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Abstract— Networks-on-chip (NoCs) have become a leading
energy consumer in modern multicore processors, with a consid-
erable portion of this energy originating from the large number
of virtual channel first-in—first-out (FIFO) buffers. Given this
motivation, we propose control schemes that leverage the “shift-
register’ nature of spintronic domain-wall memory (DWM) to
create extremely low-energy FIFO queues. In order to test
these queues in the most relevant application context, replacing
conventional memory buffers for NoCs, we perform design-space
analysis over the different schemes in a network context and then
analyze the best schemes with benchmark traffic. Our results
indicate that the best shift-based buffer utilizes a dual-nanowire
approach to ensure that reads and writes can be more effectively
aligned with access ports for simultaneous access in the same
cycle. Our approach provides a 2.93x speedup over a DWM
buffer using a traditional FIFO memory control scheme with
a 23.4% savings in energy. The resulting approach achieves a
39% reduction in energy-delay product compared to SRAM and
a 24% reduction in energy-delay product versus spin-transfer
torque magnetic memories.

Index Terms— Computer networks-mesh networks, memory-
buffer storage, memory-nonvolatile memory.

I. INTRODUCTION

MERGING memory technologies, such as spin-transfer

torque magnetic memories (STT-MRAM), have been pro-
posed for the replacement of conventional memory elements of
the memory hierarchy for their nonvolatility, density, and static
power advantages over conventional memories. Thus, as the
number of cores scales, the local caches, and increased on-chip
shared memory storage can consider STT-MRAM replace-
ments to reduce static power and improve the power-density
tradeoff from further scaling of the system cores. A limitation
of this strategy is that unlike conventional SRAM, STT-
MRAM is inherently asymmetric in its access: its relatively
fast (SRAM speed) reads is offset by relatively slow, energy
intensive (2—4 times worse) writes. Network-on-chip (NoC)
first-in—first-out data buffers (FIFOs) perform most efficiently
when read and write performance is symmetric, as packets
are often read and written in the same cycle. Furthermore,
the storage array for such buffers is often dominated by
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the size of the peripheral circuitry making the overall power
benefit of STT-MRAM storage potentially limited by the small
FIFO size.

Spintronic domain-wall “Racetrack” memory, a CMOS
compatible memory [1] recently proposed and demonstrated
by IBM [2], [3], provides a potential solution for the size
issues apparent in STT-MRAM FIFOs. Domain-wall mem-
ory (DWM) is comprised of a ferromagnetic nanowire where
the multiple bits of data are stored in the different domains
along the nanowire. To read/write the data in the DWM,
the appropriate bit must be shifted into alignment with an
access point similar to the magnetic tunnel-junction (MTJ)
of STT-MRAM. Additionally, DWM can replace the current-
based write of STT-MRAM with a shift-based write [4] to
improve the write time and energy. The nonuniform random
access and shifting characteristics of DWM make the design
of network buffers a unique challenge that is considerably
different to memory buffers constructed from random-access
storage arrays.

In this paper, we first focus on the use of DWM as a
queue. We examine the multitude of different configurations
and eliminate those that is not viable, as well as provide
a framework for choosing the configurations that are given
particular hardware limitations, such as shift speed, read speed,
and power. Moreover, we provide proofs for various boundary
conditions such as minimum and maximum access cycles
based on the configuration parameters.

After narrowing the possible configurations through analy-
sis, virtual queue traffic simulation, and trace-driven cycle-
accurate NoC simulation, we provide the hardware implemen-
tations of leading queue configurations and test those with
full-system simulation on synthetic and benchmark workloads.

In particular, in this paper, we make the following
contributions.

1) We articulate the unique properties and mathematical
limitations on DWM queue performance originating
from DWM’s unique behavior.

2) We create a “shift-register” style FIFO, including both
the single- and dual-nanowire approaches, that leverages
the properties of the DWM shifting operations for effi-
cient NoC buffer implementation.

3) We conduct a detailed sensitivity study that considers
different shift speeds, read speeds, read head distance,
cycle times, and read head offsets with synthetic traffic.

4) We provide full-system evaluations of the highest per-
forming DWM designs with benchmark traffic work-
loads in a mesh for a 64-core chip multiprocessor.

Our best performing DWM approach provides a 2.93x

speedup over a DWM circular buffer (CB) implementation
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Fig. 1. DWM design.

with a 23.4% energy reduction. Compared to an SRAM
FIFO, it provides a 43% energy reduction with 8% latency
degradation. In our full-system performance experiments, this
results in a 39% reduction in energy-delay product compared
to SRAM and a 24% reduction in energy-delay product as
compared to the leading STT-MRAM FIFO scheme.

II. BACKGROUND AND RELATED WORK

DWM comprises an array of magnetic nanowires, where
each nanowire consists of many magnetic domains separated
by domain walls (DWs). Each domain has its own magnetiza-
tion direction used in a similar manner to STT-MRAM. For a
horizontally arranged planar strip (Fig. 1), several domains
share one access point for read and write operations [5].
The DW motion is controlled by applying a short current
pulse on the head or tail of the nanowire in order to align
different domains with the access point. Since, the storage
elements and access devices in a DWM do not have a one-
to-one correspondence, a random access requires two steps to
complete: step 1) shift the target bit and align it to an access
transistor; and step 2) apply an appropriate voltage/current to
read or write the target bit. Intrinsically, the read operation
from step 2 is the same as STT-MRAM, however, the write can
be a shift in the orthogonal dimension [4]. Thus, the tradeoff
for DWM is reduced leakage power over STT-MRAM (fewer
access transistors per bit) with increased dynamic power due
to shifting domains.

Various forms of storage applications based on DWM
have been demonstrated, such as array integration [1], lower
level cache [6]-[8], content addressable memory (CAM)
design and fabrication [9], [10], reconfigurable computing
memory [11], [12], and a GPU register file [13]. These
applications focus on using DWM in random access appli-
cations. In contrast, we explore the use of DWM in queue-
oriented applications, which has considerably a different
access behavior.

Due to the growing percentage of power consumption in
many-core architectures contributed by the NoC, it has been
a significant concern of many research groups to find ways
to reduce power consumption and use high-density memo-
ries. A fixed-length shift register, realized by perpendicular
magnetic anisotropy (PMA) technology, has been demon-
strated [5], [14]. While it has been proposed to use DWM
in FIFOs in an NoC [15], this proposal used the naive circular
control scheme we will discuss, and did not optimize Race-
track control for FIFOs. We explore new control approaches
that leverage the properties of queues rather than random-
access structures.
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Fig. 2. FIFO queue structure with DWM. (a) Traditional CB.
(b) Shift-register approach (LB). (c) Dual shift-register approach (Dual).

In addition to the improvements which focus on emerg-
ing memories, a substantial amount of research has been
performed to reduce the number and optimize the usage
of network buffers. For example, a network which actively
adjusts the number of available buffers through flow control to
save energy has been designed [16]. Furthermore, a completely
bufferless high-performing NoC design has been realized [17]
that performs well for light traffic, but has challenges main-
taining high performance at medium and high network loads.

