RDMS: A Hardware Task Scheduling Algorithm for Reconfigurable Computing

Miaoqing Huang, Harald Simmler, Olivier Serres, and Tarek El-Ghazawi
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering, The George Washington University
{mqhuang,serres} @ gwmail. gwu.edu, {simmlertarek}@gwu.edu

Abstract

Reconfigurable Computers (RC) can provide significant
performance improvement for domain applications. How-
ever, wide acceptance of today’s RCs among domain scien-
tist is hindered by the complexity of design tools and the re-
quired hardware design experience. Recent developments in
HW/SW co-design methodologies for these systems provide
the ease of use, but they are not comparable in performance
to manual co-design. This paper aims at improving the
overall performance of hardware tasks assigned to FPGA
devices by minimizing both the communication overhead
and configuration overhead, which are introduced by us-
ing FPGA devices. The proposed Reduced Data Movement
Scheduling (RDMS) algorithm takes data dependency among
tasks, hardware task resource utilization, and inter-task
communication into account during the scheduling process
and adopts a dynamic programming approach to reduce the
communication between (1P and FPGA co-processor and the
number of FPGA configurations to a minimum. Compared
to two other approaches that consider data dependency
and hardware resource utilization only, RDMS algorithm
can reduce inter-configuration communication time by 11%
and 44% respectively based on simulation using randomly
generated data flow graphs. The implementation of RDMS
on a real-life application, N-body simulation, verifies the
efficiency of RDMS algorithm against other approaches.

1. Introduction

High-performance reconfigurable computers (HPRCs) are
traditional HPCs extended with co-processors based on re-
configurable hardware like FPGAs. These enhanced systems
are capable of providing significant performance improve-
ment for scientific and engineering applications. Well known
HPRC systems like the SGI RC100, the SRC-6, or the Cray
XD1 use a high-speed interconnect, shown in Figure 1, to
connect the general-purpose pP to the co-processor.

Early attempts [1], [2], [3], [4], [5], [6], [7], [8] to improve
the efficiency of FPGA co-processors used task placement
algorithms in combination with partial run-time reconfigura-
tion or dynamic reconfiguration to reduce the configuration

This work was supported in part by the I/UCRC Program of the National
Science Foundation under Grant No. IIP-0706352.

Vendor-Specific Service Logic Local Memory
Bank n-1

R

Host Micro- erconned User Logic Local Memory
Memory processor (1P) Bank 1

Local Memory

DMA FPGA Device Bank 0

Figure 1. The General Architecture of A High-
Performance Reconfigurable Computer

overhead of the FPGA system. Most of these works map
individual SW functions onto the FPGA to accelerate the
whole application; however, the optimization strategies for
task placement did not consider data communication or data
dependencies among hardware tasks.

We believe that an optimized hardware task scheduling
algorithm has to take task dependencies, data communica-
tion, task resource utilization and system parameters into
account to fully exploit the performance of an HPRC system.
This paper presents an automated hardware task scheduling
algorithm that is able to map simple and advanced data flow
graphs (DFG) in an optimized way onto HPRC systems.
More precisely, it is able to split a DFG onto multiple
FPGA configurations optimizing the overall execution of the
user application after the HW/SW partition has been done.
The optimization is achieved by minimizing the amount of
FPGA configurations and minimizing the inter-configuration
communication overhead between the FPGA device and
the pP using a data dependency analysis of the given
DFG. Techniques like pipeline chaining of hardware tasks
within the same FPGA configuration are used to improve
the hardware processing concurrency. The described opti-
mization is based on the facts that (1) we do not use partial
reconfiguration, (2) we treat tasks in the DFG as black boxes,
and (3) the DFG is directed and acyclic, i.e., a DAG.

The remaining text is organized as follows. Section 2
introduces the related work. Section 3 presents the hard-
ware task scheduling algorithm. Section 4 focuses on the
implementation and results. Finally, Section 5 summaries
this work.

