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Preface

The 15th International Symposium on Applied Reconfigurable Computing (ARC) was
held in April 2019 at TU Darmstadt in Germany. It is highly appropriate that ARC
came to Darmstadt as TU Darmstadt was the first university worldwide to create a
Chair for Electrical Engineering, awarded to Professor Erasmus Kittler in 1882.

Even closer to ARC’s key focus on reconfigurable computing are two globally
renowned research and high-tech institutions, both located in Darmstadt: The GSI
Helmholtz Centre for Heavy Ion Research is a hotbed of high-energy physics research,
employing a number of accelerators, detectors, lasers, and storage rings for advanced
experiments. Discoveries made at GSI include six new elements, among them Darm-
stadtium (Ds, atomic number 110). Many of the scientific instruments employ recon-
figurable devices such as field-programmable gate arrays (FPGAs), which are the key
subject of ARC, in critical functions.

A similarly keen interest in the use of FPGAs is also prevalent in the European
Space Agency (ESA), which operates its European Space Operations Centre (ESOC) in
Darmstadt. FPGAs are investigated by ESA in Darmstadt both for ground as well as for
space use, e.g., as components for compact CubeSats. In the course of ARC 2019,
excursions to both of these fascinating institutions were part of the symposium’s
program.

The main program of the symposium was formed by 20 full papers and seven poster
presentations. They were selected from over 50 submissions from all around the world.
The selection was driven by a thorough review process with more than 200 reviews in
total, which resulted in a competitive process. Besides these high-quality scientific
papers, one tutorial and an invited talk complemented the program.

We hope that you find the selected papers interesting and useful for your own
research or development!

February 2019 Christian Hochberger
Brent Nelson
Andreas Koch
Roger Woods
Pedro Diniz
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Fault-Tolerant Architecture for On-board
Dual-Core Synthetic-Aperture Radar

Imaging

Helena Cruz1,2 , Rui Policarpo Duarte1,2(B) , and Horácio Neto1,2

1 INESC-ID, Rua Alves Redol, 9, Lisbon, Portugal
2 Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

{helena.cruz,rui.duarte,horacio.neto}@tecnico.ulisboa.pt

Abstract. In this research work, an on-board dual-core embedded
architecture was developed for SAR imaging systems, implementing a
reduced-precision redundancy fault-tolerance mechanism. This architec-
ture protects the execution of the BackProjection Algorithm, capable of
generating acceptable SAR images in embedded systems subjected to
errors from the space environment. The proposed solution was imple-
mented on a Xilinx SoC device with a dual-core processor. The present
work was able to produced images with less 0.65 dB on average, than the
fault-free image, at the expense of a time overhead up to 33%, when in
the presence of error rates similar to the ones measured in space envi-
ronment. Notwithstanding, the BackProjection algorithm executed up to
1.58 times faster than its single-core version without any fault-tolerance
mechanisms.

Keywords: Synthetic-Aperture Radar · BackProjection Algorithm ·
Approximate computing · FPGA · Dual-core · SoC

1 Introduction

There is an increasing need for satellites, drones and Unmanned Aerial Vehi-
cles (UAVs) to have lightweight, small, autonomous, portable, battery-powered
systems able to generate Synthetic-Aperture Radar (SAR) images on-board and
broadcasting them to Earth, avoiding the time-consuming data processing at the
receivers.

SAR is a form of radar used to generate 2D and 3D images of Earth which
is usually mounted on moving platforms such as satellites, aircrafts and drones.

This work was supported by national funds through Fundação para a Ciencia e a
Tecnologia (FCT) with reference UID/CEC/50021/2019, and project SARRROCA,
“Synthetic Aperture Radar Robust Reconfigurable Optimized Computing Architec-
ture” with reference: PTDC/EEI-HAC/31819/2017, funded by FCT/MCTES through
national funds, and POCI - Programa Operacional Competitividade e Internacional-
ização e PORLisboa - Programa Operacional Regional de Lisboa.

c© Springer Nature Switzerland AG 2019
C. Hochberger et al. (Eds.): ARC 2019, LNCS 11444, pp. 3–16, 2019.
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https://doi.org/10.1007/978-3-030-17227-5_1


4 H. Cruz et al.

SAR can operate through clouds, smoke and rain and does not require a light
source, making it a very attractive method to monitor the Earth, in particular,
the melting of polar ice-caps, sea level rise, wind patterns, erosion, drought
prediction, precipitation, landslide areas, oil spills, deforestation, fires, natural
disasters such as hurricanes, volcano eruptions and earthquakes.

Space is a harsh environment for electronic circuits and systems as it can
cause temporary or permanent errors on them. Therefore, systems designed for
spacecrafts or satellites must be reliable and tolerate space radiation. The main
radiation sources in space are: high-energy cosmic ray protons and heavy ions,
protons and heavy ions from solar flares, heavy ions trapped in the magneto-
sphere and protons and electrons trapped in the Van Allen belts [3,15,20]. These
radiation sources are capable of deteriorating the electronic systems and provok-
ing bit-flips, leading to failures in electronic systems [2,11,14,16]. Fault tolerance
mechanisms are used to increase the reliability of these systems at the expense
of extra mechanisms, processing time and power.

BackProjection is an algorithm for SAR image generation that is capable of
generating high quality images. BackProjection is considered the reference algo-
rithm for image formation since it does not introduce any assumptions or approx-
imations regarding the image. However, it is a very computationally intensive
algorithm. Therefore, typical fault-tolerance mechanisms will introduce a huge
penalty on its performance.

System-on-Chip (SoC) Field-Programmable Gate Arrays (FPGAs) were cho-
sen as a target device because of their power efficiency, performance and recon-
figurability, which are very important characteristics for space systems. Further-
more, the use of a SoC FPGA will enable future developments of dedicated
hardware accelerators to improve the performance of the system.

2 Background

2.1 Synthetic-Aperture Radar

SAR is a form of radar used to generate 2D and 3D high resolution images of
objects. Unlike other radars, SAR uses the relative motion between the radar and
the target to obtain its high resolution. This motion is achieved by mounting the
radar on moving platforms such as satellites, aircrafts or drones, as illustrated
in Fig. 1. The distance between the radar and the target in the time between
the transmission and reception of pulses creates the synthetic antenna aperture.
The larger the aperture, the higher the resolution of the image, regardless of the
type of aperture used. To generate SAR images, it is necessary to use an image
generation algorithm, such as the BackProjection Algorithm, described below.

2.2 BackProjection Algorithm

The BackProjection algorithm takes the following values as input: number of
pulses, location of the platform for each pulse, the carrier wave number, the radial
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Fig. 1. Example of geometries involved in a SAR system.

distance between the plane and target, the range bin resolution, the real distance
between two pixels and the measured heights. The BackProjection algorithm,
from [1], performs the following steps for each pixel and each pulse:

1. Computes the distance from the platform to the pixel.
2. Converts the distance to an associated position (range) in the data set

(received echoes).
3. Samples at the computed range using linear interpolation, using Eq. 1 [13].

gx,y(rk) = g(n) +
g(n + 1) − g(n)
r(n + 1) − r(n)

· (rk − r(n)) (1)

4. Scales the sampled value by a matched filter to form the pixel contribution.
This value is calculated using Eq. 2, and dr is calculated using Eq. 3, as in
[13].

eiω2|−→rk| = cos(2 · ω · dr) + i sin(2 · ω · dr) (2)

dr =
√

(x − xk)2 + (y − yk)2 + (z − zk)2 − rc (3)

5. Accumulates the contribution into the pixel. The final value of each pixel is
given by Eq. 4 [13].

f(x, y) =
∑

k

gx,y(rk, θk) · ei·ω·2·|−→rk| (4)

Table 1 summarizes the algorithm’s variables and their meaning.
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Table 1. Variables and their meaning

Variable Meaning

g(n) Wave sample in the previous adjacent range bin

g(n + 1) Wave sample in the following adjacent range bin

r(n) Corresponding range to the previous adjacent bin

r(n + 1) Corresponding range to the following adjacent bin

rk Range from pixel f(x, y) to aperture point θk

dr Differential range from platform to each pixel versus center of swath

xk, yk, zk Radar platform location in Cartesian coordinates

x, y, z Pixel location in Cartesian coordinates

rc Range to center of the swath from radar platform

f(x, y) Value of each pixel (x, y)

θk Aperture point

rk Range from pixel f(x, y) to aperture point θk

ω Minimal angular velocity of wave

gx,y(rk, θk) Wave reflection received at rk at θk

Algorithm 1.1. BackProjection algorithm pseudocode.
Source: PERFECT Manual Suite [1].
1: for all pixels k do
2: fk ← 0
3: for all pulses p do
4: R ← ||ak − vp||
5: b ← �(R − R0)/ΔR�
6: if b ∈ [0, Nbp − 2] then
7: w ← �(R − R0)/ΔR� − b
8: s ← (1 − w) · g(p, b) + w · g(p, b + 1)
9: fk ← fk + ei·ku·R

10: end if
11: end for
12: end for

The pseudocode to compute the aforementioned steps is shown in Algo-
rithm1.1. ku represents the wave number and is given by 2πfc

c , where fc is
the carrier frequency of the waveform and c is the speed of light, ak refers to the
position of the pixel, and vp, corresponds to the platform position.

The BackProjection algorithm implementation used in this study was taken
from the PERFECT Suite [1] and is written in C. This suite also contains three
input image sets: small, medium and large, which produce images of sizes 512 ×
512, 1024 × 1024 and 2048 × 2048 pixels, respectively.
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2.3 SAR Image Quality Assessment

The metric used to evaluate the quality of a SAR image is the Signal-To-Noise
Ratio (SNR). The SNR measures the difference between the desired signal and
the background noise, see Eq. 5. The larger the SNR value, the greater the agree-
ment between the pixel values. Values above 100 dB are considered reasonable
[1].

SNRdB = 10 log10

( ∑N
k=1 |rk|2

∑N
k=1 |rk − tk|2

)

(5)

– rk - Reference value for k-th pixel.
– tk - Test value for k-th pixel.
– N - Number of pixel to compare.

2.4 Fault-Tolerant SAR Image Generation

Precise fault-tolerant mechanisms consist of repetitions of the same operations
in one or more units and evaluate which is the most voted result, regarding it as
the correct one. The most common one is Triple Modular Redundancy (TMR)
and consists of having three entities calculating the same value and have a voter
entity compare the results. The most common output value is assumed to be
the correct one. This mechanism is explained in [8,10]. In the aforementioned
mechanism more than twice the power is consumed, and a latency overhead is
always required.

Fault-tolerant versions of SAR image generation algorithms are presented in
[8,10,19]. [10] proposes a fault tolerance mechanism for the Fast-Fourier Trans-
former (FFT) algorithm based on range and azimuth compression by imple-
menting Concurrent Error Detection (CED) and using weighted sum, and also
implements scrubbing. [19] also presents a mechanism for FFT algorithm based
on a weighted checksum encoding scheme. [8] describes a Fault-Management Unit
which is responsible for the following functions: a scrub controller to periodically
reload the FPGA configurations data, a fault detection circuit to periodically
test the hardware, a switching circuit responsible for removing a faulty processor
and replace it by an alternative processor, and a majority voter circuit, which
is responsible for comparing the results of a TMR mechanism used during the
SAR algorithm execution.

2.5 Approximate Computing Fault Tolerance

If small variations in the computation of image processing algorithms are intro-
duced, they may not be perceptible at all. Therefore, such algorithms allow
some deviations from the correct value while still having valid images. In this
context, this paper proposes a novel fault-tolerance mechanism which relies on
approximations of the computations when in the presence of errors.

Reduced-Precision Redundancy (RPR) is used to reduce the overhead intro-
duced by TMR by using a full-precision computation and two reduced-precision
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Fig. 2. Workload distribution of the developed fault tolerance mechanism between the
CPU cores.

computations. RPR can be implemented in hardware, following an architec-
ture similar to TMR, or software, following an architecture similar to temporal
redundancy. The full-precision computation corresponds to the “original com-
putation” and the other two computations to approximations. Computing the
approximations reducing the overhead of the redundant computations, hence it
is more efficient than calculating a full-precision values. However, the overhead
of the voting process is kept constant. Examples of applications that use RPR
are [12,17].

In [4], the authors proposed a mechanism for Single Event Upset (SEU)
mitigation, which relies only on the comparison of the full-precision result against
only one approximation, obtained from a Look-Up Table (LUT). Due to the lack
of precision, only the Most Significant Bits (MSbs) are compared. It they are
equal, the full-precision result is passed to the output of the arithmetic units,
otherwise, the approximate result is used. While it is not possible to determine
which unit is the acting as the faulty one, the full-precision computation is always
more prone to error than the reduced one.

3 Dual-Core Fault-Tolerant SAR Imaging Architecture

3.1 Proposed Architecture

In the BackProjection algorithm, the pixel computations are the most intensive
set of computations.

The calculation of each pixel, or Backprojection Unit (BPU), is done in par-
allel, which means each core computes one pixel at a time. For this reason, it
is protected by RPR, reducing the total overhead in the system. A scheme of
the architecture of the fault tolerance mechanism is displayed in Fig. 2, where
it is possible to observe which parts of the Backprojection (BP) algorithm are
protected. The approximations are calculated after the full-precision computa-
tions. The approximation computation and the error detection are represented
in Fig. 2 as Reduced-Precision Backprojection Units (rpBPUs).
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Table 2. Dual-core execution times in function of the number of pixels per batch. The
longer execution per batch number is displayed in bold in the table.

Original Pixels in batch

4 8 16 32

Core 0 — 240.4 s 240.6 s 241.5 s 241.7 s

Core 1 — 239.9 s 239.3 s 241.0 s 239.4 s

Total 477.4 s 480.3 s 479.9 s 482.6 s 480.4 s

3.2 Algorithm Parallelization

In this algorithm, the pixel computations have no dependencies, therefore, they
can be computed in parallel. The workload was divided between the cores stat-
ically since dynamic load-balancing introduces overhead in the system. The
results of this test are presented in Table 2, where the execution time is pre-
sented in function of the number of pixels per batch. The tested number of
pixels per batch was 4, 8, 16 and 32.

From Table 2 it is possible to conclude that the number of BPUs per batch
does not have a significant influence on the total execution time since it is smaller
or equal than 1%. It is also possible to observe that the workload is relatively
balanced, since there are not any accentuated differences in the execution times
of each core. This leads to conclude that dynamic load-balancing is not necessary
and that the batch number is also indifferent. The final chosen number of units
per batch was 4, since it resulted in a similar execution time on both cores.

3.3 Modified Reduced-Precision Redundancy

This work uses a modified version of the RPR mechanism, which computes only
one approximation (rpBPU) after computing the full precision result (BPU) to
perform the comparison. The architecture of the modified RPR mechanism is
presented in Fig. 3.

Both full-precision and reduced-precision values are compared by computing
their difference. If the difference is greater than an acceptable threshold (T) from
the reduced-precision value, it is assumed the value is incorrect and the reduced-
precision value is used instead. If not, the full-precision result is assumed correct
and is used. The reduced-precision value is copied to the output when an error
is detected because it is calculated in a shorter amount of time, and thus it
is less likely to have been affected by a fault. The reduced-precision values are
calculated using the aforementioned optimizations.

3.4 Algorithm Profiling

To produce a reduced computation of the BPU it was necessary to profile
the source code to determine which were the most time consuming operations.
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Moreover, the operations that last longer are the ones that are more prone to
be subjected to error. In future work, this profiling will also be important to
determine which operations to port into a hardware accelerator.

For profiling, the software implementation of the BackProjection algorithm
ran on the target device, Zynq FPGA from Xilinx, with the small image as input.
It took approximately 8 min to generate this image, using the o31 optimization
level. Other image sizes required processing times greater than 156 min. The
implementation of the algorithm was profiled using gprof2. Table 3 shows the
percentage of time dedicated to the most time consuming instructions in the
BackProjection algorithm.

Table 3. BackProjection algorithm profiling.

Operation Execution time (%)

Sine 42.05

Cosine 42.54

Others 15.41

The trigonometric functions are responsible for over 80% of the execution
time of the algorithm, which means that the potential for the reduced-precision
redundancy mechanism lies within these functions. The rest of the algorithm,
including input and output operations, is executed in under 16% of the time.

3.5 Trigonometric Functions Optimization

The optimizations for the trigonometric functions tested are described below
and the results are presented in Table 4.

– COordinate Rotation DIgital Computer (CORDIC) algorithm [18];
– Taylor Series;
– Wilhem’s LUT3;

Fig. 3. The architecture of the modified RPR fault-tolerance mechanism.

1 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.
2 https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html mono/gprof.html.
3 https://www.atwillys.de/content/cc/sine-lookup-for-embedded-in-c/.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://www.atwillys.de/content/cc/sine-lookup-for-embedded-in-c/
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Table 4. Comparison of the results produced by different optimization algorithms for
the trigonometric functions.