The leading scheme to reduce energy in NoC buffers while
maintaining the original buffer capacity is to replace a large
percentage of the FIFO’s SRAM with STT-MRAM [18].
This approach writes into SRAM and then lazily migrates
it to a reduced retention (i.e., a faster lower write effort)
STT-MRAM [19], [20] when possible. An energy savings
of 16% is demonstrated. In contrast, we demonstrate several
DWM designs for NoC FIFOs that replace the entire SRAM
buffer with spintronic memory with little (e.g., a single-
flit) or no SRAM buffering required. We describe our
DWM-based variable length queue designs in Section III.

III. DESIGNING QUEUES WITH DWM

At first glance, DWM appears naturally suited to implement
queue structures. In fact, DWM can naturally implement stacks
and fixed-length queues. However, implementing efficient vari-
able length FIFO queues, as required in network applications,
is nontrivial. In this section, we describe our methodology
for building variable length queues from DWM, and develop
quantitative descriptions of these proposed queue approaches
based on the physical parameters of the DWM.

A. DWM Physical Design

Traditional FIFO architectures utilize head and tail counters
to implement a CB, where the head and tail pointers (tracking
the next write and read locations, respectively) can wrap
around the array. While this configuration naturally lends itself
to array-based memory technologies (e.g., SRAM), it does not
naturally extend to DWM. DWM has a nonuniform access
time due to the shifting required for alignment with an access
port. In Fig. 2, we present three DWM-based queues where
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the queue is implemented as a group of N simultaneously
shifted Racetracks and N is the number of bits in a flit. Thus,
each “domain” represents storage for a flit. Moving forward,
we describe operations for a buffer assuming each operation
will be completed simultaneously for all N Racetracks in
parallel.

Fig. 2(a) shows the CB implementation using DWM.
We start with a single read/write port in the center. An FIFO
write shifts the Racetrack (if necessary) to align the tail domain
with the access point (step 1) and then to write (step 2) using
the orthogonal shift-write. For reading, the head domain is
aligned with an access point and then read by applying a cur-
rent. Immediately, several undesirable characteristics become
apparent. First, to align the leftmost or rightmost domain with
the access point requires a nanowire that is essentially twice
as long as the useful storage in the device [regions indicated
by “overhead” in Fig. 2(a)]. This makes the nanowire larger
and requires more shifting. Also, it may be necessary to shift
the full logical length of the Racetrack between subsequent
writes. Furthermore, most FIFOs are assumed to be able to
read and write simultaneously, which is not possible in most
configurations.

To address these inefficiencies, we consider three
approaches which can be applied independently or simultane-
ously, a linear buffer (LB) concept [Fig. 2(b)] that shifts data
through the Racetrack such as a shift-chain, an increase in the
number of access points, and the introduction of temporary
SRAM storage to buffer reads or writes to move them off the
critical path.

1) Linear Buffer: We propose a new hardware architecture,
referred to as LB, to attempt to mitigate the inefficiencies with
the CB approach. LB configurations write at one end of the
queue, and then shift the data into the queue in analogous fash-
ion to a shift register, keeping the data contiguous. LB saves
space over CB because it does not require any additional
overhead; it can read and write until it reaches maximum
capacity without shifting valid data out of the Racetrack.

2) Increasing the Number of Access Points: It has been
demonstrated that a multiple read port Racetrack does
not detract significantly from the density achievable by
the nanowire because of the small relative size of read
ports [6], [21]. Thus, it is reasonable to introduce additional
read access points to all physical schemes to increase perfor-
mance at the cost of some additional static power. One possible
configuration for each of CB and LB using additional read
ports is displayed in Fig. 2 with dashed lines. Note that having
a read port for every domain would be physically impractical,
since it would result in the DWM losing its physical size
advantage over STT-MRAM. In this configuration, back to
back cycles with both read and write would incur delays if
the cycle is sized to the read latency. This is further discussed
and demonstrated mathematically in Section III-F.

3) Introduction of SRAM Storage: All physical DWM
queues can be augmented with an additional SRAM
(or STT-MRAM) buffer to attempt to improve their perfor-
mance. However, while the buffer improves performance in
most cases, it also comes with a significant negative trade-
off in power and the loss full nonvolatility of the buffer.
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This approach will be considered in greater detail in the full-
system simulation in Section VIII.

While LB significantly reduces write delays compared
to CB, consecutive reads in either scheme continue to intro-
duce additional read latency even when including a single-
flit SRAM head buffer and prioritizing reads due to the
longer operation time compared to shifting/writing. In order
to mitigate this concern, we propose using Dual LBs (Dual).
Each of the nanowires is half the length, but also has half the
read access points of the LB [Fig. 2(c)]. The two-Racetrack
structure alternates consecutive reads (and consecutive writes)
to each Racetrack, essentially creating the illusion of a dual
port. The consecutive read delay can be eliminated with suf-
ficient read heads because one Racetrack can shift to prepare
for an access while the other is accessed.

B. Terminology and Assumptions

When discussing the physical topology of the DWM queue,
it is helpful to define some terminology and parameters used
in organizing the queue.

The read offset F is the space between the write head
and the first read head. In order to simplify the control
and design logic, the distance between all read heads is
enforced to be uniform, and is denoted as by a read separation
parameter N. In addition, the maximum gap G, is defined
as the larger of either the read separation N or the read
offset F, G = max(N, F). The length of the Racetrack
denoted as L and is equivalent to the logical queue capacity.
Finally, as demonstrated in several other macro-cell DWM
systems [4], [6], we assume that each Racetrack only has
one write port, in part to maintain an area advantage of DWM
over SRAM and STT-MRAM.

To consider the performance of different designs, a second
set of terms is required including the shift speed S, the reading
time R, the writing speed W, and the chosen cycle time C of
operation. Since, the write operation can be completed as a
shift in an orthogonal dimension [4], from this point on we
will assume that the write speed is equivalent to the shift speed.
Currently, reading for DWM is the latency bottleneck for the
technology [22], so in most of our control designs the C will
be chosen to permit R along with the delay of the peripheral
circuitry.

Finally, several other assumptions were made to keep the
control logic manageable. First, we assume the data in the
queue must remain in order. Second, the data must be main-
tained without gaps or empty domains between the valid data.
For CB, this implies that if the head points to position H
the data will be written in position (H + 1) mod L. For LB,
this means that the data are always written into position 0,
and only when the most recently written data are adjacent
at position 1. For Dual, writes alternate between each half
queue, but otherwise follow the same restrictions as LB. Also,
we assume that reads and writes are permitted at any cycle
where the queue is not empty or full, respectively.