2. Related Work

Early work on hardware task placement for reconfigurable
hardware focused on reducing configuration overhead and

therefore improving the efficiency of reconfigurable devices.
In [1], an offline 3D module placement approach for par-
tially reconfigurable devices was presented. Efficient data
structures and algorithms for fast online task placements
and simulation experiments for variants of first fit, best
fit and bottom left bin-packing algorithms are presented in
[2]. In [3], the fragmentation problem on partially reconfig-
urable FPGA devices was addressed. Task rearrangements
were performed by techniques denoted as local repacking
and ordered compaction. In [4], non-rectangular tasks were
explored such that a given fragmentation metric was min-
imized. Furthermore, a task’s shape may be changed in
order to facilitate task placement. In [5], a column-oriented
one-dimensional task placement problem was discussed.
Task relocations and transformations to reduce fragmen-
tation were proposed in [6] based on a proposed FPGA
architecture that supported efficient row-wise relocation.
In [7], three improved partitioning algorithms based on
[2] were presented. In [8], a fast algorithm for finding
empty rectangles in partially reconfigurable FPGA device
was presented. However, these algorithms only focused on
utilizing the FPGA device efficiently through optimal task
placement techniques and did not address the performance
optimization among tasks in a given application, which is
the main concern of the users of an HPRC system.

More recently HW/SW co-design algorithms for RC sys-
tems emerged bringing the ease of use urgently needed in the
RC domain. In [9], a HW/SW co-design model comprised of
a single P and an array of hardware processing elements
(PEs implemented on FPGAs) was presented. Small tasks
in a user program were dynamically assigned onto PEs.
However, even if a single PE could accommodate multiple
tasks, the tasks were executed in a sequential way. In
[10], an automatic HW/SW co-design approach on RCs
was proposed. The proposed ReCoS algorithm partitioned
a program into hardware tasks and software tasks and co-
scheduled the tasks on their respective PEs. Although the
ReCoS algorithm places multiple hardware tasks into the
same configuration, each task is treated as a stand-alone
hardware module. No data paths are defined between the
tasks even if they reside in the same configuration.

3. Reduced Data Movement Scheduling Algo-
rithm

3.1. Hardware Execution Model

Executing an existing DFG on an FPGA device requires
to configure the available array structure accordingly. Since
the available resources in the FPGA device is limited, an
existing DFG might have to be spread across multiple FPGA
configurations. In addition to the necessary FPGA configu-
ration time, input and output data have to be transferred
between the FPGA device and the pP. This includes the

Je————— processcycle ———————————————»|

FPGA Data HW Data Data FPGA
Configuration | Communication Processing Communication | Configuration

time >

Figure 2. The Basic Execution Model of Hardware
Tasks on FPGA Device

data that have to be transferred between subsequent FPGA
configurations as well. Figure 2 shows the basic execution
model of hardware tasks running on an FPGA co-processor.
After the device is configured and before hardware tasks
start their computation, raw data are transferred from the
1P to the FPGA device. After hardware tasks finish their
computation, the processed data are transferred back from
the FPGA device to the P before the next FPGA config-
uration is loaded into the device*. In general, this sequence
is defined as the process cycle containing three times: (1)
FPGA configuration time, (2) hardware processing time, and
(3) data communication time.

FPGA configuration and data communication times are
mostly system dependent and like on other co-processor
approaches necessary for the operation. They are treated as
pure overhead, because they have to be added to the hard-
ware execution time and influence the overall co-processor
system performance.

3.2. The Proposed Algorithm

As mentioned earlier, configuration time and data commu-
nication time are pure overhead for using RCs and therefore
they should be reduced to a minimum. Two strategies are
applied to achieve this objective.

(1) Execute as many tasks as possible in one FPGA config-
uration to minimize the amount of configurations. This
will reduce the configuration overhead as well as the
communication overhead between tasks.

(2) Group communicating tasks into the same configuration
to minimize the data communication time and to max-
imize the performance achieved through pipelining and
concurrent task execution.

In this section, we propose Reduced Data Movement
Scheduling (RDMS) algorithm, a heuristic algorithm to
produce a near-optimal scheduling solution with respect
to minimum data communication and minimum amount of
configurations. RDMS schedules the hardware tasks, given
as a directed acyclic data flow graph, into a sequence of
FPGA configurations'.

*. In most cases the data communication and data processing are over-
lapped due to the high throughput of the hardware design. We intentionally
distinguish these two times in this work for the sake of simplicity.

1. Hardware processing time is not considered in the objective function
since the communications and reconfigurable cost are greater than that time
in most cases.