Design Variation Time [s] SNR [dB]

Baseline 477.4 138.9

CORDIC 10 iterations 238.8 60.5

15 iterations 262.7 90.5

20 iterations 286.3 120.2

25 iterations 311.3 136.1

30 iterations 335.1 136.3

Taylor Series 4 terms 186.0 71.8

5 terms 192.3 103.8

6 terms 201.5 133.6

7 terms 210.4 135.3

Wilhem’s Look-Up Table n/a 123.2 69.1

Libfixmath Taylor I 179.3 54.5

Taylor II 158.8 33.6

LUT 134.8 99.2

Ganssle 3 coefficients 163.5 66.3

4 coefficients 167.3 105.2

5 coefficients 170.7 118.3

7 coefficients 176.5 134.8

7 coefficients 179.8 135.3

– libfixmath4;
– Ganssle optimizations [9].

Observing the results on Table 4, the following conclusions can be drawn. All
optimizations are indeed faster than the original version, which was expected.
However, most of these optimizations lead to a large precision loss.

The implementation of the CORDIC algorithm used to test was developed
by John Burkardt5. CORDIC is the algorithm with the worst performance, with
all its tested versions being slower than any other version of another algorithm.

The results obtained from the Taylor Series algorithm were outperformed by
the Ganssle methods, both in SNR and execution time.

The Wilhem’s Look-Up Table method was the fastest overall and outper-
formed some variations of the other algorithms. It is a good alternative in sys-
tems with very limited memory since the LUT table occupies 66 bytes only,
however, if memory does not represent an issue, the libfixmath library is a
better alternative.

4 https://github.com/PetteriAimonen/libfixmath.
5 https://people.sc.fsu.edu/∼jburkardt/c src/cordic/cordic.html.

https://github.com/PetteriAimonen/libfixmath
https://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.html


12 H. Cruz et al.

Besides the LUT variation, libfixmath provides two functions based on Tay-
lor Series. These two variations are outperformed by the Ganssle optimizations
and even the author’s Taylor Series implementation, with worse performance
and less precision. libfixmath LUT variation is one of the best options for the
BackProjection optimization.

The Ganssle optimizations are a good alternative to replace the trigonomet-
ric functions in the BackProjection algorithm. The first variation, the one that
uses 3 coefficients to calculate the final result, is outperformed by both the LUT
methods. Nevertheless, the other variations provide higher precision without a
significant increase in the execution time. There are two functions that vary only
in the type of variables they use: single precision or double precision. Double pre-
cision is more subject to errors since it requires more bitwise calculations and
the gain in precision is not significant to the point of being worth computing
them in prone to error environments. The 4-coefficient variation does not provide
much more precision when compared to the libfixmath LUT function and the
execution time increases by more than 30 s, making the former a better alterna-
tive. The 5-coefficient variation provides more precision with an execution time
increase of less than 36 s. The 7-coefficient (implemented with single precision)
function provides a precision very similar to the original, with a difference of
only less than 4 dB in the SNR, and an increase of less than 43 s.

To sum up, the functions that represent a better option for the BackProjec-
tion algorithm optimization are the libfixmath LUT and the Ganssle variations
of 5 and 7 coefficients. These three functions are used in the implementation of
the RPR mechanism.

4 Implementation Results

The research design was implemented on a Pynq-Z2 board from TUL. This
board contains a Zynq XC7Z020 device from Xilinx, an external 512 MB DDR3
memory, and I/O peripherals. The Zynq device contains a Programmable Logic
(PL) and a Processing System (PS). The PL corresponds to a Xilinx 7-series
FPGA. The PS main components are a dual-core ARM Cortex-A9 processor
and a memory controller.

4.1 Precision Optimization Evaluation

Algorithm 1.1 was implemented using three precision reduction optimizations:
the libfixmath LUT and the 5 and 7-coefficient Ganssle trigonometric func-
tions. The execution times of the complete architecture for each of these opti-
mizations is presented in Table 5. As can be observed, the architecture imple-
mented using the libfixmath is 1.58 times faster than the serial original version
of the algorithm. Regarding the 5-coefficient Ganssle algorithm, the execution
was 1.50 times faster than the original and the 7-coefficient Ganssle algorithm
was 1.49 times faster than the original version. When compared to the dual-
core version of the BackProjection algorithm, the final architecture using the



Fault-Tolerant Architecture for On-board Dual-Core SAR Imaging 13

Table 5. Comparison between the execution times depending on the optimization.

Design Baseline
(single core)

Baseline
(dual core)

Libfixmath Ganssle
5-coef.

Ganssle
7-coef.

Exec. time [s] 477.4 240.4 301.5 317.3 319.7

Table 6. Results of RPR with Agressive Fault-Injection.

Optimization libfixmath 5-coefficient Ganssle 7-coefficient Ganssle

#1 55.4 37.9 −62.3

#2 63.4 79.8 103.3

#3 −inf 82.1 94.7

libfixmath LUT method, the 5-coefficient and 7-coefficient Ganssle algorithms
introduce an overhead of 25%, 32% and 33%, respectively.

4.2 Solution Evaluation

To test the developed architecture, a set of tests were performed. The fault
injection was implemented in software and at compile-time by introducing bit-
flips according to a specific distribution. Measurements performed in the L2
space were reported in6 and on average there is one SEU per day. However,
other locations in space induce more bit-flips.

Regarding the Reduced-Precision Redundancy mechanism, the objective was
to observe the final quality of the generated images, using the SNR, in the pres-
ence of faults. To test the this mechanism, the following tests were implemented.
To inject faults, a fault injection function was called after every statement and
a bit-flip could or not affect the last modified variable. The frequency of the
bit-flips depends on the test.

– Test RPR With Aggressive Fault Injection. The average occurrences of
bit-flips in space is 1 per day. To evaluate the mechanism on a more aggressive
scenario, with worse conditions, this fault injection follows a normal distri-
bution with a mean value of 40 and a standard deviation of 5. The results of
this test are presented in Table 6.

– Test RPR With 1440, 2880 and 8640 Bit-Flips per Day. Considering
the average of bit-flips, a worse-case scenario was tested: an average of 1440
bit-flips per day, or one every 60, 30 and 10 s, respectively. The bit-flip affects
a random bit in a random variable. The results of this test are presented in
Table 7.

Each of the RPR tests was executed three times for each of the optimizations
implemented: libfixmath, 5-coefficient and 7-coefficient Ganssle algorithms.
6 http://herschel.esac.esa.int/Docs/Herschel/html/ch04s02.html.

http://herschel.esac.esa.int/Docs/Herschel/html/ch04s02.html
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Table 7. Results of RPR with 1440, 2880, and 8640 bit-flips per day.

Optimization

libfixmath 5-coefficient Ganssle 7-coefficient Ganssle

1440 #1 138.9 dB 138.8 dB 19.9 dB

#2 138.6 dB 138.5 dB 134.8 dB

#3 138.8 dB 138.8 dB 138.8 dB

2880 #1 97.8 dB 67.9 dB 109.9 dB

#2 8.3 dB 129.1 dB 34.4 dB

#3 90.3 dB 101.1 dB 83.3 dB

5 Discussion

The overall results for the executions with injection of 1440 bit-flips were close
to the original SNR value of the image, except the first execution of the 7-
coefficient Ganssle algorithm. The other iterations deviated from the original
value a maximum of 4.1 dB and an average of 0.65 dB, when in the presence
of errors. The low SNR value of the first iteration of the 7-coefficient Ganssle
algorithm is justified by the fault injection in random variables. Certain variables
are more critical than others, for example, the final result of the approximation
has a greater impact on the final image quality.

Most of the results for very aggressive error rates were not considered accept-
able, since the SNR values are inferior to 100 dB. Two iterations, the third of
libfixmath and the first of the 7-coefficient Ganssle algorithm were either minus
infinite or a negative value, which generate a blank image.

The overall SNR values obtained for 2880 bit-flips are inferior when compared
to the results of 1440 bit-flips, which was expected since the rate of bit-flips
doubled. The 5-coefficient Ganssle algorithm provided the best results of this
test: two out of three SNR values are considered acceptable and the other has a
SNR almost half of the original value. The results obtained using the 7-coefficient
Ganssle algorithm generate one acceptable image. For this test, the optimization
which provided the best results was the 5-coefficient Ganssle algorithm.

The rate of 8640 bit-flips represents a fault injection of 10 bit-flips per sec-
ond. At this rate the proposed mechanism was not successful at detecting and
correcting faults. The values in the results table are nan, −∞ or negative values,
which generate a blank image. A SNR equal to nan happens when a bit-flip
affects a floating-point variable and the resulting value is not considered a valid
floating-point representation. Regarding the SNR of −∞, the calculation of this
metric involves a logarithm operation, which equals −∞ in C when calculating
the logarithm of 0. The mechanism became ineffective due to the elevated rate
of bit-flips, leading to the conclusion the mechanism is only able to tolerate a
certain rate of faults.
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6 Conclusions and Future Work

This work explored the research and development of a fault-tolerant architecture
for SAR imaging systems capable of generating SAR images using the Backpro-
jection Algorithm in a space environment.

The modified RPR mechanism proposed avoids the use of more costly mech-
anisms, such as TMR, while taking advantage of the dual-core processor on the
Zynq device to improve performance. The main drawback of this mechanism, is
the inability to detect or correct control errors.

The final architecture consists of a dual-core implementation of the Backpro-
jection Algorithm, protected by the modified Reduced-Precision Redundancy
mechanism. Depending on the optimization used, the overhead of the fault tol-
erance mechanism ranges from 25% to 33% when compared to the dual-core
version of the Backprojection Algorithm.

In spite of the limitations of a software implementation the modified RPR
mechanism, the algorithm was tested under pessimistic conditions, different from
the average use scenario. Furthermore, the developed architecture with an app-
roach of RPR was demonstrated to be a good alternative for intensive space
applications. Future work involves exploring optimization techniques such as
the ones described in [5–7].
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Abstract. Hyperspectral image (HSI) classification has been widely
adopted in remote sensing imagery analysis applications which require
high classification accuracy and real-time processing speed. Convolu-
tional neural networks (CNNs)-based methods have been proven to
achieve state-of-the-art accuracy in classifying HSIs. However, CNN
models are often too computationally intensive to achieve real-time
response due to the high dimensional nature of HSI, compared to tra-
ditional methods such as Support Vector Machines (SVMs). Besides,
previous CNN models used in HSI are not specially designed for efficient
implementation on embedded devices such as FPGAs. This paper pro-
poses a novel CNN-based algorithm for HSI classification which takes
into account hardware efficiency and thus is more hardware friendly
compared to prior CNN models. An optimized and customized archi-
tecture which maps the proposed algorithm on FPGA is then proposed
to support real-time on-board classification with low power consump-
tion. Implementation results show that our proposed accelerator on a
Xilinx Zynq 706 FPGA board achieves more than 70× faster than an
Intel 8-core Xeon CPU and 3× faster than an NVIDIA GeForce 1080
GPU. Compared to previous SVM-based FPGA accelerators, we achieve
comparable processing speed but provide a much higher classification
accuracy.

Keywords: Hyperspectral image classification · Deep learning ·
Convolution neural network · Field-programmable gate array

1 Introduction

Hyperspectral images (HSI) contain spectrum information for each pixel in the
image of a scene, and can be used in finding objects and identifying materials
or detecting processes [4]. Hyperspectral images are widely employed in many
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applications from airborne and satellite remote sensing mission [19], to oil spill
detection [16], early cancer diagnosis [15] and environmental monitoring [14].
HSI classification involves assigning a categorical class label to each pixel in the
image, according to the corresponding spectral and/or spatial feature [2]. With
the advent of new hyperspectral remote sensing instruments and their increased
temporal resolutions, the availability and dimensionality of hyperspectral data
are continuously increasing [12]. This demands very fast processing solutions for
on-board space platforms in order to reduce download bandwidth and storage
requirements [19], making reconfigurable hardware such as FPGAs very promis-
ing to perform and accelerate HSI classification methods.

Among the approaches explored for HSI classification, convolutional neural
network (CNN) based methods such as BASS Net [17] and HSI-CNN [13] are
favourable over the others because of their greatly improved accuracy for some
popular benchmark datasets, with the ability to use extensive parameters to
learn spectral features of a HSI. However, these CNN-based algorithms have
great computational complexity due to the large dimensionality of hyperspec-
tral images. Besides, prior CNN models used in HSI classification may not be
hardware efficient to be deployed on embedded systems such as FPGAs without
any modifications since they are not specially designed for FPGAs.

In order to address the above challenges and achieve fast processing speed on
embedded devices, this work proposes a novel CNN architecture based on BASS
Net [17], and our model is more hardware efficient for implementation on FPGAs
while maintaining similar accuracy as the original BASS Net. Besides, we propose
and optimize the hardware architecture to accelerate our proposed network in
FPGA by parallel processing, data pre-fetching and design space exploration.
Compared to previous SVM-based FPGA accelerators, the proposed accelerator
has almost the same scale of processing speed on the same scale of FPGA device,
but provides a lot higher accuracy results.

The main contributions of this work are summarized as follows:

– A novel network for HSI classification which takes into account hardware
efficiency, and thus achieves real-time on-board HSI classification with both
high accuracy and fast processing speed (Sect. 3);

– A highly optimized hardware architecture which maps the proposed CNN
model onto FPGAs, and it processes all the layers in on-chip memories to
enable high throughput of real-time HSI applications (Sect. 4);

– Evaluation of the proposed accelerators on a Xilinx ZC706 FPGA board
across four popular benchmark datasets. Our accelerator achieves an overall
classification accuracy of 95.8%, 99.4%, 95.2% and 98.2% respectively which
largely outperforms previous SVM-based FPGA accelerators, and it achieves
around 10 to 25 us/pixel processing speed which is about 80× and 3× faster
than the respective CPU and GPU designs (Sect. 5).
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2 Background and Related Work

2.1 Hyperspectral Imagery

Unlike traditional RGB image, hyperspectral images are typically represented as
a data cube in dimension (x, y, λ), where x and y represent spatial dimensions
with space information of pixels, and λ represents the third dimension with
spectral information for distinguishing different materials and objects.

Hyperspectral image (HSI) classification is the task to assign a class label
to every pixel in an image. Several approaches have been explored in literature
for HSI classification. K-nearest neighbors (k-NN) based methods use Eucledian
distance in the input space to find the k nearest training examples and a class
is assigned on the basis of them [17]. Support Vector Machine (SVM) based
methods introduce dimensionality reduction in order to address the problem
of high spectral dimensionality and scarcity of labeled training examples, with
SVM classifiers used in the reduced dimensional space. Although these methods
adopt parallel processing [19] and are suitable for FPGA-based acceleration, they
often behave weakly in terms of the classification accuracy when tackling large
datasets [17].

2.2 CNN-Based HSI Classification

Recently, deep learning based methods have achieved promising performance in
HSI classifications [3] due to their ability to use extensive parameters to learn
features. Deep learning methods [20] utilize spectral-spatial context modeling in
order to address the problem of spatial variability of spectral signatures. These
methods often use convolutional neural networks (CNNs) for feature learning and
classification in an end-to-end fashion. CNNs adopt extensive parameter-sharing
to tackle the curse of dimensionality. They extract and learn representative fea-
tures via multiple times of back propagation. Using features is more effective
than rule-based algorithms for recognition tasks.

One of the most popular CNN models for HSI classification is BASS Net [17]:
a deep neural network architecture that learns band-specific spectral-spatial fea-
tures and gives state-of-the-art performance without any kind of data-set aug-
mentation or input pre-processing. While this algorithm leads to high classifi-
cation performance due to efficient band-specific feature learning, the model is
very computationally intensive, which often requires huge amount of resources
and energy. Nevertheless, this network has parallelism in many computational
blocks and thus can be prallelized in hardware platforms such as FPGAs. How-
ever, the BASS Net is not suitable to be deployed on embedded systems without
modification. The main challenge is that the CNN architecture does not have
identical layer parameters, which increases the difficulty of designing generic
hardware modules that support varying parameters. For example, there are 1-D
convolutional layers with different kernel sizes such as 3 × 1 and 5 × 1 imple-
mented using spectral information and 2-D convolutional layers applied using
spatial information. Fully-connected layers are also applied after all convolution
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layers for summarization and output classification probability. Because of these
reasons, direct mapping of this algorithm to FPGAs may not be efficient and
cannot satisfy the requirement of real-time processing without the proposal of
algorithm adaptions and efficient hardware architecture.

2.3 Related Work

Prior work includes deploying SVM-based HSI classification on FPGA for accel-
eration and utilizing GPUs for algorithmic speed up on CNN-based methods.
There is exhaustive literature on accelerating the traditional algorithms such as
SVMs using FPGAs. Wang et al. [19] proposed a novel accelerator architecture
for real-time SVM classification. The accelerator uses data flow programming
to achieve high performance and can be usd for different applications. Tajiri
et al. [18] proposed a hyperspectral image classification system on FPGA, by
introducing the Composite Kernel Support Vector Machine and reducing the
computational complexity. These former accelerators achieve real time process-
ing speed but they do not achieve high classification accuracy and therefore are
not favoured over CNN-based methods.