C. Shifting Control and Policies

In traditional SRAM queues with uniform random access,
read and write ports can be implemented independently.
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However, queues composed of DWM may have to delay
accesses because ports are busy due to misalignment with the
requested data or storage location. As a result, the queues must
also have the read-pending and write-pending signals, which is
asserted on a read or write that cannot be completed because
the port is busy. This signal forces the queue to focus on the
pending access. For example, in the case of a pending write,
the queue would shift to align with the write head (having its
most recently written data in position 1) and wait until the
write occurs before allowing another operation. In this case,
the queue would only service reads if it did not interfere with
being available to write. A similar case can be envisioned for
a pending read.

For each configuration (LB, CB, and Dual), after performing
a write, a read, or a no-op, it is possible that there may
be enough time left in a cycle to also perform additional
shifting to put the queue in better position to service the future
accesses. The decision on what proactive shifting to complete
is split into two main methods of control.

1) Stay-in-Place: With stay-in-place, the queue will remain
in its current position, and not attempt to proactively shift
to any position to anticipate a read or write. Instead,
the stay-in-place scheme only shifts when either the write-
pending or read-pending signal is asserted, or the queue is
in a position where it can service a read or a write in the
current cycle, and as part of that service it must shift. This
strategy is common in many DWM designs for random access
applications.

2) Shift-to-Home: Shift-to-home policies in general attempt
to use spare cycles and shifting opportunities to align with a
predetermined access point, known as its “home,” whenever
the queue does not have a read-pending or write-pending signal
active. For a CB, there are two possible homes: the location at
which the tail is aligned with the write head (shift-to-write),
and the position where the head is aligned with the closest read
head (shift-to-read). For the LB (and the underlying queues
that form Dual), there are three possible homes: (shift-to-read-
forward) aligning the head pointer with the closest read head
to the right, (shift-to-read-back) aligning with the closest read
head to its left (assuming sufficient space/padding to prevent
data loss), or (shift-to-write) aligning the tail pointer to the
write head.

D. Impacts of Shift Speed

This section establishes the correlation between the shifting
speed of a Racetrack and its observed latency. Since the
latency is data-dependent, we focus on the calculation of the
maximum number of useful shifts in a cycle: the shift speed
above which latency will not improve for any possible pattern
of read and write accesses. For instances of CB, LB, and
Dual controls where the cycle time is based on read latency,
the following methods can be used to calculate this quantity.
For stay-in-place or shift-to-write schemes, the maximum
useful shifts-per-cycle can be calculated simply using a queue
with one element in it, and adding the worst case number of
shifts to align with the write head and write to the distance
to shift from that location to the home location. For shift-
to-read schemes, determining similar expressions becomes a
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Fig. 3. LB shift-to-read-back maximum useful shifts/cycle writing example,
0 postread shifts, and 0 padding.

maximization problem dependent on the number of elements
in the queue and the location of the read heads.

An example of the maximum useful shifts in a cycle for
an LB with a shift-to-read-back is shown in Fig. 3 where
blue indicates valid data and gray indicates unused space.
The worst case start for an LB queue is that the tail is G
positions away from being aligned with the write head, where
G = 2 in Fig. 3(a). The reason for this worst case distance
from aligning with the write head is that shift-to-read-back will
always shift left to align with the read head if it is possible to
do so while not blocking the write port. When a write arrives,
the Racetrack now must shift G positions to align its tail with
the write access point, shown in black in Fig. 3(b) and takes
one additional shift to complete the write (as a part of the shift-
based write). Following this, the queue attempts to realign with
the closest access point. Since the Racetrack cannot shift left
because there is no padding to the left of the tail, it shifts
right two positions to align with the next read head requiring
an additional G shifts. Thus, the total shifts for this operation
is 2G + 1 (or five, as shown in Fig. 3). The maximum useful
shifts-per-cycle expressions can similarly be determined for
other architectures and policies, and the results are reported
in Table L.

E. Impact of Read to Shift Time Ratio and Postread Shifts

When a Racetrack can perform x number of shifts in
addition to performing a read within a cycle, then we say
that the queue has x postread shifts. One solution to reduce
the latency for any Racetrack queue is to increase postread
shifts in a cycle; however, at a certain point, there will be a
cycle time Cpax (defined as the maximum useful cycle time)
which will have no latency degradation for any combination
of inputs. Equivalently, this means that Cpax is the minimum
cycle time at which the queue is guaranteed to be able to both
read and write every cycle. In this section, we calculate the
maximum useful cycle times for each combination of shift
policy and Racetrack hardware.

There are three primary queue positions which contribute
to the calculation of the maximum useful cycle time. The first
originates from the time it takes for LB or Dual with two
elements at the far end of the queue to both read and write in
that cycle (represented by a and aj, respectively, in Table II).
One example of this situation is shown in Fig. 4(a), which
contributes the time for L — 2 shifts (L — 3 actual shifts and
one shift delay to write) and one read delay R. For L = 10,
this results in & = 8S 4+ R. The shift-to-write and shift-to-
read-back schemes do not include this term, because they are
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TABLE I

MAXIMUM USEFUL SHIFTS-PER-CYCLE. ASSUMES QUEUE CANNOT SHIFT AND READ IN THE SAME CYCLE, NO PADDING
FOR LINEAR/DUAL QUEUES, AND THAT WRITES CAN BE COMPLETED AS SHIFTS [4]

Circular Stay-in-Place Shift-to-Write Shift-to-Read
Shifts to Align with Write L-1 L-1 L-17
Home Shifts 0 1 G+l
Total (including writes) L L+1 L+G+1"
Linear Stay-in-Place Shift-to-Write Shift-to-Read-Forward Shift-to-Read-Back
Shifts to Align with Write L-2 G L-2" G
Home Shifts 0 1 G G
Total (including writes) L-1 G+2 L-1+G’ 2G+1
Dual Stay-in-Place Shift-to-Write Shift-to-Read-Forward Shift-to-Read-Back
Shifts to Align with Write -2 G L7 G
Home Shifts 0 1 G G
Total (including writes) L1 G+2 L1+¢ 2G+1

" Indicates worst case but not the general case. Certain configurations of read heads may result in this number being

reduced, but the order (e.g., linear with L + G) remains the same.

TABLE II

MAXIMUM USEFUL CYCLE TIMES (NOT INCLUDING
PERIPHERAL CIRCUITRY DELAY)

Circular] Stay-in-Place | Write | Read
maz(L* S+ R,~)
Linear | Stay-in-Place | Write Read Fwd |Read Back
maz(a, B,7) |maz(B,7)| maz(a, 8,7) | maz(B,v)
Dual | Stay-in-Place | Write Read Fwd |Read Back
maz(an, 8,7) [maz(B, )| max(an, B, v)| maz(8,7)

a:(L—2)xS+R
ah:(é—Q)*S—l—R

B:(1+G)*S+R
7 (3%5F —(G-1)%2) xS+ R

W R

(a) .

R

(b) I —————

W

(© I I N N

Fig. 4. Maximum useful cycle examples for LB.

guaranteed to have a maximum difference between the tail data
and the write head of at most G. CB has a slightly a different
term, LS + R, because it is dependent on the situation where
the write head must shift the logical length of the Racetrack
and conduct a read and a write sequentially within a cycle.