HO: imaginary root node

Node weight, i..,
normalized hardware
resource utilization

Normalized node
configuration time

@)
Figure 3. (a) An Example DFG Consisting of 13 Nodes; (b) Scheduling Result of the Example DFG Using RDMS

We identified the scheduling task as a dependent knap-
sack problem, which is a special case of the knapsack
problem[11]. For the single-objective independent knapsack
problem, there exists an exact solution that can be computed
using a dynamic programming approach [12]. In the tradi-
tional knapsack problem, each object is associated with two
parameters, the weight and the profit. The weight can be
seen as a penalty that has to be paid for selecting an object
and the profit is a reward. The goal of the knapsack problem
is to maximize the profit subject to a maximum total weight.

In our task scheduling case, we have a dependent knap-
sack problem where we have to take care of the task
dependencies and make sure that all parent tasks have been
scheduled before scheduling the corresponding child task so
that internal data forwarding can become possible.

The objects in the task scheduling knapsack problem
are the hardware tasks given in the DFG. The weight
of each object is the hardware resource utilization of the
corresponding task. Because the objective of the knapsack
problem is to maximize the profit, we have to define the
profit according to our two goals: maximize the amount of
tasks and maximize the inter-task communication in each
configuration. Both profits are transformed into a common
unit, time, so that it is able to summarize them into an overall
profit that can be compared to other solutions.

The amount of tasks is dependent on the allocated re-
sources for each task. Therefore, we define one part of
the profit to be the configuration time of each task. This
configuration time is the fraction of the full configuration
time of the FPGA device and it is proportional to the amount
of used resources divided by the total available resource.
This profit (task configuration time) is calculated for each
task using Formula 1.

task resource utilization

— X full FPGA configuration time (1)
full resource of target FPGA device

The second part of the profit is defined as the time needed
for the inter-task communication that is saved due to the fact
that corresponding tasks are executed in the same configu-
ration. This time (saved inter-task communication time) is
computed by dividing two times inter-task communication
data amount by the available I/O bandwidth between the P
and the FPGA device, also shown in Formula 2. We count
the data amount twice because we save the time to transfer
data out of the FPGA and back into the FPGA device again.
The scheduling result of the example graph as illustrated in
Figure 3(b) shows a saved inter-task communication time
among task H2, H3, H6 and H10 of 12.

inter-task communication volume x 2
I/O bandwidth between FPGA and pP

The example task graph in Figure 3(a) shows the resource
utilization of each task normalized to 100 and the corre-
sponding task configuration time calculated with respect to
the full configuration time of 100 unitless time. The inter-
task communication time, shown next to the task graph
edges, is also normalized to the full configuration time.

2

3.2.1. Mathematical Description of the Algorithm. The
objective of the dependent knapsack problem is to find a
subset of tasks that has a maximum combined task configu-
ration time and a maximum saved inter-task communication
time?.

The dependent knapsack problem is described formally
as follows. There are a DAG of n nodes of positive weight
and one root node of no weight. The nodes in the DAG
are numbered in an increasing order from top to bottom and
from left to right at same level. Each node is associated with
a profit, ¢;, 0 < ¢ < n. Further, matrix E is to describe the

1. The communication times between imaginary root node 0 and other
nodes are not considered during the calculation since the corresponding
data are input data to the whole graph and have to transferred anyway.

Popr(i,w) = {POPT(i ~Lw)
S(i—1,w)

S(i,w) = { S(i —1,w)
{S(i — 1,w,),i} Otherwise

maz(Popr(i — 1,w), Popr(i — 1,w;) + ¢; + inter(i))

if w; > w
Otherwise
if w; > w
. 1 i—1 . i 1) .
if Popr(i —1,w) > Popr(i — 1,w;) + ¢i + inter(i) } Otherwise 3

w; = max{x|r < w — w; and all of node i’s parent nodes belong to S(i — 1,x)};

¢; is the configuration time of node i;
inter(i) = EjES(ifl,wj),jyéO E(j,1) x 2

where

/* E(j,i) is the communication time between j and i */

Algorithm 1: Algorithm for Dependent Knapsack Problem

Algorithm 2: RDMS Algorithm

Input: Array Popr[0..n,0..W], S[0..n,0..W] and a
DAG of corresponding n nodes plus an
imaginary root node 0. The nodes in the DAG
are numbered in an increasing order from top to
bottom and from left to right at the same level.
Each node is associated with one weight w; and
one profit ¢;. Matrix E[0..n, 0..n] describes the
link among the nodes and the associated profit
of each link in the DAG.