Recently CNN-based HSI approaches have been proposed by many
researchers. Santara et al. [17] presented an end-to-end deep learning architecture
that extracts band specific spectral-spatial features and performs landcover clas-
sification. Luo et al. [13] proposed a novel HSI classification model to reorganize
data by using the correlation between convolution results and to splice the one-
dimensional data into image-like two-dimensional data to deepen the network
structure and enable the network to extract and distinguish the features better.
Lee et al. [5] built a fully convolutional neural network with a total of 9 layers,
which is much deeper than other convolutional networks for HSI classification.
To enhance the learning efficiency of the proposed network trained on relatively
sparse training samples, residual learning was used in their work. However, all
of these efforts have only focused on the improvement of the accuracy of these
algorithms on CPU or GPUs, the performance of their models have never been
reported or considered in prior works. Therefore, it is unclear if these algorithms
are suitable for on-board platforms and it is not straightforward to map them
into embedded devices for real-time processing.

To the best of the authors’ knowledge, this is the first work that proposes
FPGA architecture for CNN-based HSI classifications. Our FPGA-based acceler-
ator achieves high accuracy, fast processing speed and lower power consumption,
which is suitable for on-board space platforms.

3 Proposed CNN-Based HSI Classification Model

Deep neural network architectures such as BASS Net are based on pixel-wise
classification results of the input image. That is to say, for each pixel, the input
to the network is the pixel Xi from the image with its p×p neighbourhoods (for
spatial context) in the form of a p × p × Nc volume, where Nc is the spectral
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bands of the dataset scene, i.e., the number of channels of the input image, and
p is called the patch size. The output of the network is the predicted class label
yi for Xi. Leng et al. [6] studied different strategies to take account of neighbour
pixels and extract smaller spectral cube with labelled central pixel from a HSI
for training samples. These strategies are single pixel, four neighbour pixels and
eight neighbour pixels, i.e., the patch size is 3, as shown in Fig. 1.

Fig. 1. (A) Hyperspectral Image cube. (B) Extraction of data cube with labeled at
central pixel from a raw HSI.

3.1 Structure Description

We propose our network based on the structure of BASS-Net [17]. The motiva-
tion behind the network is that it uses significantly fewer parameters compared
to other models and exhibits parallelism at inference stage. We further modify
the model such that it is more efficient for FPGA implementation. The patch
strategy is altered to 24 neighbours, i.e., the input patch size is 5 (see Fig. 1) to
adapt our model as it performs even better on HSI classification procedures. The
proposed model processes through the following three stages at both training and
inference, as shown in Fig. 2.

Spectral Feature Selection and Band Partitioning. In this step, the p ×
p × Nc input volume is taken as input by a 3 × 3 or 1 × 1 spatial convolution
for feature selection; then the spectral dimension of the output is split into Nb

bands with equal bandwidth and passed as input to the second step for parallel
processing;

Spectral Feature Learning. This step applies Nb parallel networks, with one
for each band: the input is first flattened to one dimension along the spatial
dimensions; a 3×3 convolution filter is applied in the spectral dimension to learn
spectral features; the outputs of the parallel networks are then concatenated and
fed into the summarization and classification stage.

Summarization and Classification. This step summarizes the concatenated
outputs of the band-specific networks of the previous stage by using a set of fully
connected layers, each of which is followed by a ReLU layer. A C-way softmax
layer performs the final classification by calculating the conditional probabilities
of the C output classes.
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Fig. 2. Overall structure of our model architecture.

3.2 Hardware Adaptations

There are some tunable parameters in the network architecture for different
design choices: the input patch size p, the number of parallel bands Nb in the
second stage and the convolutional kernel in the first stage. Compared to BASS
Net, three major changes are introduced for hardware efficiency and accuracy
improvement:

(1) We utilized 3×3 CNN filters in stage 1 for spatial dimension learning, which
amplifies spatial signatures and are identical to the convolutions in stage 2;

(2) 1-D convolutions of kernel size 3 × 1 and 5 × 1 in stage 2 are all replaced
by 2-D 3× 3 fixed kernel size for generic hardware module design and reuse,
thus the accuracy is improved due to the increased parameters;

(3) In stage 2, the data are flattened along the spatial dimension and split into
Nb segments along the spectral dimension. We choose Nb from 2, 4 or 8 for
easy parallel processing in FPGA technology.

For block 1, we also apply 3 × 3 convolution for input patch size of 5 × 5 × Nc

or 1 × 1 convolution for input patch size of 3 × 3 × Nc. One of the strategies is
chosen for different datasets in order to have a trade-off between the accuracy
and processing speed.

Our final network1 parameter configurations are summarized in Table 1, and
the final choices of Nb for different datasets are described in Sect. 5.1.

3.3 Training Process

Regularization Methods. Trainable parameters are shared across each band in
block 2 in order to minimize hardware resources and design space. Bands must
be placed sequentially to allow back-propagation and avoid gradient vanishing
problem. Dropout is applied on the fully-connected layers in block 3 to prevent
over-fitting.

1 https://github.com/custom-computing-ic/CNN-Based-Hyperspectral-Image-
Classification.

https://github.com/custom-computing-ic/CNN-Based-Hyperspectral-Image-Classification
https://github.com/custom-computing-ic/CNN-Based-Hyperspectral-Image-Classification
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Table 1. The proposed CNN-based HSI network with input patch size 5 × 5 and
Nb = 4.

Input patch size: 5× 5× 220 and Nb = 4

Layer Type Input volume Output volume Kernel

Block 1 layer 1 3× 3 conv 5× 5× 220 3× 3× 220 3× 3× 220× 220

Split into Nb bands along spectral dimension and each is run in Blcok 2

Block 2 layer 1 3× 3 conv 9× 55× 1 7× 53× 2 3× 3× 1× 2

layer 2 3× 3 conv 7× 53× 2 5× 51× 4 3× 3× 2× 4

layer 3 3× 3 conv 5× 51× 4 3× 49× 4 3× 3× 4× 4

layer 4 3× 3 conv 3× 49× 4 1× 47× 4 3× 3× 4× 4

The output of Nb Blocks concatenated

Block 3 layer 1 Fully Connect layer 752× 1 120× 1 752× 120

layer 2 Fully Connect layer 120× 1 9× 1 120× 9

Loss Functions. We employ cross-entropy loss function as error measure. The
training process aims to minimise the loss value to obtain a distribution that
is the best capture of the data set. Given a training dataset: {Xi, yi}Ni=1, the
designated loss function is described as:

L(p, p̂) = −
N∑

i=1

p(x) log p̂(x) (1)

where p(x) is the probability distribution of our models, and p̂(x) is the actual
distribution that represents the dataset.

Optimizer. We used Adaptive Moment Estimation to update kernel weights and
biases with initial learning rate 0.0005, β1 = 0.9 and β2 = 0.999.

4 Proposed CNN-Based HSI Accelerator

4.1 Hardware Architecture

Based on our proposed network, we design the hardware architecture of the
FPGA accelerator for CNN-based real-time HSI classification shown in Fig. 3.
The proposed CNN accelerator design on FPGA is composed of several major
components: the computation units (CONV and FC modules), on-chip buffers,
external memory and control unit. The processor (PS) configures the parameters
of the layers for the two computation units through the control unit. CONV
and FC are the basic computation units for the CNN-based HSI classification
algorithm. Due to the limitation of the on-chip memory size, the input data and
weights of all the layers are stored in off-chip memories and transferred to on-
chip buffers when processing each layer. All intermediate data for processing are
stored in on-chip buffers to avoid frequent off-chip memory access. Therefore,
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the required on-chip buffers need to store at least the input and output data
size of one layer, since these on-chip buffers will be reused when the next layer
is processed.

Fig. 3. The architecture of the FPGA-based CNN accelerator which integrates 2 com-
putation units: CONV and FC.

4.2 Convolution and Fully-Connected Design

Our convolutional and fully-connected layer architectures are inspired by the
design in [21]. The CONV unit contains several computational kernels running
in parallel, and each kernel consists of 9 multipliers followed by an adder tree to
implement the 3× 3 2-D convolution operation. Multiple kernels are utilised for
parallel channel and filter processing and the total number of kernels represents
the parallelism of the CONV unit (PC). Besides, we implement 1×1 convolutions
in the CONV kernel by reusing the 9 multipliers and bypassing the adder trees.
Therefore, the degree of parallelism of 1 × 1 CONV is 9 times of PC .

The operation of the FC kernel is to perform dot product between the
reshaped input feature vector and the weight matrix. The FC kernel also con-
tains several multipliers to calculate the dot product between each row of the
weight matrix and the feature vector in parallel. The number of multipliers in
the FC kernel represents the parallelism of the FC unit (PF ).

4.3 Optimizations

In this section, we describe the optimization techniques used for the FPGA-
based HSI accelerator design in order to increase the system throughput. The
optimizations to the FPGA-based accelerator mainly focus on: (1) fully utilising
the existing hardware resource to reduce the computation time by parallel pro-
cessing [8], and (2) increasing the data reuse to reduce the communication time
to off-chip memories [7].
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Data Pre-fetching and Pipelining. We adopt the parallel processing of mul-
tiple data and filters inside the CONV and FC kernel to increase the data reuse
and reduce computation overhead. However, there is another overhead involving
the transfer of the weights from DDR memory to the computational units. These
weights actually do not need to be stored in on-chip buffers as they are only used
once which is different from input data. To reduce this overhead, weights are
pre-fetched before processing in order to overlap weight transfer time and com-
putation. Figure 4 shows the timing of several computation and weight transfer
phases.

Fig. 4. Computation and weights transfer flows.

To compute the first layer, we first load input data and weights of layer 1
and 2 from DDR memory to on-chip buffers. At the same time, the computation
of layer 1 can start as soon as the weights of layer 1 are valid since the input
data are already in on-chip buffers; after the computation of layer 1, the output
of layer 1 has already been stored in the on-chip buffers and the weights of layer
2 have loaded to the memories, so we can process layer 2 immediately after
finishing layer 1 and at the same time we load the weights for the next stage,
i.e., layer 3. As a result, the total execution time only needs to cover the transfer
of the input and the final output, and the computational time. All the weight
transfer time is overlapped in the computation stage, and there is no waiting
time between computations of two consecutive layers.

Data Quantization. The main benefit of accelerating CNN models in FPGAs
comes from the fact that CNNs are robust to low bitwidth quantization [11].
Instead of using the default double or single floating point precision in CPU,
fixed-point precision can be used in FPGA-based CNN accelerator to achieve
an efficient design optimized for performance and power efficiency [9,10]. In this
work, we implement our proposed design with 16 bit fixed-point which has been
shown to achieve almost the same accuracy as floating point in the inference
stage, in order to allow optimizations for high parallelism mentioned in the
above section. It should be noted that there is no significant accuracy loss in the
HSI classification result when reducing the precision from 32-bit floating point
to 16-bit fixed-point quantized version for the inference process, as long as the
training stage adopts 32-bit floating point.
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Design Parameter Tuning. We tune the hardware design parameters of the
accelerator mentioned above based on the network input size and structure, in
order to fully utilize the computation resources (DSPs) and achieve the optimal
performance for the proposed CNN accelerator. This process involves adjusting
the computational resource allocations, i.e., PC and PF between the CONV unit
and FC unit to achieve minimal computation time.

This step in essence covers design space exploration (DSE). The design
parameters used in the network and the hardware accelerator are summarized in
Table 2. In our approach, we first adjust the network parameters in the training
stage to verify the accuracy results. Then for a given set of network parameters,
we develop a tool with the Nonlinear programming solver fmincon in Matlab
Optimization Toolbox to automatically generate the optimal hardware design
parameters in terms of the processing speed. Based on our approach, we can
easily extend our network to support different HSI datasets and achieve the cor-
responding optimal speed. Therefore, it largely improves the design quality and
designer productivity.

Table 2. Network and hardware accelerator parameters for design space exploration.

Data-set variables

C Number of classes in the HSI dataset

Nc Spectral bands or input volume channels

Tunable network design parameters

Nb Number of split band in Block 2

ps Input patch size

Tuable hardware design parameters

PC Parallelism of CONV unit

PF Parallelism of FC unit

5 Evaluation

In this section, the accuracy of our proposed network is compared to other
CNN-based algorithms and some traditional methods. The performance of our
accelerator is also compared to prior FPGA-based accelerators.

5.1 Benchmarks

Four benchmark datasets2 are used to evaluate our proposed model and accel-
erator. These include Indian Pines scene, Salinas scene, Kennedy Space Centre
(KSC) scene and Botswana scene. The first three datasets were acquired by the

2 These datasets can be obtained from http://www.ehu.eus/ccwintco/index.php?
title=Hyperspectral Remote Sensing Scenes.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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NASA Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) across Indi-
ana, California, Florida, and the Botswana dataset was acquired by the NASA
EO-1 satellite over Botswana. The spectral bands used for these datasets after
removing bands covering the region of water absorption are 220, 224, 176 and
144 respectively. The classes and spectral bands of each dataset are summarized
in Table 3. Some classes are dropped during training due to limited samples.
We randomly select 15% as training samples, 5% as validation samples and the
reminder as testing samples. The network parameter configurations after tunning
in the training stage are also summarized in Table 3.

Table 3. Dataset variables and their corresponding network configurations.

Dataset Classes Spectral bands (Nc) Block 1 Nb Patch size

Indian Pines 11 220 1 × 1 4 3 × 3

Salinas 16 224 1 × 1 8 3 × 3

KSC 13 176 3 × 3 8 5 × 5

Botswana 14 144 3 × 3 8 5 × 5

5.2 Experiment Setup

The proposed accelerator is developed using Verilog HDL. The hardware system
is built on Xilinx Zynq ZC706 board which consists of a Xilinx XC7Z045 FPGA,
dual ARM Cortex-A9 Processor and 1 GB DDR3 memory. The whole system is
implemented with Vivado Design Suite. The ARM processor in the Zynq device
is used to initialize the accelerator, set the layer parameters and transfer the
weights of each layer. All designs run on a single 250 MHz clock frequency.

For comparison, the respective software implementations run on CPU and
GPU are using the deep learning software framework Tensorflow [1] in CentOS
7.2 operating system. The CPU platform is Intel Core Xeon 4110 CPU@2.10 GHz
with 8 cores. The GPU platform is NVIDIA GeForce 1080 (Pascal) with 2560
CUDA cores and 8 GB GDDR5 256-bit memory).

5.3 Classification Accuracy

We first evaluate the overall accuracy (OA) of the proposed accelerator for the
four benchmark datasets. Here the average per-class accuracy is omitted for
each datasets due to lack of space. Table 4 shows the results of the comparison
of the proposed framework with other traditional and deep learning based meth-
ods. From the table, we can see that our proposed network achieves nearly the
same accuracy compared to BASS Net and even better overall accuracy for the
Botswana dataset. It is not surprising that our proposed framework outperforms
all the other traditional methods (k-NN and SVM) on all the evaluated four
data sets in terms of accuracy.
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Table 4. Classification accuracy (%) comparison of the proposed network and other
methods on the benchmark datasets.

OA (%) k-NN SVM BASS Net Proposed

Indian Pines 76.4 89.8 96.7 95.8

Salinas 86.3 93.1 98.9 98.9

KSC 79.5 89.1 95.3 95.2

Botswana 81.6 85.4 98.1 98.7

5.4 Resource Utilization

Table 5 shows the resource utilization (LUTs, FFs, DSPs, etc.) of our proposed
accelerator when implemented in the target Zynq device. The implemented
accelerator contains 64 CONV kernels and 256 FC kernels, i.e., PC = 64 and
PF = 256. From Table 5, we can see that the computational resource, i.e., DSPs
are almost fully utilized and the allocation is balanced between the CONV and
FC modules. The on-chip memories are sufficient to store the total amount of
input data and output data, since the intermediate data size is relatively small
for the proposed network (see Table 1). This is because the CNN-based HSI
method is doing pixel-wise processing and we can process each pixel in on-chip
buffers.

Table 5. FPGA resource utilization of the accelerator.

Resources LUTs FFs DSPs BRAMs

Used 46866 108991 832 210

Total 218600 437200 900 545

Utilization 21.4% 24.9% 92.4% 38.5%

5.5 Performance Comparison vs. Other Processors and Accelerators

We then compare the performance of our FPGA-based accelerator in FPGA
platform with other platforms (CPUs and GPUs). The CuDNN libraries and
batch processing are used for optimizing the GPU solution, and the compilation
flag -Ofast is activated for the CPU implementation. The results are shown in
Table 6. As a reference, we also show the execution time of BASS Net in CPU
and GPU. The BASS Net is not implemented in FPGA platforms due to the
reasons mentioned in Sect. 2.2. Our accelerator achieves the processing speed of
25.2, 26, 16.4 and 11.2 us/pixel respectively for the four datasets. Compared
to the GPU, the average speedup is about 3 times. Compared to the CPU, we
achieve more than 70× speedup. It should be noted that CPUs and GPUs are
not realistic to be mount on a satellite or a drone because of their high power
consumption, and therefore their usability is very limited in space platforms.
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Table 6. Speedup of our proposed accelerators vs. CPUs and GPUs.

Execution time (us/pixel) CPU GPU FPGA

Indian Pines
BASS 1166 123 -
Ours 2180 99.6 25.2

Speedup* 86.5x 3.9x 1x

Salinas
BASS 1170 100.6 -
Ours 2026 102 26

Speedup* 78x 3.9x 1x

KSC
BASS 723 49.6 -
Ours 1511 46.4 16.4

Speedup* 92x 2.8x 1x

Botswana
BASS 808 53.5 -
Ours 978 37.7 11.2

Speedup* 87x 3.4x 1x
* The numbers in this row represent the speedups of our model run in
FPGA platform compared to that run in CPU and GPU platforms.