The second contributing factor occurs when the queue must
shift the maximum gap, G, in order to read and write in a
cycle (represented by £ in Table II). An example of this is
demonstrated in Fig. 4(b) where G = 5 requiring G shifts, one
shift delay to write, and one read delay R, totaling f = 6S+R.
The final scenario occurs when the data are located in the
middle of the gap and cannot be read on the way to write
(represented as y in Table II). This scenario is demonstrated
for LB in Fig. 4(c). In these examples where G = 5, the queue
shifts right two locations, reads, shifts left four locations and
writes, contributing y = 7S5 + R.

The home policy dictates which of these conditions con-
tribute to the maximum cycle time. It turns out that for LB,
shift-to-read-back and shift-to-write are only dependent on
conditions two and three (S, y ), while the others also depend

on . The maximum useful cycle time for a control scheme is
the maximum of the conditions which apply to that scheme.
Therefore, in the example in Fig. 4, LB stay and LB shift-to-
read-forward would have a max cycle time of 85 + R, while
LB shift-to-write and shift-to-read-back would have a max
useful cycle time of 75 4+ R. The maximum cycle time follows
this logic for the other schemes as well, and the summary of
the times can be seen in Table II.

FE Impacts of Sizing Cycle to Read Latency

Since the read latency is the limiting performance char-
acteristic (highest latency operation) in DWM, as mentioned
previously, it is natural to choose the cycle time as close to
the read time as possible. However, if there is not enough time
to both read and shift in a cycle, then there is no possible
configuration of writing speeds, shifting speeds, and distance
between read heads for a single Racetrack, which can always
service both a read and a write request in a cycle. This
limitation arises from two origins: only having one write head
per Racetrack, and not being able to shift the Racetrack in
the same cycle as it is read. This can be easily proved by
contradiction by considering a situation where the Racetrack
begins with at least one element and then must service both
a read and a write in two consecutive cycles. In the best
case, the Racetrack begins with the first value aligned with
the read head, and successfully reads and writes in the first
cycle. Because there is not enough time to read and shift,
the written data element remains under the write head at the
start of the next cycle. In the next cycle, when a read and write
request is made, because there is not enough time to read and
then shift in the cycle, as the FIFO started unaligned with the
next write position, the system does not have time to both be
read and shift to satisfy the new write.

IV. DWM STATE-MACHINE DESIGN

The algorithms presented in Section III are not designed for
optimized hardware implementation. Therefore, in this section,
we present a hardware optimized methods to implement con-
trol focusing on the specific example of two shifts-per-cycle,
a read offset of zero, a read separation of one, and no postread
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Fig. 5. LB FSM. R = read, (R) = read align RT, W = write, R + W =
read and write, and Idle = neither read nor write. [<<RC] and [>>RC] also
shift the read port left and right, respectively, depicted in the RC shift register
where the highlighted (“1”) port is currently selected.

RW-Aligned (W) @-& ®) ®)
s 12— &
R-Aligned &&-&-& &
Unaligned &&- &) & &)

Fig. 6. Example queue conditions corresponding to LB FSM controller.
Black regions are valid flits.

shifts in a cycle. All other parameter combinations can be
similarly expanded into the hardware control implementations.

The CB scheme uses traditional head/tail pointers to deter-
mine shift locations, the LB scheme requires a finite state
machine (FSM) for control, as shown in Fig. 5. There are four
states possible for the buffer (see Fig. 6): RW-Aligned, where
the queue head is aligned with a read access point and the
tail pointer is aligned with the write access point, W-Aligned
where the tail pointer is aligned with the write access port but
the head is not aligned with a read access point, R-Aligned
where the queue head is aligned with a read access point but
the tail pointer is not, and Unaligned where neither the head
nor tail is aligned with an access point. This FSM can easily
be expanded for a larger gap (more domains) between read
access points through additional “unaligned” states.

There are four possible permutations of operations for each
state: buffer read, write, both read and write, or idle. In the
RW-Aligned state all requests can be handled directly. On a
read, the head is read and the state moves to W-Aligned. On a
write, the FSM writes and shifts right the Racetrack and the
state also moves to W-Aligned. For both a read and write,
the FSM simultaneously writes and reads and moves to the
unaligned state. In unaligned, if idle (or an R occurs) the
Racetrack buffer shifts right and moves to the RW-Aligned
state in the next cycle (read still pending). If a write (or
read and write) occurs, the queue shifts right and writes in
a cycle moving to R-Aligned (read still pending). The other
states proceed in a similar way with certain options able to be
serviced directly, and those in parenthesis requiring multiple
cycles to complete. We track the current active read head using
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Fig. 7. Dual Racetrack design. The two Racetracks together comprise one

NoC buffer.

a simple shift register of the same length as the number of
flits that shifts in the same direction as data of the Racetrack
queue. This simple shift register could also be implemented
using a DWM, although during our analysis of the peripheral
circuitry we assume it is implemented in traditional CMOS.
These operations (noted by < and >>) as well as other state
transitions not explicitly described are enumerated in Fig. 5.

Dual and LB have very similar FSM structure. For Dual,
we include two additional control bits, “Read Owner” and
“Write Owner” to manage which Racetrack is accessed in each
cycle. For each access, the owner bit is flipped. In the example
from Fig. 7, the queue holds five flits, it is in the RW-Aligned
state, the next read comes from queue “1” and the next write
goes to queue “0,” both of which may proceed in parallel. The
read head is indexed by the “Read Owner” and a single bit
RC (shown in Fig. 7 as the R indices). Overall Dual has a
similar control overhead to LB.

V. RACETRACK OVERHEADS

The overhead of the CB scheme includes read and write
pointers [[g(N) bits each], a stored current offset value for
Racetrack [Ig(N) bits], comparator, increment and decrement
circuitry, N — 1 extra domains to prevent loss of data when
shifting to the ends of the Racetrack [see Fig. 2(a)], and the
stored locations of the read and read/write access points. Note,
it does not require the one-hot head and tail pointer storage
because it does not use these bits to energize a word-line as in
traditional array-based storage. If the CB scheme is augmented
with an SRAM buffer, the additional overhead includes a one-
flit buffer plus an additional one valid bit per Racetrack.