Output: Pppr[n, W] is the optimal weight
combination and S[n, W] contains the
corresponding nodes.

1.1 Initialize Popr[0,w] = S[0,w] =0 for 0 <w < W,
and Popr[i,0] = S[i,0] =0 for 0 < i < mn;
12 for i =1 to n do
13 for w=1to W do
14 Use the recurrence (Equation 3) to compute
L Poprli,w] and fill in S[¢, w];

links among the nodes and E(i, 5)? is the profit associated
with the edge between node ¢ and j. It is required to select a
subset S C {1, ..., n} of the nodes so that Zv;eswi <W
(the given upper bound) and, subject to two restrictions, (1)
> icgCi +interc(S), which is described in Equation 4,

> B(ij) x2 @

i,j€S;i,57#0

interc(S) =

is as large as possible, and (2) all the parent nodes of any
node i € S belong to S as well. A dynamic programming
algorithm, shown in Algorithm 1, is used to solve the
dependent knapsack problem. Popr (i, w) denotes the value
of the optimal solution over a subset of the items {1, ..., i}
with maximum allowed weight w. Similarly, S(i,w) is the
corresponding subset. Equation 3 describes the recurrence
among Popr(i,w)s and S(i, w)s.

The RDMS algorithm, shown in Algorithm 2, applies
Algorithm 1 on the DAG multiple times until all the nodes

§. If there is no edge from ¢ to j, E(i, 5)=0.

Input: A DAG of n + 1 nodes, representing n
hardware tasks and an imaginary root node O.
Each node 7 has a weight w; and a profit ¢;.
Matrix E[0..n,0..n] describes the link among
the nodes and the associated profit of each link

in the DAG.
Output: A sequence of disjoint subsets {51, ..., S;}
satisfying Zieskwi <W,k=1,...,7].
2.1 Let O denote the set of current remaining items and
initialize O = {1, ..., n}, let k=1,

2.2 while O is not empty do
23 Apply Algorithm 1 on O and DAG to find the

subset Sj;

24 Remove the items in the subset S} from O and
corresponding nodes from the DAG;

2.5 Connect those nodes whose parent nodes have been

taken to the root node directly;
2.6 k=k+1;

are scheduled. The scheduling result of the example graph
using RDMS algorithm is shown in Figure 3(b), which
consists of four FPGA configurations, {H2,H3,H6,H10},
{H1,H9,H12,H4,H7}, {H5,H8} and {H11,HI13}.

By taking two system parameters, the configuration time
of hardware tasks and the inter-task communication time,
into account, the RDMS algorithm can address the character-
istics of different platforms automatically. On an RC system
with a long configuration time, the configuration overhead
of hardware tasks will play a more important role in the
scheduling process. On a different RC system that can switch
from one configuration to the other instantly, however, has a
comparatively slow interconnect, the algorithm will favor to
schedule two tasks having heavy communication in between
into the same FPGA configuration.

4. Experimental Results

In order to demonstrate the advantage of the proposed
RDMS algorithm, we have compared it to two other solu-

:

1500

:

o
8
I

Inter-configuration Communication Volume

Number of FPGA Configurations

T T T T T
100 120 140 160 180
Task Count

@

200

T T T

T T T T T 1
80 100 120 140 160 180 200

Task Count
(b)

Figure 4. Scheduling Efficiency Comparison Among Three Approaches When Inter-task Communication Time
Is Much Smaller Than Task Configuration Time: (a) Inter-configuration Communication, (b) Number of FPGA

Configurations

tions that only consider hardware task resource utilization
and data dependency. One algorithm is the previous version
of RDMS algorithm, which was presented in [13] and
termed as pRDMS thereafter. The other algorithm adopts
a Linear Programming Relaxation [11] approach, termed as
LPR thereafter. In the following part of this section, three
different comparisons are made among the three algorithms.
First, a direct comparison is carried out using the example
graph in Figure 3(a). Second, randomly generated data flow
graphs are used to cover a comprehensive scope of different
applications. Third, a real-life application, an astrophysics
N-body simulation, is emulated on SRC-6 and Cray XDl
platforms by applying RDMS and pRDMS algorithms.