Finally we compare our accelerator to other FPGA-based accelerators imple-
menting SVM [18,19]. These two accelerator are implemented in an Altera
Stratix V 5SGSMD8N2F45C2 FPGA on Maxeler MAX4 DFE [19], and in a Xil-
inx Kintex-7 XC7K325T-FF2-900 FPGA device [18] respectively. Due to these
accelerators have different DSP numbers compared to ours, we also provide the
speedups normalized by the number of DSPs. The results are shown in Table 7.

Table 7. Accuracy, Speed and Power consumption of our accelerator vs. other FPGA
accelerators implemented based on SVM methods.

Accuracy (%) Speed Power (W)

Mpixels/s Kpixels/s/DSP #DSP

SVM DFE [19] 85.4 1.01 0.6 1680 26.3

SVM Kintex-7 [18] 81.3 0.65 0.7 840 4.25a

Ours 98.7 0.09 0.1 900 9.0b

aThis is the power consumption reported in [18].
bThe power consumption of ours is measured from the board using a power meter.

Compared to the SVM-based accelerators, our accelerator is based on CNN
model and therefore is much more computationally intensive due to the large
complexity of the network in order for accuracy improvement. This is exactly the
motivation that we accelerate the CNN-based HSI models on FPGA platforms.
Nevertheless, our accelerator still achieves the same scale of speed in terms of
both pixel per second and pixel per second per DSP. Besides, our accelerator
has much less power consumption than the accelerator in [19]. Therefore, our
proposed accelerator is more promising for embedded HSI applications with high
accuracy and low power consumption requirement and on-board platforms.
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6 Conclusion

This work proposes a hardware accelerator for CNN-based HSI applications on
FPGA platforms. We first adapt the state-of-the-art BASS Net for hardware effi-
ciency and accuracy improvement. Then we propose a hardware architecture to
accelerate our proposed network to achieve real-time processing speed. Hardware
optimization techniques are applied to customize and optimize our accelerator
together with design space exploration. Experimental results based on public
datasets show that our accelerator achieves notable accuracy improvement com-
pared to previous SVM-based FPGA accelerators, and significant speedup com-
pared to the respective implementation of our CNN model on CPUs and GPUs.
Future work includes extending the network with other types of layers such as
depth-wise convolution for enhancing accuracy and performance, and developing
automatic tools to generate hardware designs for HSI applications.
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Abstract. As a columnar in-memory format, Apache Arrow has seen
increased interest from the data analytics community. Fletcher is a frame-
work that generates hardware interfaces based on this format, to be used
in FPGA accelerators. This allows efficient integration of FPGA accel-
erators with various high-level software languages, while providing an
easy-to-use hardware interface for the FPGA developer. The abstract
descriptions of data sets stored in the Arrow format, that form the input
of the interface generation step, can be complex. To generate efficient
interfaces from it is challenging. In this paper, we introduce the hard-
ware components of Fletcher that help solve this challenge. These compo-
nents allow FPGA developers to express access to complex Arrow data
records through row indices of tabular data sets, rather than through
byte addresses. The data records are delivered as streams of the same
abstract types as found in the data set, rather than as memory bus
words. The generated interfaces allow for full system bandwidth to be
utilized and have a low area profile. All components are open sourced and
available for other researchers and developers to use in their projects.

Keywords: FPGA · Apache Arrow · Fletcher

1 Introduction

The domain of data analytics is becoming increasingly mature. Various solutions
for e.g. scalable computing on large distributed data sets, easy to use data struc-
turing interfaces, storage and visualization exist (e.g. respectively Spark [12],
Pandas [3], Parquet [10], etc.). At the same time, the demand to process this
data in a more efficient manner increases as well. To overcome limitations with
serialization bottlenecks for heterogeneous software systems, an Apache project
named Arrow [9] was launched to provide a common in-memory format for big
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data. The project provides libraries for (at the time of writing) 11 different lan-
guages to consume or produce data sets in the common in-memory format. This
alleviates the need to serialize data stored as language-native run-time objects
when performing inter-process communication between application components
running in different language run-times. Zero-copy inter-process communication
is made possible through the common data layer that is offered by Arrow.

FPGA accelerators may also benefit from this format. The no-serialization
advantage has been exploited in an open-source, hardware-agnostic FPGA accel-
eration framework called Fletcher [6]. The goal of the project is to generate
interfaces based on Arrow meta-data called schemas that provide an abstract
description of the type of data in a tabular data set. Because the in-memory rep-
resentation follows from the schema, an interface can be generated based on the
schema that fetches the data based on a table index rather than a byte address,
delivering exactly the data object expressed through the schema, rather than a
bus word. This increases the programmability for the hardware developer - they
can focus on the accelerator implementation rather than spending time on the
platform specific interface and host-side software to shape data into a format
useful for the accelerator.

In this paper we describe the internals of the hardware solution of Fletcher
to support a set of common Arrow data types. This is challenging because on
the one hand, schemas can widely vary, and on the other hand, platform specific
interfaces can widely vary. Section 2 introduces the background. Next, we list
some requirements for the hardware components of Fletcher in Sect. 3. The main
contributions of this work can be found in Sects. 4 and 5. A vendor-agnostic
hardware library that is used in Fletcher is introduced in Sect. 4. Section 5 shows
how the components from the library are combined into designs that can read
from Arrow data sets through a host-memory interface and reshape the data
into a format desired by the schema. Functionality and performance for a large
variety of schemas are verified in Sect. 6.

Related work not discussed throughout the paper is discussed in Sect. 7. We
conclude this paper in Sect. 8.

2 Background

2.1 Problem Definition

To explain why the use of Arrow with FPGA accelerators is relevant, consider an
example use-case of matching regular expressions to a column of UTF8-strings
(a common operation performed on strings that are stored in databases or event
logs). Evaluating regular expressions in hardware is known to be efficient and
streamable with state-of-the-art work shows a throughput of 25.6 GB/s [7]. This
significantly exceeds the available interface bandwidth (e.g. 8 GB/s for PCIe
Gen3 x8).

However, to attach such an FPGA accelerator to a high-level language, lan-
guage native strings need to be serialized to a usable format. The throughput
of serializing approximately 1 GiB data set of language native strings in C++,
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Table 1. Serialization throughput of various language run-times of 1 GiB of strings

Throughput (GB/s) Language

C++ (gcc) Java (OpenJDK) Python (CPython 3.6)

Xeon E5-2686 0.55 0.83 0.27

POWER9 Lagrange 0.81 0.81 0.16

Java and Python in software on an Intel Xeon machine and an IBM POWER9
machine are shown in Table 1. From this table, it can be seen that the serializa-
tion throughput of language-native string objects to a usable format in FPGA
is not in the same order of magnitude as host-to-accelerator bandwidth.

Using Fletcher framework for FPGAs allows exploiting the more efficient in-
memory format of Arrow and allows large data sets to be streamed-in at system
bandwidth. Fletcher is operational on two major FPGA platforms meant for
data-center and cloud applications; the OpenPOWER CAPI [8] SNAP frame-
work [4] and the Amazon Web Services (AWS) EC2 F1 instances [1].

2.2 Apache Arrow

Arrow data sets are typically tabular and stored in an abstraction called a
RecordBatch. A RecordBatch contains several columns for each field of a record,
that are in Arrow called arrays. These arrays can hold all sorts of data types,
from strings to lists of integers, to lists of lists of time-stamps, and others. Arrays
consist of several Arrow contiguous buffers, that are related, to store the data
of a specific type. There are several types of buffers. In this work we consider
validity buffers, value buffers and offset buffers.

Validity buffers store a single bit to signify if a record (or deeper nested)
element is valid or null (i.e. there is no data). Value buffers store actual values
of fixed-width types, similar to C arrays. Offset buffers store offsets of variable

(a) Schema:

Field A:
Float (nullable)
Field B:
List(Char)
Field C:
Struct(E: Int16, F: Double)

(b) RecordBatch:

A B C
0.5f "fpga" (42, 0.125)
0.25f "fun" (1337, 0.0)

∅ "!" (13, 2.7)

(c) Arrow buffers:

Buffers for:
Field A Field B Field C

Index Validity
(bit)

Values
(float)

Offsets
(int32)

Values
(char)

Values E
(int16)

Values F
(double)

0 1 0.5f 0 f 42 0.125
1 1 0.25f 4 p 1337 0.0
2 0 × 7 g 13 2.7
3 8 a
4 f
5 u
6 n
7 !

Fig. 1. An example schema (a) of a RecordBatch (b) and resulting Arrow buffers (c).



Supporting Columnar In-memory Formats on FPGA 35

length types, such as strings (which are lists of characters), where an offset at
some index points to where a variable-length item starts in another buffer.

A RecordBatch contains specific meta-data called a schema that expresses
the types of the fields in the records, therefore defining the types of the arrays,
in turn defining which buffers are present. When a user wants to obtain (a
subset of) a record from the RecordBatch, through the schema, we may find out
what buffers to load data from to obtain the records of interest. An example
of a schema, a corresponding RecordBatch (with three arrays and the resulting
buffers are seen in Fig. 1.

Normally, an FPGA developer designs an accelerator that has to interface
with a memory bus to get to the data set. That means the accelerator must
typically request a bus word from a specific byte address. However, in the case
of a tabular data set stored in the Arrow format, it is more convenient to express
access to the data by supplying a table index, or a range of table indices, and
receiving streams of the data of interest in the form of the types expressed
through the schema, rather than as a bus word.

Because schemas can express a virtually infinite number of type combinations
an implementation of the mechanisms must meet a challenging set of require-
ments. In the next section, we first describe the requirements of such an interface.

3 Requirements

Consider an accelerator to be the data sink in case an Arrow RecordBatch is
being read. From the description in the previous section, a set of requirements
for the generated interface can be constructed.

1. Row indexing: The data sink is able to request table elements by using
Arrow table row indices as a reference. In turn, the data sink will receive the
requested elements only.

2. Streaming: The elements will be received by the sink in an ordered stream.
3. Throughput: The interface can be configured to supply an arbitrary number

of elements in a valid transfer.
4. Bus interface: The host-memory side of the interface can be connected to

a bus interface of arbitrary power-of-two width.

The first requirement allows developers to work with row indices rather
than having to perform the tedious work of figuring out the byte addresses of
data (including potentially deeply nested schemas with multiple layers of offset
buffers). Furthermore, it implies that elements are received in the actual binary
form of their type, and not, e.g., as a few bytes in the middle of a host memory
bus word (that are often 512 bits wide for contemporary systems). This allows
the developer to not have to worry about reordering, serializing or parallelizing
the data contained in one or multiple bus words.

The second requirement maps naturally to hardware designs that often
involve data paths with streams of data flowing between functional units.
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The third requirement allows multiple elements of a specific data type to
arrive per clock cycle. For example, when a column contains elements of a small
type (say a Boolean), it is likely the accelerator can process more than one
element in parallel. This differs from Requirement 2 in the sense that the ele-
ments that will be delivered in parallel are part of the same request mentioned
in Requirement 1. Furthermore, it can be that the top level element is a list of
small primitive elements. Thus, one might want to absorb multiple of the nested
elements within a clock cycle.

The last requirements allows the interface to be connected to different plat-
forms that might have different memory bus widths. In the discussions of this
work, we will generally assume that this width is set to 512 bits, since the plat-
forms that Fletcher currently supports both provide memory bus interfaces of
this size. However, Fletcher can also operate on wider or narrower bus interfaces.

4 Vendor-Agnostic Hardware Libary

Fletcher aims to be vendor-agnostic in order to thrive in an open-source set-
ting. All designs are based on data streams. This requires custom streaming
primitives that can perform the basic operations on streams. Commercial tools
contain IP cores to support some (but not all) of these operations as well. How-
ever, to engage with an open-source oriented community, it is important to not
force designs to use vendor-specific solutions. This causes the need for a custom
streaming operations library that is maintained alongside Fletcher.

The most important streaming components are discussed in this subsection.
The most basic primitives on which all other components are built, are as follows:

Slice A component to break up any combinatorial paths in a stream, typ-
ically using registers.

FIFO A component to buffer stream contents, typically using RAM.
Sync A component to synchronize between an arbitrary number of input

and output streams.

The throughput requirement mentioned in the previous section dictates that
streams must be able to deliver multiple elements per cycle (MEPC). To support
this, and other operations, the previously mentioned primitives are extended by
the set of following stream operators:

Barrel A pipelined component to barrel rotate or shift MEPC streams at
the element level.

Reshaper A component that absorbs an arbitrary number of valid elements
of an MEPC stream and outputs another arbitrary number of ele-
ments. This element is useful for serializing wide streams into nar-
row streams (or vice versa, parallelizing narrow streams into wide
streams). The element can also be used to reduce elements per cycle
in a single stream handshake or to increase (e.g. maximize) them.
The implementation of the Reshaper uses the Barrel component.
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Arbiter A component to arbitrate multiple streams onto a single stream.
Buffer An abstraction over a FIFO and a sync with a variable depth.

On top of the streaming components (especially the Arbiter and Buffer),
a light-weight bus infrastructure has been developed to allow multiple masters
to use the same memory interface. This bus infrastracture is similar to (and
includes wrappers for) AXI-4, supporting independent read/write request and
data channels and bursts.

Read/Write Arbiter Arbitrates multiple masters onto a single slave.
Read/Write Buffer Allows buffering of at least a full maximum sized burst

to relieve the arbiter of any back-pressure.

5 Components to Match Arrow Abstractions

5.1 Implementation Alternatives

Designing an interface to Arrow data could follow different approaches. A flexible
approach would have a small customized soft processor generate the requests
based on a schema or some bytecode that is compiled on the host. In this way,
any schema (reasonably limited in size) could be requested, and schemas can be
changed during run-time.

However, this approach would have several drawbacks. First of all, it would
introduce more latency as it takes multiple instructions to calculate addresses
and generate requests. Moreover, as developers can create schemas with fixed-
width types of arbitrary length, allocating streams for the “widest” case is
impractical. If one would supply the implementation with support for some very
wide fixed-width type (effectively limiting the schemas that can be expressed
already), it would cause a relatively large amount of area overhead for schemas
with narrow primitives. For example, consider a hard-coded 1024-bit stream
of which some schema only uses one bit. As schema data can be of many vari-
eties, the streams would require run-time reordering of the elements coming from
bus words. This involves relatively expensive parametrizations of the Stream
Reshaper to support all possible cases of aligning arbitrary elements. Elements
themselves must be restricted to be smaller than 1024 bits and only a fraction
of RAM spent on FIFOs in the data paths is effectively used.

The aggregate of these drawbacks causes the proposed interface generation
framework to completely configure the generated interface during compile-time.
For this purpose, we introduce highly configurable components that correspond
to abstractions seen in the Arrow software-language specific counterparts.

5.2 Buffers

Readers. As explained in Sect. 2, Arrow buffers hold C-like arrays of fixed-
width data. We implement a component called a BufferReader (BR). The BR
is a highly configurable component to support turning host memory bus burst
requests and responses into fixed-width type MEPC streams. It performs the
following functions:
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– Based on the properties of the bus interface and the data type, perform the
pointer arithmetic to locate elements of interest in the Arrow buffer.

– Perform all the bus requests desired to obtain a range of elements.
– Align received bus words.
– Reshape aligned words into MEPC streams with fixed-width data types.

An architectural overview of the proposed implementation of two BRs (in
combination providing a setup to read variable-length types) is shown in Fig. 2.

Fig. 2. A BufferReader for an offsets buffer (left) and a values buffer (right)

The top-level of a buffer reader contains the following interfaces, that are all
pipelined streams:

Command (in) Used to request a range of items to be obtained from
host memory by the BR. Also contains the Arrow
buffer address and a special tag.

Unlock (out) Used to signal the completion of a command, hand-
shaking back the command’s original tag.

Bus read request (out) Used to request data from memory.
Bus read data (in) Used to receive data words from memory.
Data (out) A MEPC stream of data corresponding to an Arrow

data type.

Reading from a values buffer, and reading from validity bitmap buffers (by
instantiating a BR with element size one) is supported by the rightmost config-
uration of the BR as shown in Fig. 2.
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Here, a command stream is absorbed by two units: a bus request generation
unit and an alignment and count controller. The bus request generator performs
all pointer arithmetic and generates bus burst requests. The alignment and count
controller calculates, based on the width of the bus and the type of elements,
how much a bus word must be shifted (especially for the first bus word received),
since some first index in the command stream might point to any element in a
buffer. It also generates a count of valid items in the MEPC stream resulting
from alignment. This is also useful when last bus words in a range contain less
elements than requested.

Even though first and last bus words might not be aligned or do not contain
all requested elements, after aligning and augmenting the stream with a count,
the reshaper unit will shape a non-full MEPC stream into a full MEPC stream.

Furthermore, when the last bus word has been streamed to the aligner, an
unlock stream handshake is generated to notify the accelerator that the com-
mand has been completed in terms of requests on the bus.