For LB, only N domains are required as compared to the
2N — 1 domains per Racetrack for CB. The overhead for this
scheme includes two bits of storage to represent four states,
and the same number of bits as the number of read heads
(1 hot, in a shift register) for the currently used read head
plus the same overhead for an additional SRAM buffer as CB.
Similarly, in the Dual scheme, N domains are required per
buffer ((N/2) for each Racetrack). The overhead for the Dual
scheme includes two bits per Racetrack to represent the four
states, one bit per buffer to represent the valid read head and
two additional bits to indicate which Racetrack is controlling
the buffer reads and writes (i.e., one bit to each represent the
read and write owners of the buffer, respectively, in Fig. 7).
The Dual scheme does add additional peripheral circuitry
to write to and shift two half-length Racetracks, which are
accounted for the energy calculations presented.
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VI. EXPERIMENTAL METHODOLOGY

In order to analyze the performance of DWM queues,
we began by evaluating the queues independently based on
different read and write traffic patterns. We simulated each
queue (e.g., CB, LB, and Dual) for different parameters with
different synthetically generated read and write traffic patterns.
For uniform random traffic, at each time step the chance of
reading was K, and the chance of writing was also K, as long
as the queue was not empty/full, respectively. Access latency is
determined by the average delay from when the access request
arrives and when the access is completed.

Based on the best performing parameters in the queue
simulator, we further tested DWM buffers by implement-
ing CB, LB, and Dual schemes to serve as the virtual channel
buffers in an NoC using the cycle-accurate HORNET multi-
core simulator [27] to compute both average flit latency and
energy consumption. In addition, peripheral circuitry power
calculations for SRAM, STT-MRAM, and different Racetrack
FIFO schemes were analyzed using data from [4], [23] and
a modified version of NVSim [24]. Sniper [28] was used to
generate workload traces of the Princeton Application Repos-
itory for Shared-Memory Computers (PARSEC) benchmark
suite [29] for the modified HORNET simulator. To estimate
the full-system performance impact of the NoC, the HORNET
generated latencies were then used in a second full-system
simulation in Sniper to determine the performance impact via
IPC.

The tests were performed on a simulated 64-core network
using one-queue-per-flow ol-turn routing. In addition, each
ingress port connecting a core to its neighbor has eight virtual
channels, each of which can store eight flits. CB, LB, and Dual
were tested both with and without a single-flit SRAM storage
to buffer the queue’s head flit. The full-system simulated
out-of-order cores with multiple instructions issue per-cycle
with private first level and a distributed shared last level
(L2) cache. When running the simulations, we assumed that
there was no performance difference between SRAM and
STT-MRAM as an optimistic implementation of the leading
STT-MRAM NoC buffer proposal [18]. Also, to compare the
implementation of the DWM technology with a more energy
efficient, and for STT-MRAM area-equivalent counter parts,
both SRAM and STT-MRAM were also tested with half (4) the
number of queues per channel (referred to as SRAMHalf and
STTHalf).

To determine the control circuitry overhead from imple-
menting LB and Dual, we created an implementation of the
FSM in 45-nm standard cell ASIC hardware and compared it
with the traditional one-hot read and write points for traditional
FIFOs. The RT control had a nominal overhead increase in
terms of area and energy (i.e., < 0.5 uW) compared to the
traditional FIFO. The full energy parameters for the virtual
queues of eight flits and 128 bits per flit for Racetrack, SRAM,
and STT-MRAM are reported in Table III. The increase in
static power for LB and Dual, respectively, over CB results
from small increases in control circuitry and peripheral cir-
cuitry. Adding the single-flit SRAM storage to the Racetrack
schemes increases both the static and dynamic powers for
reads and writes. The Racetrack LB approach (7.9 uW)
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TABLE III

BUFFER POWER FOR DIFFERENT TECHNOLOGIES USING SYNTHESIZED
CONTROL LOGIC, DATA FROM [4], [23] AND CALCULATED
USING A MODIFIED VERSION OF NVSIM [24]

Static Power (W) Dynamic Energy (pJ/bit)
mem. array & control | read | write shift
SRAM 22.60 0.27 0.12 —
STT 14.91 0.10 0.24 —
CB LB Dual
RT 7.76 791 9.61 0.10 0.062 0.062
RT+SRAM | 10.23 | 10.39 | 11.40 | 0.37> | 0.36! 0.062

IThis is a special case for Dual where each Racetrack has two read heads
specified by that valid read head bit, otherwise each Racetrack would require
an RC Shift-Register circuit as in the LB control.

2Ernply buffer accesses incur SRAM-only cost.

TABLE IV

AREA FOR DIFFERENT RACETRACK SHIFT-TO-READ SCHEMES
USING SYNOPSYS DESIGN COMPILER [25] AND A 45-nm
PROCESS DESIGN KIT [26]

Area (um?) CB LB DUAL
915.135 | 250.136 | 493.704
TABLE V

ARCHITECTURE PARAMETERS

CPU
64 out-of-order cores
4 issue width, 4GHz clk

Cache
Private L1 32K Inst, 32K Data
Dist. Shared 1.2 4M (256K /tile)
NoC
1-cycle write
8 flits/queue

1GHz clk
8 VCs

1-cycle read
3-cycle pipe

0.5-cycle RT write
0.5-cycle RT shift

requires about half the static power of an STT-MRAM array
(149 uW) and one-third of an SRAM array (22.6 uW).
Dual still provides 36% and 57% static power reduction over
STT-MRAM and SRAM, respectively. The area overhead for
the shift-to-read variation of the control schemes examined in
Section VIII is shown in Table IV. The state-machine methods
of control (LB, Dual) are more efficient than the adaptation
of the head and tail pointer method (CB) by nearly a factor
of four and two, respectively.

We assume an NoC clock speed of 1 GHz which allows
SRAM, STT-MRAM, and Racetrack reads in a single cycle
based on latency data from NVSIM and the literature [22].
STT-MRAM writes are also optimistically assumed to be a
single cycle [18] similar to SRAM, while Racetrack shifts and
writes take half a cycle allowing a Racetrack to conservatively
write and shift, or shift twice in a cycle [22]. The detailed
architecture parameters are shown in Table V.

VII. DESIGN-SPACE ANALYSIS

In Section III, we evaluated mathematically the limits for
the useful range of parameters in DWM queue designs. In this
section, we evaluate the practical sets of parameters from
the design space using experiments with common synthetic
workloads for NoCs defined by the relationships between the
source and destination addresses of the traffic [30]. Results
for the pattern ‘“shuffle” are shown, as the bit-complement
and transpose workloads had the same trends. The resulting
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Fig. 8. Physical layout of the different configurations used in the design-
space analysis of the different shift control schemes.
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Fig. 9. Normalized results to shift-to-read F = 1 for the CB using four
shifts-per-cycle, four read heads, and nine elements per queue for different
shift policies with under evenly distributed random traffic at 10% intensity.
Distance between write and first read port (F) is considered at 0 and 1.

configurations are then evaluated using cycle-level analysis
with application workloads in Section VIII.

A. Control Schemes

In this section, we evaluate the effectiveness of the shifting
policy, specifically stay-in-place, shift-to-read, and shift-to-
write, and their buffer architecture design specific vari-
ants such as shift-to-read-forward and shift-to-read-back (see
Section III-C) on overall performance of the CB and LB
schemes.

1) Circular Buffer: To begin the analysis of the CB, we first
compare F = 0, N = 2 (read ports adjacent to the central
write port and a spacing of two between read heads) and
F =1, N = 1 (read heads with an offset of one from the
central write port and a spacing of one between read heads).
The physical layout of each of these cases are shown in Fig. 8;
as shown, each configuration has four read heads.