4.1. Scheduling Comparison on Example Graph

pRDMS algorithm is similar to RDMS algorithm; how-
ever, it does not consider the inter-task communication
during the scheduling process. pRDMS algorithm sched-
ules the 13 nodes of the example graph in Figure 3(a)
also into four FPGA configuration, i.e., {H2,H3,H4,H6},
{H1,H7,H9,H10,H12},{H5,H8} and {HI1,HI3}. A direct
comparison with result from RDMS shows that RDMS re-
duces the inter-configuration communication time by 21.1%.

In the LPR approach to schedule hardware tasks repre-
sented by a DAG, it schedules the nodes level by level and
does not consider the nodes in next level until all nodes
in current level are scheduled. The typical LPR approach
is to sort nodes in the same level into a decreasing order
based on profit per weight ratio. Since the profit of each
node is defined as configuration time and is linear to its
weight, all nodes have the same profit per weight ratio in
our case. Therefore, all nodes in the same level are sorted
in a increasing order based on weight and then scheduled in
a sequence. Once one FPGA configuration has no enough
spare space to contain the node under consideration, it

Table 1. Scheduling Efficiency Improvement on
Randomly Generated Graphs Using RDMS Against

Other Two Algorithms
Inter-configuration Communication | Number of Configurations
Sim 1* Sim 2 Sim 3 Sim1 | Sim2 | Sim 3
LPR | 49.1 % 39.7 % 42.7 % 43 % |39 % | 44 %
pRDMS | 13.0 % 7.0 % 13.1 % 1.8 % | 1.4 % 1.9 %

*. Sim 1: Simulation 1; Sim 2: Simulation 2; Sim 3: Simulation 3.

starts a new configuration. LPR algorithm schedules the
13 nodes of the example graph into six FPGA configura-
tions, i.e., {H2,H3,H4}, {H1,H6,H7}, {H5,H9,H10}, {H8},
{H11,H12}, {H13}. Correspondingly, RDMS reduces the
inter-configuration communication time by 63.4% compared
to LPR in this case.

4.2. Scheduling Comparison on Randomly Gener-
ated Synthetic Graphs

In order to compare the scheduling efficiency among the
three algorithms, i.e., LPR, pRDMS and RDMS, these algo-
rithms have been implemented in C++. Randomly generated
task graphs of node count from 20 to 200 were applied
and the number of configurations and inter-configuration
communication time were recorded. For each task graph,
there are ten nodes in each level. Every node was randomly
connected to one to three parent nodes; the weight and the
configuration time of each node were the same and they
were randomly assigned between 1 and 50. Three different
simulations were carried out, representing three different
types of systems.

1) Simulation 1: the inter-task communication time is

randomly assigned between 1 and 10. In other words,
the inter-task communication time is much smaller

Table 2. Resource Utilization of Pipelined
Double-precision (64-bit) Floating-point Operators

+/- X +
1,640 [15] | 2,085 [16] | 4,173 [17]

Na
Slices 2,700 [18]

than task configuration time. This simulation represents
those RC systems that have a long configuration time.

2) Simulation 2: the inter-task communication time is
randomly assigned between 1 and 50. In other words,
the inter-task communication time is comparably the
same as the task configuration time. This simulation
represents those RC systems that have a medium con-
figuration time.

3) Simulation 3: the inter-task communication time is
randomly assigned between 1 and 100. In other words,
the inter-task communication time is much larger than
the task configuration time. This simulation represents
those RC systems that have a very short configuration
time.

By observing the scheduling results shown in Figure 4 and
Table 1, RDMS algorithm is capable of reducing the inter-
configuration communication time averagely by 11% and
44% compared to pPRDMS and LPR algorithms respectively.
In terms of number of FPGA configurations, RDMS algo-
rithm generates in average 2% and 4% less configurations
than pRDMS and LPR respectively.

4.3. Astrophysics N-Body Simulation

4.3.1. Application Description. The target application we
intend to implement on reconfigurable computers is a part
of the astrophysical N-Body simulations, in which the so
called gas dynamical effects are simulated using a smoothed
particle hydrodynamics (SPH) method [14]. In principle, this
method uses gaseous matter represented as particles with
position, velocity and a mass. A complex set of computations
are carried out in order to obtain a continuous distribution
of gas from these particles. The equation describing the
SPH pressure force calculation used for our simulations is
given in [13], with the corresponding task graph as shown
in Figure 5 consisting of a total of 18 tasks. Elaboration of a
few of the details of the graph relevant to our results will be
presented along with the discussion of results later. In order
to get desired performance and computation accuracy, fully
pipelined double-precision (64-bit) floating point arithmetic
units are needed to implement the graph in hardware. Many
previous work have reported various floating-point arith-
metic designs on FPGA devices. The resource utilization of
pipelined double-precision (64-bit) floating-point operators
based on literature survey is listed in Table 2.