Offset buffers require the consumer of the data stream to turn an offset
into a length. In this way, the consumer (typically the accelerator core logic)
can know the size of a variable length item in a column. Therefore, for offset
BRs, two consecutive offsets are subtracted to generate a length. Furthermore,
BRs support the generation of an output command stream for a second BR. To
generate this command stream, rather than generating a command for the child
buffer for each variable length item, the BR requests both the last offset and the
first offset in the range of the command first, before requesting all offsets in a
large burst. The first and last offset can then be sent as a single command to the
child BR, allowing it to request the data in the values buffer using large bursts.

Command (out) Used to generate commands for other buffers. This
is useful when this BR reads from an Arrow offsets
buffer.

Writers. Complementary to BRs, we also implement BufferWriters (BW) that,
given some index range can write to memory in the Arrow format. They contain
the same interface streams as BR, except the data flow is inverted. An architec-
tural overview of the proposed implementation of two BW is observed in Fig. 3.
Writing to a validity bitmap buffer or a values buffers requires the buffer writer
to operate as follows (as seen on the right side of the figure).

When a command is given to the BW, the MEPC input stream is delivered
to a unit that pre- and post-pads the stream to force the stream to be aligned
with a minimum bus burst length parameter. Furthermore, it generates appro-
priate write strobes (only asserting strobes for valid elements). The elements
and strobes are then reshaped to fit into a full bus word and sent to a bus
write buffer. Note that sometimes it is unknown how long an input stream will
be when the command is given. Therefore the command to the BW supports
both no range or with range commands. At the same time this requires counting
accepted bus words into the BusBuffer. A bus request generation unit uses this
count to generate bus requests preferably when full bursts are ready, but if the



40 J. Peltenburg et al.

Fig. 3. A BufferWriter for an offsets buffer (left) and a values buffer (right)

input stream has ended, bus words are bursted out with minimum burst steps
until the buffer is empty.

If the BW writes to an offsets buffer, it can be configured to generate offsets
from a length input stream. This length input stream can optionally be used
to generate commands for a child buffer. To achieve maximum throughput, the
child command generation may be disabled, otherwise the child buffer writer
will generate padding after the ending of every list in an Arrow Array containing
variable length types.

5.3 Arrays

To support Arrow arrays, that combine multiple buffers to deliver any field type
that may be found in an Arrow schema, we implement special components called
ColumnReaders and Writers.

These ColumnReaders- and Writers instantiate the BRs and BW resulting
from a schema field. They furthermore support:

– Attaching command outputs of offsets buffers to values or validity bitmap
buffers.

– Arbitration of multiple buffer bus masters onto a single slave.
– Synchronization of unlock streams of all buffers in use.
– Recursive instantiations of themselves. This, in turn, supports:

• Nested types, such as Lists<List<Type>>.
• Adding an Arrow validity bit to the output stream.
• Support Arrow structs, such as Struct<List<Int16>, Float>.

The ColumnReaders and ColumnWriters are supplied with a configuration
string that conveys the same information as an Arrow schema. By parsing the
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Fig. 4. Resulting ColumnReader configuration from the Schema in Fig. 1

configuration string, the components are recursively instantiated according to
the top level type of the field in a schema. An example for the schema from
Fig. 1 is shown in Fig. 4. Reading from the example RecordBatch (corresponding
to the schema) will require three ColumnReaders. The manner in which they are
recursively instantiated is shown in the figure. Here one can discern four types
of ColumnReader configurations:

Default A default ColumnReader only instantiates a specific ColumnReader
of the top-level type of the corresponding schema field, but provides
a bus arbiter to share the memory interface amongst all BRs that are
instantiated in all child ColumnReaders.

Prim A ColumnReader instantiating a BR for fixed-width (primitive) types.
Null Used to add a validity (non-null) bitmap buffer and synchronize with

the output streams of a child ColumnReader to append the validity bit.
List Used to add an offsets buffer that generates a length stream and provides

a first and last index for the command stream of a child ColumnReader.
Struct Used to instantiate multiple ColumnReaders, synchronizing their output

streams to couple the delivery of separate fields inside a struct into a
single stream.

Through the List and Struct type ColumnReaders, nested schemas may be
supported. On the top level all streams that interface with the accelerator core
are concatenated. A software tool named Fletchgen generates top levels for var-
ious platforms (including AWS EC2 F1 and OpenPOWER CAPI SNAP) that
wraps around the ColumnReaders and ColumnWriters and splits the streams
that are concatenated onto single signals vectors into something readable (using
the same field names as defined in the schema) for the developer. A discussion
of the inner workings of Fletchgen and the support for these platforms is outside
the scope of this paper but the implementation may be found in the repository
online [6]. The complement (in terms of data flow) of this structure is imple-
mented for ColumnWriters. One additional challenge to ColumnWriters is that
they require dynamically resizable Arrow Buffers in host memory, because it
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cannot always be assumed that the size of the resulting Arrow Buffers is known
at the start of some input stream. This is an interesting challenge for future
work.

5.4 Continuous Integration

All parts of Fletcher are open sourced. This allows all interested parties to sub-
mit changes to the hardware design. Part of improving the maintainability of the
project includes bootstrapping of the build and test process in a continuous inte-
gration framework, where the simulator used is also an open-source project [2].
By using fully open-sourced tools in the collaborative development process, the
threshold to get started with FPGA accelerators and Fletcher is lowered.

6 Results

6.1 Functional Validation

Because the number of schema field type combinations is virtually infinite (due
to nesting), it is not trivial to validate the functionality of the framework. To
obtain good coverage in simulation, a Python script is used to generate random
schemas with supported types. The types decrease in complexity the deeper their
nesting level, such that at some point the nesting ends with a primitive type.
The resulting buffers are deduced from the schema, random content is gener-
ated and a host memory interface is mimicked. Random indices are requested
from the simulated ColumnReaders, and their output streams are compared to
the expected output. In this way, the correct functioning of over ten thousand
different generated structures was validated.
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Fig. 5. Utilization for a ColumnReader for various fixed-width types versus command
range (each line represents a different fixed-width type).
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Fig. 6. Utilization for a ColumnWriter for various fixed-width types versus command
range.

6.2 Throughput

ColumnReaders/Writers for Fixed-Width Types. The main goal of the
hardware components of Fletcher is to provide the output streams with the same
bandwidth as the system bandwidth, if the accelerator core can consume it. In
other words, the generated interfaces should not throttle the system bandwidth
because of a sub-optimal design choice (like a sub-optimal in-memory format or
a sub-optimal hardware component).

We simulate the throughput of ColumnReaders and ColumnWriters, assum-
ing that we have a perfect bus interconnect, i.e. the bus delivers/accepts the
requested bursts immediately and at every clock cycle a valid bus word can
be produced. We measure the bus utilization and stream output utilization (in
handshakes per cycle during the processing of a command) for different fixed-
width types, as a function of the range of Arrow array entries requested through
the command stream. We furthermore assume the accelerator core can hand-
shake the ColumnReader output or ColumnWriter input stream every cycle. The
results of this simulation for a data bus width of 512 bits (as both platforms,
AWS EC2 F1 and OpenPOWER CAPI SNAP, that Fletcher currently supports
use this memory bus width) are shown in Fig. 5a and b, where the bus utiliza-
tion and output stream utilization is shown, respectively, for various fixed-width
types. Similar measurements for the ColumnWriters are seen in Fig. 6.

Initialization overhead and latency of both the ColumnReader and Colum-
nWriter is present when the command only requests a short range of entries.
However, once the range grows larger (a likely scenario in most big data use
cases where massively parallel operators on data sets such as maps, reductions
and filters are applied), the stream utilization becomes near optimal. As long
as the element width is smaller than the bus width, maximum stream through-
put is achieved, and as long as the element width is equal to the bus width,
maximum bus bandwidth is achieved. We may conclude that a ColumnReader
for fixed-width types does not create a bottleneck if the accelerator core can
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absorb data at the system bandwidth rate. A developer using a ColumnReader
can now express access to an Arrow Array in terms of RecordBatch indices and
will receive the exact data type as specified through the schema on the stream,
without degradation of the system bandwidth.

ColumnReaders/Writers for Variable-Length Types. We simulate
throughput of a ColumnReader/Writer for an Arrow Array where the items
in the Array are lists of primitive types. We choose the type to be a character
(8 bits). We generate random lists between length 1 and 1024 and, in Fig. 7,
plot the utilization of the bus and the input/output streams as function of the
elements-per-cycle parameter of this ColumnReader/Writer. From these figures,
we may observe that the value stream utilization is near-optimal, independent
of the number of elements per cycle that it is configured for; as long as the
memory bus can deliver the throughput, the accelerator core is fed at maximum
throughput.
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Fig. 7. Bus and input/output stream utilization for an increasing elements-per-cycle
parameter demonstrating utilization near 100%.

6.3 Area Utilization

For the same memory bus width as the supported platforms (512 bits), we
synthesize ColumnReaders and ColumnWriters for various fixed-width types
(W = 8, 16, . . . , 512) and for various variable-length types (W = 8 with EPC = 64,
W = 16 with EPC = 32, etc.) for a Xilinx XCVU9P device (that used in AWS
EC2 F1 instances). The area utilization statistics are shown in Table 2.

The ColumnReaders/Writers require little area. Most configurations utilize
less than one percent of the resources. Interestingly, ColumnReaders/Writers for
small elements require more LUTs than wider elements on a wide bus. This
is due to the reshaper and aligner units discussed in Sect. 5, requiring aligning
and reshaping more MEPC stream element count combinations, increasing mux
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Table 2. Area utilization statistics for a Xilinx XCVU9P device

Type Resource W=8 W=16 W=32 W=64 W=128 W=256 W=512

Column

Reader

Prim(W)

CLB LUTs 0.30% 0.28% 0.26% 0.24% 0.22% 0.20% 0.21%

CLB Registers 0.20% 0.20% 0.20% 0.20% 0.22% 0.24% 0.26%

Block RAM (B36) 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65%

Block RAM (B18) 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Column

Reader

List of

Prim(W)

CLB LUTs 2.34% 1.81% 1.46% 1.32% 1.03% 1.04% 0.78%

CLB Registers 1.01% 1.01% 1.01% 1.01% 1.00% 1.00% 1.00%

Block RAM (B36) 1.30% 1.30% 1.30% 1.30% 1.30% 1.30% 1.30%

Block RAM (B18) 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%

Column

Writer

Prim(W)

CLB LUTs 0.20% 0.19% 0.19% 0.20% 0.20% 0.22% 0.23%

CLB Registers 0.28% 0.28% 0.28% 0.28% 0.29% 0.31% 0.33%

Block RAM (B36) 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 0.37%

Block RAM (B18) 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Column

Writer

List of

Prim(W)

CLB LUTs 1.03% 0.97% 0.91% 0.87% 0.80% 0.78% 0.52%

CLB Registers 1.18% 1.12% 1.11% 1.11% 1.06% 1.06% 0.73%

Block RAM (B36) 1.11% 1.11% 1.06% 1.06% 1.06% 1.06% 0.74%

Block RAM (B18) 0.07% 0.05% 0.07% 0.07% 0.07% 0.07% 0.05%

sizes. Designers may chose to reduce this number in the ColumnReaders and
Writers themselves, but this requires an asymmetric connection to the memory
bus interconnect, effectively moving the alignment functionality to the intercon-
nect. Register usage increases when element size increases, since register slices
on the path to the accelerator core match the width of the elements. Block RAM
usage is the same for all configurations, because this depends on the maximum
burst length that has been fixed to 32 beats for all configurations.

7 Related Work

While Arrow is not the only framework following the trend of in-memory compu-
tation for big data frameworks (an overview can be found in [13]), it is a frame-
work that is especially focused on providing efficient interoperability between
different tools/languages. This allows the 11 languages supported by Arrow to
quickly and efficiently transfer data to the FPGA accelerator using Fletcher.

Several solutions to abstract away memory bus interfaces are commercially
available and integrated into HLS tools (such as Xilinx’ SDAccel and Intel’s
FPGA SDK for OpenCL). However, they have no inherent support for nested
types that Arrow schemas can represent, and usually work well only with simple,
C-like primitive types and arrays. Loading data from nested structures involves
pointer traversal and arithmetic which HLS tools do not deal with efficiently [11].
At the same time, after Fletcher generates an interface that delivers streams
which HLS tools can operate on very well.

State-of-the-art frameworks to integrate FPGA accelerators with specific
databases exist [5], although interface generation specific to the schema data
type and serialization overhead are not discussed.
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8 Conclusion

The goal of the Fletcher framework is to ease integration of FPGA accelerators
with data analytics frameworks. To this end, Fletcher uses the Apache Arrow
in-memory format to leverage the advantages of the Arrow project, including
no serialization overhead and interfaces to 11 different high-level languages. To
support the wide variety of data set types that Arrow can represent, and to
convert these data sets into hardware streams that are desirable by an FPGA
developer, this work has presented a bottom-up view of a library of vendor-
agnostic and open-source components. These components allow reading from
tabular Arrow data set columns, by providing a range of table indices, rather
than byte addresses, to refer to records stored in the tables. Fletcher is effective
at generating these interfaces without compromising performance. It takes very
little area to create an interface that provides an accelerator core with system
bandwidth for any configuration of the Arrow data set. Fletcher significantly
simplifies the process of effectively designing FPGA-based solutions for data
analytics tools based on Arrow.
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Abstract. We present a novel encoder design for FPGA-based Time-to-
Digital Converters (TDCs) that use tapped delay lines. The encoder is
the most challenging and problematic unit on such measurement devices.
Recent developments in TDC methodology include the Wave Union prin-
ciple, and encoders based on population count. These two methods can
alleviate fundamental disadvantages of FPGA-based TDCs. However, it
appeared to be problematic to combine the two methods. The contribu-
tion of this paper is a special arithmetic unit that allows us to combine
these two methods into a fast and compact encoder.

The paper is a report on work in progress, real-world measurement
results cannot be given at this point in time.

Keywords: TDC · Wave Union · Population count · Encoder

1 Introduction

TDCs are measurement devices that measure the time of occurrence of an elec-
trical signal (typically leading edge, optionally also trailing edge and thus pulse
length). TDCs are used in massive numbers in accelerator facilities such as at
the GSI or at CERN, where they measure the time-of-flight (and derived param-
eters) of particles after a collision.

TDCs can be built in various ways, using a multitude of measurement meth-
ods. The most common platforms are ASICs and FPGAs. Examples of an ASIC
implementation are HPTDC and picoTDC [1]. The picoTDC employs a Delay
Locked Loop with 64 elements, that can further be divided into 256 time taps
by a resistive interpolator. This results in a time resolution of about 3 ps. The
architecture allows one measurement to be made per 1.28 GHz clock cycle. The
chip offers 64 channels.

Although these specs can hardly be met using programmable devices, FPGAs
are still an attractive platform because of their flexibility. On FPGAs, the dom-
inant architecture is based on tapped delay lines (TDLs). The signal to be mea-
sured is fed into a delay line, consisting of a number of discrete delay elements
whose outputs are put on the inputs of a row of registers. These registers (called
snapshot registers) are clocked by a common clock. The result is a so-called ther-
mometer code, which is an indication of the time that has elapsed between the
arrival of the signal edge and the corresponding clock edge. The common clock
c© Springer Nature Switzerland AG 2019
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also clocks a counter, whose value is the coarse time. The method is graphically
explained in Fig. 1.

Fig. 1. a. Measurement principle. b. One measurement channel.

The task of the encoder is to transform the snapshot bits into a numerical
value. This value is called the fine time. Most generally this is the problem of
computing the position of the transition in the snapshot bits. Coarse time and
fine time represent the time of arrival of the signal edge, which can be measured
to a precision of a few (ten) picoseconds on current FPGA devices.

There are a couple of general design requirements for such TDL-encoder
combos. Firstly, the clock period must be shorter than the total propagation
time on the delay line, that is, the time it takes for a signal edge to propagate
through the entire delay line. Otherwise, the edge can drop off the far end without
ever being sampled. On FPGAs, however, the clock frequency cannot be very
high, which sets a lower limit to the length of the delay line. A long delay line
has a high number of snapshot bits, which increase the hardware expenses of
the encoder. Nevertheless, the encoder should be able to produce one result each
clock, allowing one measurement to be performed per clock as well.

On FPGAs, the best way to implement a delay line is to construct a long
(ripple-carry) adder [3]. For highest performance, the carry signals are typically
implemented using the fastest logic elements and wires that are available on
a given technology. Thus, an adder chain offers the highest time resolution. A
suitable input pattern is shown in Fig. 2. To give a rough idea about a typical
TDL, in one of our previous designs the TDL consists of about 300 full adders
and is sampled at 200 MHz.
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Fig. 2. Tapped delay line using a ripple carry adder.

While the principle is quite simple, there are a number of severe implemen-
tation problems associated with TDL-based TDCs, some of which are FPGA-
specific, others are fundamental in nature, as discussed below.

1.1 Problems: Bins and Bubbles

By means of the specific chip layout of FPGAs, which typically group functional
units into small clusters (known as CLB, LAB, PFU etc.), the delay on the
carry chain from one adder to the next is not constant, but can vary strongly
across the length of the TDL. This results in a large differential non-linearity
(DNL). The common expression for this phenomenon is an uneven bin width.