Fig. 9 demonstrates normalized read and write latencies,
as well as total shifts for CB with four shifts-per-cycle and
length L = 9 under low (10%) traffic. The traffic intensity
is the probability a write and/or read request, each calculated
independently, are issued in each cycle. Shifts represent the
total shifts the Racetrack made during the simulation, Missed
Reads are the total number of times the Racetrack received
a read request and could not service it in the same cycle,
and Missed Writes represent the same for writes. The Read
Latency is the average amount of cycles a data element has
to wait before it can be read, and Write Latency is the same
for writes. Since every element is both written and read in a
simulation, the Total Latency is defined as the sum of the read
and write latency.

In all cases, the number of shifts in the F = 1, N = 1
scheme is less than the F = 0, and N = 2 counterpart. In this
comparison, the total latency advantage for the F =1, N =1
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Fig. 10. Latency results as traffic increases beyond 10% (Fig. 9) for CB at
four shifts-per-cycle, four read heads, and nine elements per queue.

is 18% and 9% for stay-in-place and shift-to-read, respectively,
with a nominal 2% increase for shift-to-write compared to
F =0, N = 2. When different schemes are compared for the
same F' and N choices, we can see that, as expected, shift-
to-read has substantially lower (over 4x) read latency, while
shift-to-write shows similar improvements for write latency.
However, as the 10% traffic intensity is far from saturation,
even significantly higher missed reads and read latency does
not dramatically increase overall latency because those missed
reads are quickly serviced, often in the next cycle. For higher
traffic intensity, these read delays can dramatically increase
latency.

Thus, in Fig. 10, we evaluate the impact of different traffic
loads on queue latency for the different shifting policies in
CB. As in Fig. 9, the traffic percentage is the probability of
reading and/or writing in each cycle and the read and write
probabilities are equivalent to mimic the behavior that all data
written to the queue are eventually read. Each shifting scheme
is evaluated with its best performing read/write head layout
(F = 0, N = 2 for shift-to-write, and F = 1, N = 1
otherwise). As can be observed in the figure, CB with the
shift-to-read control scheme has a later onset of saturation,
as well as a consistently reduced total latency before sat-
uration. For example, at the 10% Traffic point (shown in
detail in Fig. 9), the best CB stay-in-place scheme has a 76%
higher latency than the best CB shift-to-read scheme. While
the stay-in-place control scheme shifts 21% less and has a
simpler control design, the 76% latency degradation until the
onset of saturation makes it less attractive compared to the
shift-to-read scheme. The best shift-to-read control scheme
also demonstrates better presaturation latency than the shift-
to-write scheme. At the same 10% point, the shift-to-write
scheme has a 15% higher latency, as well as 8% more shifts.
Given this analysis, we conclude that the best performing
control scheme for CB is shift-to-read with ¥ = 1 and N = 1.
From this point forward, when we refer to CB, we are referring
to this configuration of CB.

2) Linear Buffer: To evaluate the shifting performance for
the LB, the best read head placement was more obvious,
F =0, N =1, for a length L = 8 queue with four read
heads. Under these conditions, F = 0 provides the ability
to write one data element and read it in the following cycle,
while F > 1 prevents reading the cycle after writing. In this
configuration, we show in Fig. 11 when LB is observed for
low (10%) synthetic traffic (e.g., the presaturation region),
the results follow a very similar trend to those for the CB.
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Fig. 11.  Synthetic traffic results for LB using two shifts-per-cycle, four read
heads, and eight elements per queue for different shift policies under evenly
distributed random traffic at 10% intensity.
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Fig. 12. Latency results as traffic increases for different LB schemes at two
shifts-per-cycle, four read heads, and eight elements per queue.

LB with the shift-to-read-back control scheme consistently has
lower access latency than all the other schemes, shift-to-read-
forward, shift-to-write, and stay-in-place for low traffic. Shift-
to-read-back also have the fewest shifts except stay-in-place.
While shift-to-write tends to favor writes and the two shift-to-
read tends to favor reads, in a queue it is expected that each
queue element will be written and then read, so we focus on
overall latency.

As demonstrated in Fig. 12, all of the saturation regions are
quite similar, but shift-to-read-back saturates the latest, thus
giving a slight edge in the postsaturation region. Therefore
with both CB and LB, we conclude that aligning with the read
head (read-back for LB) is the most efficient design choice.
Because of these factors, from this point forward, LB will refer
to LB with the shift-to-read-back control scheme. Moreover,
an analysis of the Dual scheme mirrored the trends of the LB,
thus, we also selected and will refer to Dual as using a shift-
to-read-back control scheme.

B. Shift Speed

In this section, we examine the effect of altering the
number of shifts-per-cycle on the latency of LB, CB, and
Dual queues. For CB queues, increasing the shifts-per-cycle
can have tremendous impacts in the presaturation region.
As can be seen in Fig. 13, as the number of shifts-per-cycle
(shown as shifts-per-cycle Fig. 13) increases, the presaturation
region significantly increases. Furthermore, the latency in the
presaturation region (in terms of cycles per access) improves as
well. For example, the latency is reduced by 5x at 10% traffic
when increasing from one to two shifts-per-cycle. For CB,
Table I predicts a maximum useful shifts-per-cycle of at least
L — 1 (eight shifts-per-cycle in this L = 9 configuration),
so it is reasonable that all transitions from one to four shown
in Fig. 13 improve read and write latency.
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Fig. 13. Latency as traffic increases with varying shifts-per-cycle for CB

(L =9) and LB (L = 8), each with four read heads per queue.
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Fig. 14. Latency as traffic increases for LB for various shifts-per-cycle, with
two read heads and eight elements per queue.

LB queues also exhibit significant improvement in the
presaturation region, with a 48% improvement in total latency
at 10% traffic. Unlike CB, LB’s improvement in latency
plateaus after two shifts-per-cycle. While it was mathemati-
cally predicted that the maximum performance would be found
at three shifts-per-cycle, the traffic pattern necessary to take
advantage of that capability is rare.

In order to observe the changes with LB in greater detail,
we also examined the change in latency with LB queues with
L =8, N =3, and F = 2, shown in Fig. 14. Table I predicts
the maximum useful shifts-per-cycle for this configuration is
seven; however, the state transition where having an extra
shift from six to seven shifts-per-cycle is similarly rare. Thus,
six and seven shifts-per-cycle provide nearly identical results
for this configuration of LB. While at the maximum shifts-
per-cycle the latency reaches its minimum, all increases after
four shifts-per-cycle are nominal (i.e., less than 0.1%). In our
experimentation, similar results were found for different read
head configurations leading to the conclusion that even though
there is a mathematical limit of maximum shifts-per-cycle,
LB configurations effectively reaches its practical minimum
latency at G + 1 shifts-per-cycle, recalling that G is the
maximum read head separation [max (N, F)].