These primitive operators are used to construct the func-
tionality of nodes in Figure 5. In general, multiple primitive

Table 3. Resource Utilization of Hardware Tasks

Node Operator™ Slices Percentage of Device Utilization®
No. Combination XC2V6000 XC2VP50
1,2 3A 4,920 17.13 2451

3,4,5,6 1A 1,640 5.71 8.17

7 IM,1D 6,258 21.79 31.17
8,9 2A.3M 9,535 33.20 47.50
10 1D 4,173 14.53 20.79

11,15 1A,4M,1D 14,153 49.27 70.50
12 1S 2,700 9.40 13.45
13 4M 8,340 29.04 41.55
14 M 2,085 7.26 10.39
16 3A,4M,1D 17,433 60.69 86.84
17 2A.2M 7,450 25.94 37.11
18 3A3M 11,175 38.91 55.67

Overall | 24A,29M,5D,1S | 123,390 429.59 614.68

*. A: adder/subtractor, M: multiplier, D: divider, S: square root.
t. Assume 15% of slices in device are reserved for vendor service logic.

Table 4. Hardware Module Configuration Time and
Inter-task Communication Time(unit: ms)

Node | Configuration Time Inter-task Communication Time

No. [SRC-6| Cray XD1 ||S. N.* |D. N.| Time |[S. N.|D. N.|Time
1,2 | 22.27 | 447.05 0 1 |2743|| 6 15 |9.14
3 7.42 149.02 0 2 |2743) 7 17 19.14
4 7.42 149.02 0 3 19.14 8 15 |9.14
5 7.42 149.02 0 4 |9.14 8 11 [9.14
6 7.42 149.02 0 5 19.14 9 11 |9.14
7 |2832| 568.63 0 6 |9.14 9 12 19.14
8,9 | 43.16 | 866.39 0 7 1829 10 | 14 |9.14
10 | 18.89 | 379.17 0 17 [9.14 || 10 | 13 |9.14
11 | 64.06 | 1286.00 1 8 [27.43| 11 15 |9.14
12 | 12.22 | 24533 2 18 [27.43| 12 14 19.14
13 3775 | 757.80 2 8 [27.43| 13 16 |9.14
14 | 9.44 189.45 2 2743|| 14 | 16 |9.14
15 | 64.06 | 1286.00 3 11 | 9.14 || 15 17 |9.14
16 | 78.90 | 1584.03 3 10 [9.14 || 16 17 19.14
17 33.72 | 676.94 4 11 | 9.14 || 17 18 |9.14
18 | 50.58 | 1015.40 5 15 |9.14

*. S. N.: Source Node; D. N.: Destination Node

operators are used to build a pipelined hardware node so that
all operations in one FPGA configuration can be executed
in parallel to maximize the throughput. For instance, node
#11 needs 1 adder, 4 multipliers and 1 divider, which is
denoted as “1A,4M,1D” in Table 3, to implement so that it
can operate in a pipelined fashion. The amount of slices
occupied by each node is simply the summation of the
slices of the primitive operators. We list the percentage
of slice utilization of each node on the FPGA devices of
two representative reconfigurable computers in Table 3, i.e.,
Virtex-116000 with SRC-6 and Virtex-IIP50 with Cray XD1.

I

1

#3
rij X =i x—1j_x Mean Value
ij iy | [hij=(hi+hj)/2

#4
Mean Value
fij = (i +) /2

#1 #2
Difference Vector Difference Vector
vij_x=vi x-vj x

vij

%5
Mean Value
cij = (ci + ¢j)

#1
pirho2
prhoi2 = pi / (thoi * rhoi) or

#
Mean Value
thoij = (thoi + rhoj) / 2

2

Vi z=vi z-vj z tij_z=ri z-1j z [

prhoj2 = pj / (thoj * rhoj)