The Wave Union principle [6] provides a significant improvement in DNL
(see also [4]). Instead of entering the TDL itself, the input signal triggers a
launcher which sends a sequence of edges down the TDL. The encoder must then
determine the position of each individual edge, and the fine time is expressed as
the sum of all positions.

The idea behind this is as follows. While one edge is stuck in a long bin for
some time and does not increase the sum, another edge might be in a sequence
of short bins and increase the sum at a high rate, leading to a higher time
resolution. When this edge is in a long bin, the other edge might help out in
the same way. This improvement is obtained while still using only one TDL.
Hardware costs for the launcher are small.

However, having more than one transition in the snapshot bits complicates
the encoder further. Either the hardware expenses grow, or the designer has to
resort to multi-cycle operation, thereby increasing the measurement deadtime.

But this is not the only problem. Another severe problem for the encoder
design is that there is typically no sharp transition in the snapshot bits. Instead,
there can be short but arbitrary sequences of 0s and 1s around each wavefront
(“bubbles”). There are two reasons for this. One is metastability due to simul-
taneous transitions on the data and clock inputs of the flipflops. There is no
remedy. The other is skew on the clock distribution network, which can cause
individual flipflops to sample the wavefront at the wrong time. There is no rem-
edy as well, but it appears to be deterministic.
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As a consequence, the position of the transition cannot be determined pre-
cisely. Instead, some sort of “most plausible estimate” would have to be found.
Not only does this complicate the encoder design further, it also reduces mea-
surement precision.

In [5] a solution is given for this problem, although only for TDCs using a
single edge in the TDL. According to this work, the amount of delay can be
expressed as the number of set bits (population count) in the snapshot pattern.
The idea behind this is as follows. When the signal has traveled down the delay
line for some time T0 and produced a pattern with N set bits, N + 1 set bits can
only occur after T0. Thus the population count is a monotonic function in time
and this is all that is needed.

An encoder based on population count can nicely be built as a tree of adders
of increasing width. When using pipeline registers, the clock frequency can be
very high.

1.2 Problem: Wave Union and Population Count

It is obvious that the Wave Union principle and population count encoding
cannot be combined so easily. For example, if we use a short low-pulse to travel
down the delay line, the population count is constant in first approximation
regardless of sampling time. However, we can still combine the two methods if
we somehow manage to compute two distinct population counts: one from the
start of the TDL up to the pulse, and one from the pulse to the end of the TDL.
The big problem is of course how to assemble the two subsets of snapshot bits
efficiently and automatically irrespective of pulse position.
Further requirements for the encoder are:

• Single-cycle measurement
• High clock rate for a short TDL
• Compact design

The solution is given in the following section.

2 Solution

The presented solution is intended for a single low-pulse on the TDL, i.e., a Wave
Union of a leading falling edge and a trailing rising edge. For the explanation we
use the following parameters.

The TDL is 32×7 = 224 delay elements (full adders) long. It is conceptually
divided into segments of length 7. For each of these segments, an individual
population count (PC) is computed. Obviously, this population count ranges
from 0 to 7 and fits into a 3-bit number.

The low-pulse that travels down the TDL must be such that at least one
segment is entirely low at any arbitrary sampling time. Such segments are used
as markers. For each segment, a flag Z is computed which is set if its population
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count is 0. Z = 1 indicates a marker. If there are more than one markers in the
snapshot bits, they are assumed to be contiguous. In Fig. 3, an 18-bit low-pulse
is established by injecting the hit signal at two positions. In this example, the hit
signal has propagated through six adders at the time of sampling. Some bubbles
are shown.

Fig. 3. TDL, snapshot registers, and segment units.

From PCn and Zn, two overall population counts are computed: the “lower”
population count (LPC) from the start of the TDL to the first marker, and the
“upper” population count (UPC) from the end of the TDL backwards to the
first marker. The fine time is then of the form Tf = LPC + (224 − UPC). In
Fig. 3, LPC = 5 and UPC = 200.

We start the derivation with the lower population count. The design is based
on the following observation: any set Z-flag sets all downstream segments to zero.
This can be translated into the circuitry shown in Fig. 4. As can be seen, the bit
pattern controls its own processing, a separate control unit is not necessary.

Clearly, the generic form is not well suited for implementation because of its
slow speed of operation. However, the operations can be rearranged so that they
are better suitable for pipelining.

Both the arithmetic sum and the OR-chain are associative. Thus we can first
compute the sums of all pairs of population counts. The ORed Z-flags that enter
each pair can then be applied to the sum. This can be repeated hierarchically
to form a binary tree. This is shown in Fig. 5 for 8 segments.

As can be seen, the tree can be built from one parametrizable cell, which we
call special adder. For TDLs of this length, the amount of logic in any pipeline
stage is very small, so that a high clock frequency can be achieved.

For the upper population count UPC the same considerations as in Fig. 4
apply, except that the direction of the OR-chain is reversed, and the “left” pop-
ulation count of each pair is masked instead of the right one. The corresponding
special adders are shown in Fig. 6. Clearly the two cells are identical, the desired
functionality is established merely by proper connection of the input ports.

Using these cells two adder trees can be built, one for LPC and one for UPC.
They operate in parallel so that one snapshot pattern can be processed per clock.
Both trees are fed by the same set of segment units, so that the segment units
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Fig. 4. Generic ALU computing LPC.

Fig. 5. Partial adder tree.
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Fig. 6. Special adder.

are present only once. One full adder tree is shown in Fig. 7. Note that in Fig. 7,
PC and Z have been merged into one bus for better readability.

3 Implementation

Because of the high number of measurement channels there is a strong pres-
sure on the price per channel. Therefore, the goal of this work is to integrate a
high number of channels on a truly low-cost platform: 48 channels on a Lattice
LFE5UM-85F FPGA, which currently costs about 32e. For the pure TDC, a
measurement channel would then be around 67 cents.

Having developed an efficient algorithm is half the battle, but an efficient
implementation is equally important on FPGAs. Quite often one can experience
wasteful use of chip resources by the design tools. What is needed are highly
optimized functional units, and we have used macros to achieve this goal.

3.1 Working with Macros

Macros are collections of logic elements with fixed placement and optionally
fixed routing. Macros are advantageous for large designs that mostly consist of
replicated units. Then, prototype units can be manually optimized to the highest
degree and replicated across the chip in identical form at the desired locations.
Mapper, placer and router will obey user design input and not alter the internal
macro structure. Macros can include other macros.

Designers can create macros by first implementing a regular design (including
I/Os, clocks etc) and then transforming it into a macro, mostly by removing the
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Fig. 7. One of two adder trees.

I/Os and changing the ports into internal pins. This is done using an FPGA
editor such as the EPIC tool from Lattice.

Optimizing a design consists mainly of placing logic elements in the optimal
location, if need be for individual LUTs and FFs, thereby achieving the highest
density and clock rate. EPIC even allows individual wires to be routed.

On the downside, the design style approaches that of ASICs with their noto-
rious high labor costs. Nevertheless, the encoder design was implemented using
macros without compromises.

Figure 8 shows the floorplan of a macro containing the TDLs and encoders for
two channels. The chip layout shows rows of DSP-slices and Embedded Block-
RAMs, and inbetween slabs of so-called Programmable Functional Units (PFUs).
Each PFU has 8 4-input LUTs and 8 FFs, grouped into four identical slices [2].

It can be seen that 8 channels can be placed within one slab, leaving some
room for control logic and datapath elements (and control logic for FIFO mem-
ories). As a sidenote: the required wide multiplexer that funnels the data of all
channels to an interface can be built from DSP-slices, which are not used for
other purposes in the design.

Thus we are confident that 48 channels can be integrated on this low-cost
FPGA device when using 6 slabs, leaving enough room for interface logic (such
as JESD204B).
A collection of design specs that were achieved:

• Bounding Box: 61 × 4 = 244 PFUs
• Occupied PFUs: 235 PFUs
• Occupied Resources: 1880 LUTs, 1880 FFs
• Used Resources: 1814 LUTs, 1362 FFs
• Usage: 96.5% of LUTs, 72.4% of FFs
• Max. Clock Frequency: ∼375 MHz
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Fig. 8. Floorplan of macro with two channels.

We think that the achieved clock frequency is very high for this device (cf. [2],
page 62). How much of this figure can be transported to the complete design
remains to be seen, but it will most likely be enough for the TDLs of that length,
according to our previous designs.

4 Conclusion

We have laid the groundwork for a high channel count, low cost TDC for use
in particle detectors and many other applications. We have presented a novel
encoder design that is capable of combining two state-of-the-art methods in
TDC design: Wave Union and population count encoding. Still, the encoder is
compact and very fast.

The final TDC, if our further design work is successful, might represent a
very competetive system with respect to the price/performance ratio.
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Abstract. Public cloud providers are employing more and more FPGAs
as hardware accelerators in data centers. For large applications that
requiring cooperation among multiple FPGAs, a network for connect-
ing these accelerators is necessary. Most high-performance commercial
switches are designed for general purpose networks, so that have high
costs. On the other hand, FPGA-based programmable switches can be
customized with minimum necessary functions, but the high-performance
full-crossbar design requires too many resources to implement a many-
port switch on them. In this work, based on the fact that network topolo-
gies of a specific type of applications commonly follow a particular pat-
tern, we show a method of designing and implementing an application-
specific switch with reduced resources on FPGAs. Our case studies show
that such resource reduced switches can implement a high-performance
network with low-cost commercial FPGAs.

1 Introduction

Employing FPGAs as hardware accelerators to enable high-performance com-
puting in low-power consumption have been a noticeable trend in clouds [1].
When a large number of FPGAs are available in a cluster and more accelerators
require cooperation among multiple FPGAs, a high-performance, high-flexibility
and low-cost network for connecting these FPGAs become necessary.

In this work, the conventional network connected by network interface cards
(NICs) and the FPGA network are considered as the primary network and the
secondary network, respectively. Three network architectures are shown in Fig. 1.
And pros and cons of these architectures are listed in Table 1. Figure 1(a) shows
an FPGA mesh network, in which an FPGA connects to FPGAs neighboring
to it with Multi-Gigabit Transceiver (MGT) links [2,3]. A simple switch for
routing data across the mesh network has to be implemented in all FPGA nodes.
This architecture has advantages of low wiring cost, high bandwidth and low
latency for local nodes communications. As the physical wires connect only the
nearest neighbor (NN) nodes, it cannot implement wide range communications
efficiently. The NN network is widely used in high-performance computing (HPC)
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Fig. 1. Network architectures of FPGA attached systems.

Table 1. Pros and cons of networks.

Topology
flexibility

Wiring
cost

Bandwidth Latency

Local Wide Local Wide

(a) Nearest neighbor × � © × © ×
(b) Shared switch © © � � � �
(c) Dedicated switch © × � © © ©

applications, in which communications mainly occur between neighboring nodes.
For cloud applications, a more flexible network solution is required.

Figure 1(b) shows a network architecture implemented in Microsoft Catapult
V2 [1]. FPGAs share a common datacenter network with NICs so that connectiv-
ity between FPGAs is not restricted by physical wirings. However, the network
bandwidth and latency using a shared switch are lower than Fig. 1(a).

Figure 1(c) shows an FPGA network with a dedicated switch proposed in this
work. This architecture has merits of high-throughput, high-flexibility and fewer
resource occupation of FPGA nodes. The main drawback is the additional wiring
cost of the secondary network. In this research, we suppose the FPGA switch
is used for connecting FPGA accelerators within the same server rack (ex. 42
nodes at maximum in a standard 42-U rack), so the wiring cost is manageable.

For an accelerator switch, its design targets are different from the primary
network switch. Recent commercial switches have been designed with more func-
tionalities such as network virtualization, deep packet processing, security, etc.
However, additional features usually degrade performance. For an accelerator
network, providing low-latency and high-bandwidth performance is more impor-
tant than the functional diversity. Also, custom protocol support is necessary. It
is difficult to implement complex protocol stacks within a hardware accelerator,
so custom lightweight protocols are commonly adopted. The above two condi-
tions cannot be satisfied by a commercial software-defined network (SDN) [4]
processor.
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Fig. 2. Basic switch modules: demultiplexer and arbiter.

In this work, we use an FPGA to implement a high-performance and low-cost
switch for the accelerator network, as shown in Fig. 1(c). Accelerator networks
for cloud applications of the same class usually share the same topology such as
a ring network, a 2D-Torus network, and a 3D-Torus network, etc. Benefit from
the reconfigurability of an FPGA, we can generate a switch with the minimum
function set required by an application, thus maximum resource efficiency and
performance. Our contributions are as follows.

1. We propose an application-specific datapath design method for FPGA switch,
which requires much fewer resources than a full-crossbar design but achieves
the same performance.

2. We propose a CAD tool to generate application-specific switch. We use bit-
stream caching and partial reconfiguration approaches to shorten the gener-
ation time of switch designs.

2 Proposed FPGA Switch

2.1 Basic Switch Modules

Two essential modules of a switch are demultiplexer (demux) and arbiter, as
shown in Fig. 2. A demux module forwards a packet from the input to an output
according to the destination of a packet. A commercial switch usually uses a pro-
grammable lookup module to index a destination for a packet with IP address.
As we only consider a single-layer accelerator network, we code the switch con-
ditions (an IP address or a custom node number) in the demux module to save
resources. A custom protocol can be easily supported by redefining these con-
ditions. An arbiter module is an input multiplexer, which reads a packet from
input queues in a round-robin policy and forwards the packet to the output.
Each input of an arbiter module has a BRAM (Block RAM) implemented FIFO
(First-in, First-out) that can buffer a packet of the maximum size (1,500 bytes).
These buffers consume most of the BRAM resources of a switch design. A packet
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Fig. 3. Examples of basic switch designs (a-c) and the proposed switch design (d).

processing datapath consists of demux and arbiter modules. In this work, the
interconnections between these modules use AXI-Stream protocol with a data
width of 256-bit (32 bytes). We note an n-output demux as n-Demux and an
n-input arbiter as n-Arbiter.

2.2 Basic Switch Designs

Figure 3(a) to (c) show three typical switch datapath designs. Figure 3(a) is
a basic switch that can forward packets from any input port to any desired
output port with a single shared datapath, however, has low throughput and
latency performance. Suppose a datapath with a 256-bit data width working at
a 175 MHz clock; then the throughput is 44.8 Gbps, which is far from enough for
the implementation of a standard 10GbE 48-port switch (480 Gbps required).
Besides, since incoming packets are processed with the round-robin policy by
arbiters, the latency will be degraded when the number of ports increases. In
the worst case, the packet in the last scheduled datapath of an n-input arbiter
has to wait for n× (1, 500/32) cycles to be processed.

Figure 3(b) shows a method to enhance the internal bandwidth by providing
more datapaths. Each datapath handles a part of packet requests, therefore near
n times better performance can be achieved by implementing n datapaths. When
the number of datapath n equals the number of inputs and outputs, we can get
a full-crossbar switch shown in Fig. 3(c). A full-crossbar provides a dedicate
datapath for each I/O port. Thus it has the highest performance. However, the
resource utilization of a full-crossbar architecture grows in O(n2) according to
the number of ports n increases, so it requires much more resources than designs
of Fig. 3(a) and (b). Commonly, a full-crossbar based many-port switch requires
more resources than most commercial FPGAs can provide, so it is not practical.
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Fig. 4. Proposed switch with input and output switch blocks.

2.3 Proposed Switch Design

Applications of the same class usually share the same topology. Therefore, to
implement a high-performance switch with an FPGA, we keep the number of
datapath of a full-crossbar datapath but reduce unnecessary resources for a
certain application to obtain an application-specific datapath, as the example
shown in Fig. 3(d). Resource reduction can be achieved in two aspects. First,
we can remove unnecessary datapaths of unconnected ports. For example, the
first and the second demuxes of Fig. 3(d) have no connection to the fourth port
so that can be removed. Second, after removing unnecessary paths, we can use
smaller demux and arbiter modules with a required number of outputs or inputs.
For example, the first and the second demuxes of Fig. 3(d) have three outputs,
and the second and the third arbiters have three inputs. For the best case like a
ring topology adopted in Microsoft Catapult V1 [1], each datapath only has one
input and one output, so that all demux and arbiter modules can be removed to
achieve the least resource utilization (e.g., the fourth path of Fig. 3(d)).

The proposed switch has to be reconfigured to implement networks for differ-
ent applications. However, the compiling and reconfiguring of an entire FPGA
requires a long time. The proposed switch can be optionally divided into few par-
tial reconfigurable regions, and each of these regions can be individually com-
piled and reconfigured to save the time for implementation. As Fig. 4 shows,
these partial reconfigurable regions include an input switch region, a datapath
region, and an output switch region. For networks that can share the same data-
path but with different I/O orders, only the input switch and the output switch
have to be updated. These I/O switch blocks are implemented with fewer FPGA
resources than the main datapath, therefore can be compiled and reconfigured in
a shorter time. However, a very large application-specific datapath is difficult to
be implemented in a reconfiguration region under current partial reconfiguration
technology provided by FPGA vendors, as it usually occupies most regions on
an FPGA.
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Fig. 5. Switch generation flow.