Dual queues, such as LB queues for four read heads,
have their latency improvement plateau at two shifts-per-cycle,
as can be seen in Fig. 13. Even with one shift-per-cycle,
it takes high traffic (i.e., a read and/or write more than 80%
of the cycles) for Dual to enter saturation. At 10% traffic, two
shifts-per-cycle has a 52% latency improvement over one shift-
per-cycle, and the percentage latency improvement provided
by two shifts steadily increases with the traffic.

When comparing CB, LB, and Dual queues in Fig. 13,
we observe that CB only outperforms LB with one shift-per-
cycle in the presaturation region once CB has four or greater

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 26,2020 at 18:18:12 UTC from IEEE Xplore. Restrictions apply.



1540

(SN
S »n o

Latency (Cycles)

25
. ——JJ
0
10 20 30 40 50 60 70 80 90 100

Traffic Intensity
---CB Opostread ~=-CB 1postread
CB 3postread

—=-LB Opostread

CB 2postread

—e-Dual 0/1 post read --Dual 2+/LB 2+ post read

—=-LB 1postread

Fig. 15. Latency results in cycles as traffic increases with different postread
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Fig. 16. Normalized synthetic traffic results with low traffic, four shifts-per-
cycle, four read heads, and eight elements per queue for different amounts of
postread shifts in a cycle.

shifts-per-cycle. However, even in this case, LB with one shift-
per-cycle has a later onset of saturation. While LB queues
consistently begin the onset of saturation around the 50%
traffic mark (since they cannot read and write in consecutive
cycles), Dual queues are able to remain in the presaturation
region until around 80% traffic. This difference primarily
arises from the parallel nature of Dual, where one queue can
prepare for an operation while the other is being accessed.

C. Postread Shifts

Another consideration of cycle latency is the combination
of a read access with shifting within a single cycle. Thus,
we examine the effect of sizing the cycle to allow postread
shifts on the access latency (in terms of cycles) of the LB, CB,
and Dual queues. Fig. 15 demonstrates the effect of adding
postread shifts (labeled as #postread in the figure) for a case
with N = 1, F = 0, four shifts-per-cycle, and L = 8. Table II
predicts the minimum cycle time that can give performance
without delay is given by (1 + G) x S + R resulting in
2S + R or two postread shifts-per-cycle for LB and Dual in
this configuration. With N = 1, increasing the cycle time from
R to R+S has a significant positive impact on LB performance
as well as significantly delaying the onset of saturation from
50% to about 95% traffic, which is comparable to the onset
of saturation for Dual with zero postread shifts. We quantified
the latency improvement in Fig. 16 for 10% traffic.

An interesting result is that CB, which typically falls far
short of LB, with one postread shift actually outperforms LB
with O postread shifts. This lends credence to the importance of
including shifting and reading in the same cycle. However, CB,
even with three postread shifts in a cycle still is outperformed
by Dual and LB with one postread shift-per-cycle. Of course,
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Fig. 17. Latency results as traffic increases over different read heads, with
two shifts-per-cycle and eight elements per queue.
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Fig. 18. Energy-delay product as traffic increases over different read heads,
with two shifts-per-cycle and eight elements per queue.

increasing the cycle time results in an improvement in queue
performance from a queue state behavior perspective, but
it comes at the obvious tradeoff of fewer cycles per unit
time, which may make the original cycle time more efficient
for Dual, despite the queue delays it incurs. However, if a
particular queue realization changes the relationship of read
access latency to shift latency, this provides interesting insights
on how to size a cycle.

D. Read Heads

The number of read access points also provides an inter-
esting tradeoff between static power, area, and queue latency.
Thus, we performed a design-space exploration on the number
of read heads in the queue, and examine the effect it has on
total latency. Fig. 17 demonstrates the effect of varying the
number of read access points on latency for LB and Dual
schemes. CB schemes were also considered, but they again
performed significantly worse than LB in the presaturation
region, and consistently had an earlier onset of saturation and
as a result are not displayed in detail in this section. For
LB queues, as observed in this section with increasing shift
speeds, all queues begin to saturate at or before 50% traffic,
even with a read head in seven out of eight positions. While
the presaturation latency steadily decreases as the number
of read heads increases for LB, the 50% traffic limit is a
fundamental limitation of not being able to both read and write
in consecutive cycles.

As the number of read heads grows to reduce the latency,
the energy, in large part from static energy, of the buffer
increases. The resulting energy-delay product of these same
configurations, shown in Fig. 18, shows that among the LB
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Fig. 19. Flit latency of Racetrack buffer schemes normalized to SRAM.

schemes that three or four read heads are nearly equivalent
and have the minimum energy-delay product. Thus, LB with
four read heads provides the best choice to minimize latency
and energy-delay product. Note, adding seven read heads
dramatically degrades energy-delay product over four read
heads as the energy increase does not compensate for the
minor latency improvement.

As previously mentioned, because Dual does not have
the limitation of not being able to both read and write in
consecutive cycles, it can break the 50% traffic saturation
barrier with only two read access points (one per DWM). The
energy-delay product also reflects the latency advantage of
Dual over the LB. From Dual, the most significant finding
is that Dual with six read heads (three per DWM) results
in no additional latency and can guarantee a read + write
every cycle. However, operating in this configuration would
eliminate the size advantage over STT-MRAM due to the port
every cell, and thus will not be seriously considered. There-
fore, for practical purposes in our hardware implementation,
Dual, CB, and LB with four read heads is used, since they
have lowest total latency while still maintaining a significant
area and power advantage over STT-MRAM. In Section VIII,
we evaluate these configurations for application workloads in
the context of a full-system simulation using Dual, CB, and
LB DWM queues for NoC buffers.

E. Results of Design-Space Analysis

As discussed in Sections VII-A and VII-D, the shift-to-
read and shift-to-read-back schemes consistently outperform
the other shifting policies, and therefore will be the schemes
used during the benchmark simulations in Section VIII. While
having a read head every domain of the queues would elimi-
nate the advantage over STT-MRAM, previous work suggests
it would be feasible to place read heads every other element of
the queue [6]. Doing so results in 24% and 56% improvement
for LB and Dual, respectively, at 10% traffic over having a read
head every third element. Because the standard FIFO queue
size in an NoC is typically eight, we will use four read heads
for CB, LB, and Dual during the benchmark simulations.

In Section VII-B, the latency of the queue saturates at two
shifts-per-cycle for four read heads with a queue size of eight;
therefore, it makes sense to choose a shifting speed that allows
two shifts-per-cycle in Section VIII. Finally, in Section VII-C,
while adding postread shifts provided significant latency
improvements, Dual already has very low latency with four
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read heads and two shifts-per-cycle, and therefore increas-
ing the cycle time would most likely result in an overall
decrease of throughput. We simulate benchmark traffic with
zero postread shifts in Section VIIIL.

