEE Conf. on Field Programmable Logic
and Applications, 2014, pp. 1–8.