3 Switch Generation Tool

3.1 Design Flow

The target of the proposed design flow is to generate an application-specific
switch automatically and efficiently, as shown in Fig. 5. A switch specification
file of the XML format is used to describe a desired switch structure. The pro-
posed switch generator reads a switch specification file and then generates a
corresponding switch project. Then, we use a vendor FPGA CAD system to
compile the switch project and generate bitstream. At last, a host system recon-
figures the target FPGA with the generated bitstream. Next, we explain all the
steps in detail.

The switch specification file showed in Fig. 5 gives a simple example that illus-
trating a part of the switch Fig. 3(d). First, the connectivity of the input switch
and the output switch are described in the InSwitch element and the OutSwitch
element, respectively. The numbers listed in iomap attribute mean the 1st, 2nd,
3rd, and 4th inputs are mapped to the 3rd, 4th, 1st, and 2nd outputs, respec-
tively. In most cases, the iomaps of the InSwitch and the OutSwitch are the
same. However, they are allowed to be different in the proposed tool. Next, dat-
apaths are described by a Datapath element. Modules of demux and arbiter are
listed as Module elements within the Datapath element. Each module has a
unique id, which is used to describe connectivity between modules within the in
attribute and the out attribute.

The design flow of the proposed switch generation tool is given on the right
side of Fig. 5. A bitstream caching mechanism is implemented to shorten the
switch generation time, specifically for a design or a datapath that have gener-
ated before. The entire flow is explained as follows. The switch generator reads
a switch specification file, then searches the library for a switch of the same
topology. If the cache exists, the tool exports the switch bitstream directly. Oth-
erwise, the tool continues to search the library for a datapath that contains the
requested topology using a simplified subgraph isomorphism solver. If the cache
exists, the tool only generates RTL (Register transfer level) codes of the input
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switch and the output switch, then exports the switch project with the datap-
ath block bitstream and RTL codes of I/O switch blocks. Otherwise, the tool
generates RTL codes of the datapath block and I/O switch blocks, then exports
an RTL level switch project.

After the switch project is generated, the FPGA CAD system is executed to
compile the design and generate a bitstream for the target FPGA. Meanwhile,
the switch specification together with the bitstreams of the switch level and
the datapath block level are cached in the library for future use. For cloud
applications, a central library will be effective for sharing switch designs among
tenants.

3.2 Compiling and Reconfiguration Overhead

The main drawback of the proposed reconfigurable switch is the long compile
time and reconfiguration time for new switches. For the best use case, the switch
bitstream is pre-compiled during the design time of an application and can be
repeated used during runtime. So there is no compile overhead at the runtime.
During the reconfiguration, the FPGA switch will be stopped for a few seconds,
which is considered acceptable for an accelerator network utilized by a single
application. In practice, most cluster system for scientific computing applications
satisfy such requirements.

For other cases, the proposed partial reconfigurable approach and caching
mechanism can shorten the compile time. As applications of the same class
usually share the same topology, the partial bitstream of the datapath can be
cached and reused. If the I/O orders of accelerator nodes are different, only I/O
switch blocks have to be regenerated, which is faster than recompiling the entire
switch design. A challenge left for the future work is how to reconfigure the
FPGA switch shared by multiple applications without disturbing each other.

4 Case Study

In this section, we compare the resource utilization of the proposed application-
specific (AS) switch with a path-shared (PS) switch and a full-crossbar (FC)
switch. All switches operate as a 10GbE switch using Xilinx 10G ethernet sub-
system IP v3.1. The target FPGA board used for evaluation is Xilinx KCU1500,
which is a middle-end FPGA with 64 MGT ports. The CAD tool we used was
Vivado 2017.1.

4.1 Basic Module Evaluation

In this work, the demux module has no buffers, so the resource usage of demuxes
with different output sizes are the same. The number of used LUT, FF, and
BRAM for a demux are 177, 603, and 4.5, respectively. The resource usage of
arbiters with input sizes from 4 to 36 are evaluated and listed in Fig. 6. We can
see a linear growth of the resource usage of LUT, FF, and BRAM when the
input size increases.
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Fig. 6. Arbiter resource usage of different input sizes.

For the performance, the latencies of the proposed demux and arbiter are 3
clocks and 4 clocks, respectively. The latency of a datapath with one demux and
one that used in FC and AS arbiter is 7 clocks. The clock frequency was 175 MHz,
so the latency is 40 ns. On the other hand, a PS datapath has one demux and
two arbiters, so the latency is 11 clocks. After considering the latency of I/O
modules, the proposed FPGA switch still has a comparative performance with
high-end commercial switches (commonly over 200 ns).

4.2 Torus Networks

Torus network cases used for evaluation were a 2D-Torus network of 6×6 scale (a
36-port switch is required) and a 3D-Torus network of 3× 3× 3 scale (a 27-port
switch is required). Torus networks are widely used in scientific applications
such as cellular automata, FFT, etc. We compare the LUT, FF, and BRAM
utilization of PS, FC, and AS designs. The datapath clock of all designs was

Fig. 7. Resource of 2D-Torus switch.
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175 MHz. If a design can be successfully implemented, resource utilization data
were derived from the routed design report. Otherwise, data were derived from
the synthesized design report.

The results of the 2D-Torus network are shown in Fig. 7. For a PS design
(Fig. 3(b)), since all 36 ports of 10GbE require 360 Gb/s bandwidth in total, a
9-datapaths (44.8 Gb/s per datapath) PS was generated. However, the imple-
mentation was failed because of high BRAM usage. A crossbar design can pro-
vide better performance than a PS design using individual datapaths. The FC
design (Fig. 3(c)) that using 36-Arbiters and 36-Demuxes in all paths requires
29% more LUTs (LUTs are used for FIFOs when BRAM usage near 100%)
than the target FPGA can provide. Since each node in a 2D-Torus network only
connects to its nearing neighbor nodes in four directions, we can make an AS
design with 4-Arbiters and 4-Demuxes instead of 36-Arbiters and 36-Demuxes.
As a result, the AS design reduces 46.3% of BRAM utilization while keeping
the same bandwidth and latency performance as the FC design. Besides, when
the scale of the 2D-Torus network increases, the size an FC design increases in
O(n2), on the other hand, the AS design, in this case, increases in O(n).

The observed results of the 3D-Torus network are similar to the 2D-Torus
network, as shown in Fig. 8. For a PS design, since all 27 ports require 270 Gb/s
bandwidth in total, seven datapaths were implemented. Although the target
FPGA can provide enough resources for the FC design, which uses 27-Arbiters
and 27-Demuxes in all paths, the routing was failed for unsolvable congestions
at last. Since each node in a 3D-Torus network only connects to its nearest
neighbor nodes in six directions, we can make an AS design with 6-Arbiters and
6-Demuxes instead of 27-Arbiters and 27-Demuxes. As a result, the AS design
reduces 50% of BRAM utilization of the FC design. We can see the proposed
AS switch can implement the same performance as FC design, but the resource
utilization is even fewer than the PS design. Besides, the network architecture
using the proposed application-specific switch can provide high flexibility for
various topologies required by cloud applications by updating datapath circuits.

Fig. 8. Resource of 3D-Torus switch.
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5 Conclusion and Future Works

In this work, we have shown that high-performance crossbar switch for accel-
erator networks can be implemented with commercial FPGAs by utilizing the
application-specific resource-reduction technique. In the future work, we will
implement more switch functions like traffic controlling with the application-
specific method to achieve both functionality and performance. And then pro-
duce a switch prototype to examine this work with real-world applications.
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Abstract. Convolutional neural networks (CNNs) have been success-
fully used to attack problems such as object recognition, object detec-
tion, semantic segmentation, and scene understanding. The rapid devel-
opment of deep learning goes hand by hand with the adaptation of
GPUs for accelerating its processes, such as network training and infer-
ence. Even though FPGA design exists long before the use of GPUs for
accelerating computations and despite the fact that high-level synthesis
(HLS) tools are getting more attractive, the adaptation of FPGAs for
deep learning research and application development is poor due to the
requirement of hardware design related expertise. This work presents a
workflow for deep learning mobile application acceleration on small low-
cost low-power FPGA devices using HLS tools. This workflow eases the
design of an improved version of the SqueezeJet accelerator used for the
speedup of mobile-friendly low-parameter ImageNet class CNNs, such
as the SqueezeNet v1.1 and the ZynqNet. Additionally, the workflow
includes the development of an HLS-driven analytical model which is
used for performance estimation of the accelerator.

Keywords: FPGA accelerator · High-level synthesis ·
Mobile embedded systems · CNN · Deep learning application

1 Introduction

HLS tools [11] provide a higher level of abstraction in digital design and increased
productivity when compared to more traditional design methods, such as the
hardware description languages (HDLs). This increased productivity comes at
the cost of limited design flexibility, compared to HDLs, plus a steep learning
curve [1]. To make HLS-driven design more attractive, Xilinx introduced the
SDSoC tool [8]. With SDSoC, the user marks for FPGA acceleration functions
of the input C/C++ application code which are compiled to be run on the CPU
side of the FPGA SoC.
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In order to develop mobile deep learning applications on an FPGA SoC, we
accelerate mobile-friendly ImageNet class CNNs [5,9], which are characterized by
small model size and, relatively, limited computational requirements. The char-
acteristics of these CNNs translate in limited requirements in terms of BRAM
and DSP FPGA resources; meaning that small, low-power, and low-cost FPGA
SoC devices, such as the xc7z020clg484-1 FPGA SoC device, can be used.

Porting mobile-friendly CNNs onto small FPGA SoCs using SDSoC is not
a straightforward procedure. Our contribution includes a workflow where: (1)
CNNs are first described in a higher-than-C/C++-level language such as Mat-
lab, (2) CNNs’ feature-maps and parameters are quantized at 8-bit dynamic
fixed-point format using Ristretto [4], (3) the quantized CNNs are implemented
in C/C++, (4) the computational intensive functions of the C/C++ description
are re-written in a HLS-compatible way in order to be accelerated, and, finally,
(5) the SDSoC tool is used for developing an application and deploying it to a
specific FPGA SoC board. In this work, we also improve and extent the design of
the SqueezeJet [10] accelerator and use it to accelerate both SqueezeNet v1.11 [6]
and ZynqNet [2] CNNs achieving 13.34 fps for the execution of the SqueezeNet
v1.1 and 11.54 fps for the ZynqNet on the xc7z020clg484-1 FPGA SoC device.
Finally, we show how the HLS performance estimation information can be used to
develop an analytical model of an accelerator design. The results of the analytical
model of our accelerator are the closest to the real accelerator latency measure-
ments performed on the FPGA SoC device when compared with the performance
estimation and the C/RTL Co-Simulation functionalities of Vivado HLS.

The rest of the paper is organized as follows: Sect. 2 presents related work.
Our software-defined workflow is described in Sect. 3. Section 4 presents the
SqueezeJet-2 accelerator design as an improved version of SqueezeJet. The devel-
opment of our analytical model is presented in Sect. 5. Section 6 shows: (1)
results related to the performance of our analytical model in terms of accu-
racy, and (2) results related to the performance of our accelerator in terms of
latency and resources utilization. Finally, Sect. 7 concludes the paper and pro-
poses future work.

2 Related Work

In this section we refer to works that could be used to develop mobile deep learn-
ing applications with FPGA SoCs. Mobile computer vision applications (auto-
motive, drones, etc.) often pose real-time performance constraints translating in
minimal latency or a batch size equal to one.

ZynqNet describes a CNN architecture and an HLS design for the acceleration
of this network. ZynqNet derived from SqueezeNet by replacing the combination
of convolutional and maxpool layers with a convolutional layer having increased
stride [12]. This transformation simplifies the accelerator design; by implement-
ing a convolutional layer and a global pooling layer, the ZynqNet accelerator
can process the whole CNN except the last softmax layer. Convolutional layer
1 https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet v1.1.

https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
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acceleration is achieved by calculating multiple output feature-map channels in
parallel using processing elements (PEs) which fully unroll the calculation of a
3 × 3 kernel.

In Angel-Eye [3], a design flow for mapping CNNs onto embedded FPGA
devices is proposed. This design flow includes a dynamic fixed-point quantization
strategy, a software controlled hardware architecture with 3×3 convolution ker-
nel support, and a run-time workflow which allows a single frame to be processed
by multiple CNNs. Since real-time processing is of main concern, Angel-Eye uses
a batch size of one in order to minimize latency.

In [14] a latency-driven design method is presented as an extension of the
fpgaConvNet modeling framework [13]. This work models CNNs using the
synchronous dataflow (SDF) model of computation. CNNs are interpreted as
directed acyclic graphs (DAGs) whose nodes are mapped to hardware building
blocks which are interconnected to form the final SDF graph. The SDF model
of computation allows the generation of static schedules of execution and the
calculation of the amount of buffer memory between the interconnected hard-
ware building blocks. The SDF graph is partitioned along its depth and a single
flexible reference architecture is generated which enables the execution of all the
subgraphs. In contrast to Angle-Eye, this reference architecture is tailored to a
specific CNN and it is optimized in terms of latency. Their framework produces
synthesizable Vivado HLS code for the resulting architecture.

We follow a similar approach to ZynqNet by developing an accelerator which
targets CNNs optimized for embedded mobile applications; the architecture of
these CNNs can be easily adapted to run on FPGA SoCs. For this purpose,
we improve the design of the SqueezeJet convolutional layer accelerator and
we also add to it support for performing the maxpool operation. Similarly to
Angel-Eye, we use Ristretto for 8-bit dynamic fixed point data quantization.
Our accelerator is software controlled and it is using parallel operating PEs that
execute concurrently 1 × 1 kernel convolutions which calculate multiple output
feature map channels. Thus, it can support arbitrary convolution kernel sizes
without limiting the utilization of the accelerator computing resources, which
are valuable in embedded mobile FPGA SoC devices. We also use a batch size
of one to minimize the latency and achieve real-time performance. Finally, we
don’t use a mathematically-driven design methodology as it is the case with
fpgaConvNet, but we derive an analytical model for the performance estimation
of our accelerator, which can be used for design improvements by means of
design-space exploration.

3 Software-Defined Workflow

This workflow could be generalized and applied for the FPGA acceleration of
any algorithm if a quantization framework existed which could handle a broad
range of algorithms.

We used Ristretto [4], a deep learning quantization framework implemented
as a Caffe [7] extension. Ristretto decreases the bit width of the feature-maps
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and parameters in every CNN layer and performs a CNN forward pass to get
the accuracy; it keeps reducing the bit width up to a network accuracy threshold
set by the user. We quantize both the SqueezeNet v1.1 and the ZynqNet CNNs
down to 8 bits in both feature-maps and parameters using dynamic fixed-point
arithmetic. The top-1 accuracy drop is 2.76% and 1.44% for the SqueezeNet v1.1
and the ZynqNet networks respectively.

We adapted and extended a SqueezeNet Matlab project2 to support the
forward pass of SqueezeNet v1.1 and ZynqNet in floating-point and dynamic
fixed-point modes. Matcaffe, a Caffe Matlab interface, is used to generate the
network parameters and inter-layer network data in order to compare the Caffe
results against those of the Matlab implementation. The results from Ristretto
are used in the Matlab implementation to generate the parameters for a dynamic
fixed-point network model; we developed a Matlab script that can be used to
save the generated network parameters to binary files.

Furthermore, we developed a C/C++ project which implements and tests
the forward pass of the floating-point and fixed-point versions of the CNNs by
using the binary files generated in the aforementioned Matlab project.

In the next step, the computationally intensive CNN layer functions, the
convolutional and the maxpool, are re-written in an HLS-compatible way.

Finally, the whole C/C++ project is imported in SDSoC for testing and
implementation.

4 Accelerator Design

4.1 SqueezeJet-2

SqueezeJet-2 is an improved re-design and extension of the SqueezeJet acceler-
ator [10]; its improvements follow.

Support for Stride Values Larger than 1: The ZynqNet CNN uses convolutional
layers with a stride equal to 2.

Single Accelerator Design: SqueezeJet used two accelerators; one for the first
SqueezeNet v1.1 layer and another one for the rest of the layers. Our current
implementation uses a single accelerator for all the CNNs’ layers. To overcome
the first layer’s small input channel issue, we use a software solution that reshapes
the input and the parameters of the first layer in order to increase the compu-
tation utilization of our accelerator.

Use of Double Buffering Technique: In this way, the communication latency of
reading the input feature-map data is hidden behind the computation of the
convolution operation.

Support for the Maxpool Operation: We re-arranged the SqueezeNet v1.1 layers to
bring the maxpool layers before the merge layers. The idea is to make it possible
for our accelerator to perform the calculations for both the convolutional and the

2 https://github.com/mtmd/SqueezeNet MATLAB.

https://github.com/mtmd/SqueezeNet_MATLAB
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maxpool layers without the need of sending data back to main memory. In the
case where only the convolution operation is required, the maxpool operation is
bypassed.

Use of the LUTs to Increase the Number of the Implementable Multiply-
Accumulate (MAC) Units: Although the xc7z020clg484-1 FPGA SoC device
includes 220 DSP blocks, we managed to implement 256 MAC units (16 PEs
with each of them consisting of 16 MAC units) by making use of the resources
related HLS pragma; we implemented half the MAC units using DSP blocks and
the other half using LUTs. Unfortunately, the HLS synthesis tool is unable to
map multiple 8-bit multiplications on a single DSP block.