JR—

24! 1 2{ ‘ =

#8 #9

Scalarprod scalarprod
vrij = (vil_x * rij_x) + 8 1ij2 = (rif_x * rij_x) +
(vij_y * rij_y) + (vij_z x rij_z) (rij_y * rij_y) + (rij_z * rij_z)

xl 8, lx—‘x

#11 F3E)
Squareroot
ij = sart rij2

muij

muij = hij x vrij * fij /

24 8 (rij2 + eta x hij * hij)
b T

8

Inter-task communication e
volume in byte for processing [~
one neighbor particle

#16
Gradient of W
if0<rh<1then
AW = (9 x th/4-3) x ihij$
elseif 1 <rh <2 then
AW = (-3 % 1h /4 +3 =3 /th) ihij5
1

else
AW =0

piij = (-alpha x cij x muij +
beta muij x muij) / rhoij

— l i

#15
piij
i vrij > 0 then

#T
Scalar Factor dvs
dvs = mj x (prhoi2 + prhoj2 + piij) x dW
T

8

l i

#18
Build dv vector
vs

Figure 5. Data Flow Graph of SPH Pressure Force Calculation (with assigned node number in each box)

Table 5. SPH Pressure Force Scheduling Efficiency
Comparison between pRDMS and RDMS

pRDMS | RDMS

Inter-configuration SRC-6 0.347 0.329

Communication Time (s) | Cray XD1 0.512 0.384
Number of FPGA SRC-6 5* K
Configurations Cray XD1 7% 78

. {1.2,6,7.8}, {3.45.9,10,13}, {11,15}, {12,14.16}, {17.18}
1. {1.2.6.7.8}, {3.4.5.9.10,12,14}, {11,15}, {13,16}, {17.18}
. {12,347}, {89}, {6.11,12}, {5,10,13,14}, {16}, {15}, {17.18}
§. {1.2.8}, {5.6,7.9}. {3.4,10,12,13}, {14,16}, {11}, {15}, {17,18}

Apparently, multiple FPGA configurations are required to
implement the dataflow graph in Figure 5 on both platforms.

4.3.2. Testbeds. We emulated the SPH pressure force cal-
culation pipeline on two different RC platforms, SRC-6
and Cray XD1, using RDMS algorithm. The whole FPGA
configuration time is 130 ms on SRC-6 and 1,824 ms on
Cray XDI1 respectively. On both platforms, the sustained
bandwidth of interconnect is 1.4x10° B/s.

In the implementation to emulate the SPH pressure force
calculation, we assume all the calculations are carried out in
double-precision (64-bit) format. As shown in Figure 5, the
data of every particle consists of 13 scalar variables, i.e., 104
bytes. If we assume the number of particles to be emulated

is M and the number of neighbors of each particle is 100,
then the original storage requirement is 104M bytes and the
pipeline in Figure 5 needs to perform 100M iterations.

4.3.3. Result. In the emulation carried out on both SRC-6
and Cray XD1 systems, the number of particles is set at
16,000. Both pPRDMS and RDMS algorithms are applied
on the SPH graph based on the hardware task utilization,
task configuration time and inter-task communication time
listed in Table 3 and 4 for both platforms. The number of
generated FPGA configurations and the inter-configuration
communication time on both platforms are listed in Table 5.
On SRC-6 platform, RDMS reduces the communication
time by 5% compared to pRDMS. An analysis of both
scheduling sequences has shown that pPRDMS has eliminated
some high volume data communication simply because they
belong to the first tasks that were combined. For example,
RDMS has scheduled task #9, #10, #12 and #14 into the
same configuration whereas pRDMS has scheduled them
into two separate configurations, which increases the over-
all inter-configuration communication. On Cray XD1, the
communication reduction is increased to 25% since RDMS
successfully schedules those tasks between which there
exists heavy communications into the same configuration,
e.g., #1, #2 and #8. The communication reduction is higher
because Cray XD1 uses smaller FPGAs and therefore it is
less likely that high volume communication transfers are

covered by pPRDMS.

5. Conclusions

This paper proposes a Reduced Data Movement Schedul-
ing (RDMS) algorithm, which focuses on the optimization of
the scheduling of tasks assigned to FPGA co-processors on
RC systems. RDMS reduces the inter-configuration commu-
nication overhead and FPGA configuration overhead by tak-
ing data dependency, hardware task resource utilization and
inter-task communication into account during scheduling
process. Simulation results show that the RDMS algorithm
is able to reduce inter-configuration communication time by
11% and 44% respectively and generate fewer FPGA con-
figurations at the same time compared to pRDMS and LPR
algorithms, which only consider data dependency and task
resource utilization during scheduling. The implementation
of a real-life application, N-body simulation, on both SRC-
6 and Cray XD1 platforms verifies the efficiency of RDMS
algorithm against other approaches.