VIII. RESULTS AND DISCUSSION

To evaluate the impact of the proposed Racetrack buffer
schemes, we compared the CB, LB, and Dual schemes with the
parameters resulting from the design-space analysis discussed
in Section VII with an SRAM and STT-MRAM baseline for
flit latency, overall system performance (IPC) and energy-
delay product based on the architectural parameters from
Section VI using the Hornet and Sniper simulators. SRAM
represents SRAM FIFO queues of equivalent number and
capacity as the DWM queues, and SRAMHalf represents
SRAM FIFO queues with half the number of queues as the
DWM queues. STT and STTHalf are similarly defined for
STT-MRAM FIFOs.

Fig. 19 summarizes the average flit latency of the Racetrack
buffer schemes normalized to all SRAM! for the PARSEC
benchmarks. As expected, the translation of a head/tail pointer
FIFO concept (CB) performed poorly, resulting in a more
than 3x increase in latency over SRAM. In contrast, LB was
much more competitive than CB, but still increased latency
by 73%. By adding a single-flit SRAM storage element for
the head flit to the Racetrack, the CB (CB + S) and LB
(LB + S) latency overhead can be reduced to 13% and 10%,
respectively. The SRAM storage allows the Racetrack FIFO
to support a limited number of concurrent reads and writes
reducing the performance overhead of the Racetrack-only
approach.

The Dual scheme without adding SRAM actually outper-
forms the CB + S and LB + S schemes but still requires an
8% latency overhead compared to the all SRAM FIFO. Dual,
by alternating between two Racetracks, allows most cases of
successive reads, writes, and concurrent reads and writes to be
handled without introducing stalls. By adding similar SRAM
storage to Dual (Dual + S), the latency drops to within 2%
of the all SRAM case, which is equivalent to the overhead of
reducing the number of SRAM VCs in half.

The impact of these latencies on full-system performance
is shown in Fig. 20 as IPC normalized to all SRAM buffers.
CB resulted in a dramatic 22% IPC degradation, while LB also

'We assume the most optimistic case for the STT-MRAM buffer scheme
has identical performance as SRAM.
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Fig. 20. Full-system performance (IPC) for different Racetrack buffer schemes normalized to SRAM.
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Fig. 21. NoC buffer energy results normalized to SRAM.
B SRAM ® SRAMHalf mSTT mSTTHalf mCB mLB Dual CB+S LB+S Dual+S

=
5}

Normalized Energy-
Delay Product
-
wv o

o o
o

Canneal

Blackscholes

Dedup Ferret

Fig. 22.  NoC buffer energy-delay product normalized to SRAM.

had a significant 7.2% IPC reduction compared to SRAM.
Adding the SRAM head flit storage, the LB + S and Dual
scheme were nearly indistinguishable, requiring a nominal
1.7% overhead over SRAM and were within 0.5% of the
SRAMHalf scheme. Dual 4+ S was nearly indistinguishable
from SRAM.

The energy consumption of the buffers computed from the
information in Table III and the access behavior from each
benchmark run, is shown in Fig. 21 and normalized to SRAM.
In particular, this energy computation utilizes all the shifts,
reads, and writes by the virtual queues over the length of the
benchmark for each workload. As expected, SRAMHalf, STT,
and STTHalf progressively reduce energy. Of the Racetrack
schemes CB does considerably worse than the other Racetrack
schemes despite its reduced static power, while LB and Dual
perform the best. CB + S, LB + S, and Dual + S consume
much higher energy due to the added static power from the
SRAM, but also because most flits are both written to and
read from the Racetrack and SRAM buffer.

The energy-delay product, reported in Fig. 22, shows that
CB is a poor choice, causing a more than 2.4x increase
over SRAM in energy-delay product. LB only provides a 5%
reduction over SRAM, and performs worse than all of the
STT-based schemes. However, Dual has the best result with
a more than 35% savings over SRAM and more than 20%
over STT-MRAM. When adding an additional SRAM buffer,

Fluidanimate

Raytrace Vips X264 Average

CB + S and LB + S are both within 5% of the original SRAM.
The Dual + S is better than STT-MRAM implementation
by only 3%. The added energy degradation of LB + S and
Dual + S make them less valuable than their non-SRAM
buffer counterparts for the energy/performance tradeoff.

IX. CONCLUSION

DWM queues provide new control solutions without an
obvious analog from constructing queues using traditional
array-based memories. While many different control schemes
are possible, it appears that in all cases for DWM, spending
idle cycles to align the leading data with the read access point
(the shift-to-read control strategy) outperforms aligning to the
write access point or staying in place (not proactively shifting).
Also, while for LB the maximum useful shifts in a cycle
provides a clear performance ceiling, when the cycle is sized to
the read access latency, one more than the size of the maximum
gap between read heads G + 1 provides a practical ceiling
on how many shifts-per-cycle are beneficial. Furthermore,
this read latency-based cycle time limitation results in the
saturation region occurring at 50% reads/writes per cycle,
regardless of how many read access points can be included.
Increasing the cycle time to allow shifts before or after a read
in a cycle removes this 50% limit for LB, and would allow the
queue to have consistent performance in a system at the cost
of reduced operating frequency. Dual, which does not have the
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limitation of being unable to perform consecutive read + write
operations, always has a significantly later onset of saturation
and likely can result in a faster operation frequency than LB.

In the context of using DWM to build NoC queues,
while the inherent composition of Racetrack memory can
result in a significant energy reduction from traditional
SRAM, a direct replacement of Racetrack memory with well-
established SRAM FIFO techniques (CB) results in signifi-
cantly reduced performance (over 300% increase in message
latency without an SRAM buffer, and 13% on average with
an additional SRAM buffer). A conventional FIFO imple-
mentation performs poorly whereas the Dual provided a 56%
improvement over SRAM FIFOs with a nominal performance
disadvantage. Due to the reduced number of read—write heads
in DWM as compared to SRAM or STT-MRAM, 2X the
number of DWM queues can occupy the same space as
X STT-MRAM queues. When comparing the Dual results
to the configurations with half the number of queues for
STT-MRAM or SRAM, Dual improves the energy-delay prod-
uct by 17% and 30%, respectively.

Of the three enhancements to the DWM design discussed
in Section III-A, each of which can be applied orthogonally,
we note that logic design optimization provides the most
significant improvements in both the benchmark and the
sensitivity study. For example, while CB saturates at <30%,
LB and Dual delay saturation to >50% and >90% load,
respectively, while also providing latency improvements in
the presaturation region (Fig. 13). In comparison, adding
additional read heads and/or an SRAM buffer can help to
improve the presaturation latency at the cost of increased
energy, and for the latter case, loss of nonvolatility, they
do not provide nearly the same benefit as physical design
improvements such as Dual compared to LB. Thus, potential
future work might include prediction, possibly collaboratively
designed with the scheduler, to preshift for read or write
alignment to reduce the average access latency as a method
to reduce adding additional read heads or SRAM buffers to
achieve latency goals.
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