References

[1] S.P. Fekete, E. Kohler, and J. Teich, “Optimal FPGA module
placement with temporal precedence constraints,” in Proc.
Design, Automation and Test in Europe Conference and
Exhibition, 2001 (DATE’01), Mar. 2001, pp. 658-665.

[2] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template
placement for reconfigurable computing systems,” IEEE De-
sign and Test of Computers, vol. 17, no. 1, pp. 68-83, Jan.
2000.

[3] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and
B. Schmidt, “Dynamic scheduling of tasks on partially recon-
figurable fpgas,” IEE Proceedings - Computers and Digital
Techniques, Special Issue on Reconfigurable Systems, vol.
147, no. 3, pp. 181-188, May 2000.

[4] H. Walder and M. Platzner, “Non-preemptive multitasking
on fpga: Task placement and footprint transform,” in Proc.
the 2nd International Conference on Engineering of Recon-
figurable Systems and Architectures (ERSA), June 2002, pp.
24-30.

[S] G. Brebner and O. Diessel, “Chip-based reconfigurable task
management,” in Proc. International Conference on Field
Programmable Logic and Applications, 2001 (FPL 2001),
Aug. 2001, pp. 182-191.

[6] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck,
“Configuration relocation and defragmentation for run-time
reconfigurable computing,” IEEE Trans. VLSI Syst., vol. 10,
no. 3, pp. 209-220, June 2002.

[71 H. Walder, C. Steiger, and M. Platzner, “Fast online task
placement on FPGAs: free space partitioning and 2D-
hashing,” in Proc. IEEE International Parallel and Dis-
tributed Processing Symposium, 2003 (IPDPS’03), Apr. 2003,
pp. 178-185.

[8] M. Handa and R. Vemuri, “A fast algorithm for finding
maximal empty rectangles for dynamic FPGA placement,” in
Proc. Design, Automation and Test in Europe Conference and
Exhibition, 2004 (DATE’04), vol. 1, Feb. 2004, pp. 744-745.

[9] T. Wiangtong, P. Cheung, and W. Luk, “Multitasking in
hardware-software codesign for reconfigurable computer,” in
Proc. the 2003 International Symposium on Circuits and
Systems, (ISCAS ’03), vol. 5, May 2003, pp. 621-624.

[10] P. Saha, “Automatic software hardware co-design for recon-
figurable computing systems,” in Proc. International Confer-
ence on Field Programmable Logic and Applications, 2007
(FPL 2007), Aug. 2007, pp. 507-508.

[11] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems.
Berlin; New York: Springer, 2004.

[12] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA:
Pearson/Addison-Wesley, Mar. 2005.

[13] M. Huang, H. Simmler, P. Saha, and T. El-Ghazawi, “Hard-
ware task scheduling optimizations for reconfigurable com-
puting,” in Proc. Second International Workshop on High-
Performance Reconfigurable Computing Technology and Ap-
plications (HPRCTA’08), Nov. 2008.

[14] J.J. Monaghan and J. C. Lattanzio, “A refined particle method
for astrophysical problems,” Astronomy and Astrophysics, vol.
149, pp. 135-143, 1985.

[15] G. Govindu, R. Scrofano, and V. K. Prasanna, “A library
of parameterizable floating-point cores for FPGAs and their
application to scientific computing,” in Proc. The Interna-
tional Conference on Engineering Reconfigurable Systems
and Algorithms (ERSA’05), June 2005, pp. 137-145.

[16] L. Zhuo and V. K. Prasanna, “Scalable and modular algo-
rithms for floating-point matrix multiplication on reconfig-
urable computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 4, pp. 433-448, Apr. 2007.

[17] K.S. Hemmert and K. D. Underwood, “Open source high per-
formance floating-point modules,” in Proc. the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’06), Apr. 2006, pp. 349-350.

[18] A. J. Thakkar and A. Ejnioui, “Design and implementation
of double precision floating point division and square root on
FPGAs,” in Proc. IEEE Aerospace 2006, Mar. 2006.