Support for dynamic fixed-point arithmetic.

4.2 Cache Organization and Operation

Below, we provide details related to the SqueezeJet-2 cache organization and
operation regarding the convolution operation; the description of the caches
used for the implementation of the convolution operation follows.

weights[PAR FACT][Q CHOxKxKxCHI MAX]: Consists of a group of PAR FACT
caches of size Q CHOxKxKxCHI MAX. These caches result from the partitioning of
the weights array with a factor of PAR FACT. This is done in order to have
simultaneous access to these caches. Each of these caches is used by one of the
PAR FACT PEs, which is responsible to calculate Q CHO output channels of a spe-
cific output pixel3. Because the weight and bias parameters will be reused in
the calculation of every output-feature-map pixel, we store all the CNN param-
eters in the on-chip BRAMs. In case where this is not possible, we partition the
parameters in the output-channel dimension and we calculate specific output-
feature-map channels in every accelerator function invocation; in the end we
merge the partial results in the output-channel dimension to get the final result.

bias[PAR FACT][Q CHO MAX]: This cache group holds the CNN layer’s bias
values and its use is similar to the one of the weights cache group.

linebuf[K MAX][WIxCHI MAX]: This is a single cache of size K MAX by
WIxCHI MAX. It is described in this way because when the kernel’s height by
width size is larger than 1 × 1, some feature-map lines will be reused as the
line-buffer array “slides down” the input-feature-map.

linebuf idx[K MAX]: This is an array used as a “pointer” that determines
the order of the line-buffer lines as they “slide down” the input-feature-map. This
is done to avoid having an array of pointers-to-line-buffers because the HLS tool
used cannot handle passing to functions pointer-to-pointer-to-arrays arguments.

linebuf win0[KxKxCHI MAX], linebuf win1[KxKxCHI MAX]: These are two
caches which “slide horizontally” on the linebuf cache. We use two line-buffer
windows instead of one in order to implement double buffering, which is used

3 In this work, “pixel” is used to describe the set of all the channels that can be
addressed with some specific spatial coordinates. This notion extents in the case of
a feature-map line or a line-buffer line.
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for overlapping communication with computation; the process of reading new
input-feature-map data from the main memory while executing the convolution
operation.

out pix0[CHO MAX], out pix1[CHO MAX]: These are two caches which hold
an output-pixel result. We use two of them as part of the double buffering imple-
mentation.

Below, listing 1.1 shows the top level C/C++ HLS description of the con-
volution operation; pre-calculation of often-used terms, cache initialization, and
HLS pragmas are omitted.

Listing 1.1. Top-level HLS description of the convolution operation

1 // For each output row

2 L_H_OUT: for ( uint8_t ho = 0; ho != h_out; ho++ ) {

3 // Shift line -buffer ‘‘down ’’ in the input -feature -map.

4 // Fill the ‘‘last ’’ line -buffer line with KxCHI values (K 3D pixels ).

5 shift_linebuf( fmap_in , &iidx , linebuf , linebuf_idx , WIxCHI , KxCHI , kernel ,

6 stride , ho , h_out , PADxCHI );

7 uint16_t lb_pixel_pt = KxCHI; // last line -buffer pixel ‘‘pointer ’’

8 // Line -buffer window initialization

9 init_linebuf_win( linebuf , linebuf_idx , linebuf_win0 , KxCHI , KxKxCHI , 0 );

10 // line -buffer pixel ‘‘pointers ’’ for line -buffer windows

11 uint16_t pixel_iwp0 = ( SxCHI << 1 );

12 uint16_t pixel_iwp1 = SxCHI;

13 // For each output pixel (in each output row)

14 L_W_OUT: for ( uint8_t wo = 0; wo != w_out; wo++ ) {

15 if ( wo%2 == 0 ) {

16 // Calc pixel

17 pixel_calc( linebuf_win0 , _weights , _bias , KxKxCHI ,

18 Q_CHOxKxKxCHI , Q_CHO , out_pix0 , ei , eo , ep );

19 // Update line -buffer line and line -buffer window

20 update_linebuf_win( fmap_in , &iidx , linebuf , kernel ,

21 SxCHI , WIxCHI , &lb_pixel_pt , linebuf_idx , linebuf_win1 ,

22 KxCHI , KxKxCHI , &pixel_iwp1 , PADxCHI , ho , h_out , stride );

23 // Write back to off -chip memory

24 write_back( fmap_out , &oidx , ch_out , out_pix1 , wo , use_relu );

25 }

26 else {

27 // Calc pixel

28 pixel_calc( linebuf_win1 , _weights , _bias , KxKxCHI ,

29 Q_CHOxKxKxCHI , Q_CHO , out_pix1 , ei , eo , ep );

30 // Update line -buffer line and line -buffer window

31 update_linebuf_win( fmap_in , &iidx , linebuf , kernel ,

32 SxCHI , WIxCHI , &lb_pixel_pt , linebuf_idx , linebuf_win0 ,

33 KxCHI , KxKxCHI , &pixel_iwp0 , PADxCHI , ho , h_out , stride );

34 // Write back to off -chip memory

35 write_back( fmap_out , &oidx , ch_out , out_pix0 , wo , use_relu );

36 }

37 }

38 // Write back to off -chip memory leftover pixel

39 if ( w_out%2 == 0 )

40 write_back( fmap_out , &oidx , ch_out , out_pix1 , 1, use_relu );

41 else

42 write_back( fmap_out , &oidx , ch_out , out_pix0 , 1, use_relu );

43 }

The shift linebuf() function “shifts” the line-buffer cache down the input
feature map using a stride step. Then, using init linebuf win(), the first line-
buffer window is initialized with line-buffer data. Two line-buffer window “point-
ers” are initialized with line-buffer addresses (indices) that will be used to fill the
line-buffer windows with new data. The pixel calc(), update linebuf win(),
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and the write back() functions are executed concurrently taking advantage of
the double buffering technique.

In our implementation, the SqueezeJet-2 accelerator exchanges data with
the ARM CPU of the xc7z020clg484-1 FPGA SoC device using AXI buses.
Specifically the interfaces used are: AXI General Purpose (GP) interface for
simple arguments, such as input-feature-map size, kernel size, stride, etc., AXI
Accelerator Coherency Port (ACP) for input/output-feature-maps which require
to be cache coherent since they are used in CNN layers running in the ARM
system, such as the merge layer, and AXI High Performance (HP) Port for
weight/bias CNN parameters which don’t require cache coherency. In the case of
the AXI ACP and HP ports, simple DMAs are used for efficient data movement.

5 HLS-Driven Analytical Model

We derive our analytical model of performance estimation using HLS information
such as pipeline depths, and function/loop call overheads.

The convolution operation’s performance can be formulated by describing
analytically the cost, in terms of cycle count, of the precalc terms() func-
tion, the init caches() function, and the L H OUT loop which contains the
shift linebuf() function, the init linebuf win() function, and the L W OUT
loop. The L W OUT loop contains three functions with the dominating one being
the pixel calc() function.

The pixel calc() function consists of the calc ch out() and write pix()
functions operating in dataflow; dataflow is a function-level pipeline opera-
tion mode. Function calc ch out() calculates one output-future-map pixel by
assigning the computation to PAR FACT parallel-working PEs, each of them cal-
culating Q CHOxKxKxCHI = CHOxKxKxCHI/PAR FACT MAC operations, CHI NUM
operations at each cycle. The analytical description of the performance, in terms
of cycle count, of the calc ch out() function is given by the following equation:

CCOCC=CCO DSP LUTCC=

(CHO·K·K·CHI)/(PARFACT ·CHINUM ) (1)
+PIPE CCO DSP LUTFILL+CCO DSP LUTOV ER

where CHO·K·K·CHI is the total number of MACs required to calcu-
late one output pixel (it is also the number of weight parameters; it
is equal to output-channels by kernel-height by kernel-width by input-
channels), PIPE CCO DSP LUTFILL is the pipeline fill overhead of the
calc ch out dsp lut() function’s loop; the calc ch out dsp lut() function
call, which represents the calculation done by a PE, is called by the
calc ch out() function, and CCO DSP LUTOV ER is the overhead introduced with
reading the arguments passed by a calling function. This overhead can be sig-
nificant in the case where the function is called inside multiple nested loops as
it is the case of the convolution operation. In general, for a pipelined loop the
performance equation’s form is:

LOOPCC=(TRIPCOUNT ·INITIATION INTERV AL)+ITERATION LATENCY (2)
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The accelerator is designed in such a way that forces the INITIATION INTERV AL

to be equal to 1 for all the pipelined loops. The ITERATION LATENCY can be
translated as the pipeline depth of the specific loop.

Using the above example as a guideline, we calculate the total performance
of the SqueezeJet-2 accelerator.

6 Experiments and Results

Figure 1 presents results related to the analytical model of the SqueezeJet-2
dynamic fixed-point (SqJ-2-dfp) accelerator. L TRACE represents the latency mea-
surements of the accelerator layers using the hardware tracing feature of SDSoC
when the network runs on the FPGA, L COSIM represents the latency measure-
ments of the accelerator layers using the C/RTL Co-Simulation feature of the
SDSoC, L PERFEST represents the worst case latency estimation of the accelera-
tor layers using Vivado HLS synthesis; we explicitly set the min/max tripcounts
for the loops of every layer, and L MODEL represents the latency estimation of
the accelerator layers using the analytical model. From Fig. 1 we conclude the
following: (1) our analytical model is the closest to the L TRACE results, (2) the
L PERFEST method is the most optimistic and shows up to 46.1 % error against
the L TRACE results; the L COSIM presents the next max error which is 33.4 %,
and finally our analytical model has a max error of 8.3 %, and (3) the average %
error of the analytical model of the SqJ-2-dfp accelerator is bellow 5% ( 4.45%).

Fig. 1. (A) Latency of the accelerator measured with 3 methods and modeled analyti-
cally, and (B) the % absolute latency error of the L COSIM, L PERFEST, and the L MODEL

methods, against the L TRACE method

Table 1(A) shows the resources usage of the SqJ-2-dfp, the SqueezeJet-2
floating point (SqJ-2-flp), and the ZynqNet [2] floating-point (ZqN-flp) design
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implementations. Table 1(B) shows the SqJ-2-dfp, the SqJ-2-flp, and the ZqN-flp
accelerators’ performance in terms of latency using SqueezeNet v1.1 and Zyn-
qNet as test cases. Table 1(A) shows that, with the exception of the BRAMs, the
SqJ-2-flp accelerator uses almost half the resources used by the ZqN-flp accel-
erator and Table 1(B) shows that the SqJ-2-flp accelerator is ten times faster
than ZqN-flp when executing the ZynqNet CNN. Finally, Table 1(B) shows that
the SqN-2-dfp accelerator achieves 13.34 fps for the execution of the SqueezeNet
v1.1 and 11.54 fps for ZynqNet on the xc7z020clg484-1 FPGA SoC device.

Table 1. (A) Resources usage of the SqJ-2-dfp, SqJ-2-flp, and the ZqN-flp accelerators;
the numbers in parentheses show the % device resource utilization, and (B) total CNN
latency (ms) for the SqJ-2-dfp, SqJ-2-flp, and the ZqN-flp accelerators running at
100MHz; the ZynqNet ZqN-flp result (*) produced using HLS C/RTL Co-Simulation

(A) Resources Usage
SqJ-2-dfp
xc7z020

SqJ-2-flp
xc7z045

ZqN-flp
xc7z045

LUT 36.2k (68%) 63k (29%) 154k (70%)
LUTRAM 3.1k (18%) 8.8k (13%) ?
FF 24.9 (24%) 75.6k (17%) 137k (31%)
BRAM 96.5 (69%) 324.5 (60%) 498 (91%)
DSP 172 (78%) 268 (30%) 739 (82%)

(B) Total CNN latency (ms)
SqueezeNet v1.1 74.91 - -
ZynqNet 86.62 *186.8 1955

7 Conclusion and Future Work

In this work we have demonstrated a workflow which eases the mapping of
mobile-friendly CNNs onto low-cost low-power small FPGA SoC devices. We pre-
sented an improved version of the SqueezeJet accelerator which achieves 13.34 fps
for the execution of the SqueezeNet v1.1 and 11.54 fps for the ZynqNet on the
xc7z020clg484-1 FPGA SoC device. Using HLS performance estimation infor-
mation, we formed an analytical performance estimation model which provides
improved performance estimation when compared with the HLS build-in per-
formance estimation and C/RTL Co-Simulation functionalities. Finally, we used
C/RTL Co-Simulation and a floating-point version of our accelerator to estimate
its performance for the execution of the floating-point version of ZynqNet. The
results show that our accelerator is 10 times faster and, with the exception of
the BRAMs, uses almost half the FPGA resources when compared against the
ZqN-flp accelerator. Future work could use our analytical model for performing
design space exploration and optimizing the design of our accelerator.
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Abstract. Many streaming applications composed of multiple tasks
self-adapt their tasks’ execution at runtime as response to the pro-
cessed data. This type of application promises a better solution to con-
text switches at the cost of a non-deterministic task scheduling. Par-
tial reconfiguration is a unique feature of FPGAs that not only offers
a higher resource reuse but also performance improvements when prop-
erly applied. In this paper, a probabilistic approach is used to estimate
the acceleration of streaming applications with unknown task schedule
thanks to the application of partial reconfiguration. This novel approach
provides insights in the feasible acceleration when partially reconfiguring
regions of the FPGA are partially reconfigured in order to exploit the
available resources by processing multiple tasks in parallel. Moreover,
the impact of how different strategies or heuristics affect to the final per-
formance is included in this analysis. As a result, not only an estimation
of the achievable acceleration is obtained, but also a guide at the design
stage when searching for the highest performance.

1 Introduction

Streaming applications are present in a wide range of domains such as digital
signal processing, audio, and imaging, which require several compatible modes or
configurations only active based on pre-defined contexts. Such dynamic stream-
ing applications are able to adapt their response as reaction to an environmental
change [2,5,9,13]. For instance, multifunction array radars based on a phased
array need to execute multiple integrated functions such as tracking, surveillance,
communication, calibration or counter measures in an unspecific order [12]. The
multifunction radar has to search in multiple regions, which are sub-divided
into beam positions with each position executing a task based on the previous
monitoring operation. Hence, it is not possible to determine in advance what
operations or tasks need to be computed at a certain moment [9]. However,
such type of streaming applications can achieve high performance on FPGAs
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Table 1. Example of a cost table.

Task (Ti) Probability (pi) Time cost (ti) Area cost (ai) Compatibility (RMi)

TA 1/3 tA 1 RMTA

TB 1/3 tB 1/2 RMTB

TC 1/3 tC 1/4 RMTC

Fig. 1. Example of how PR can be used to increase performance (left) while maximiz-
ing the reuse of the reconfigurable resources (right). The dashed framed area represents
the area consumption with and without PR.

when they are properly designed to exploit pipeline-level and instruction-level
parallelism [8]. We believe that the use of Partial reconfiguration (PR) with
the proper heuristics can further improve the performance. PR is a unique fea-
ture of FPGAs which allows the change of the functionality of reconfigurable
partitions (RP ) on the FPGA at runtime. The use of PR for such type of appli-
cations, where the order and the type of the tasks to be executed are not known
in advance, might not justify the additional design effort to achieve residual
performance acceleration.

In this paper, we not only present a general methodology to increment per-
formance by using PR to maximize the area reuse but also a probabilistic app-
roach to predict the achievable speedup. This probabilistic performance model
provides performance insights at the design time, helping to decide parameters
like the size of the RP or to evaluate the PR performance overhead. The prin-
ciples of the methodology to exploit PR to accelerate a streaming application
with unknown task scheduling are depicted in Fig. 1. The execution without PR
requires tA + 2 · tB + 4 · tC units of time to complete one execution, where ti
corresponds to the computation time of a task i detailed in Table 1. By partially
reconfiguring one RP with other configurations, called reconfigurable modules
(RM), like for instance RMTB

or RMTC
, multiple tasks can be computed in

parallel through the exploitation of the unused resources. The overall execution
time is then reduced to tA + tB + tC + 2 · tpr, where tpr is the time overhead
due to reconfiguring the RP . Moreover, this approach also leads to area savings
as illustrated in Fig. 1. Instead of dedicating area to allocate each type of task,
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one RP can be properly dimensioned to not only allocate one instance of the
most area demanding task, but also multiple instantiations of low-area demand-
ing tasks (e.g. TB or TC in this example). This naive example, however, can
become significantly more complex when considering multiple RPs computing
hundreds of tasks that can be merged to share resources. As a result, the design
effort that is required to fully exploit PR for performance acceleration is not
negligible. The allocation of the tasks on the available RPs, the combination
of multiple tasks to reuse resources or the schedule of the merged tasks on the
reconfigurable RP are challenges that our approach helps to predict. The ulti-
mate goal of our approach is to accurately predict the achievable acceleration
when using the proposed methodology to exploit the benefits of PR.

The use of PR to support multiple configurations and to improve perfor-
mance of streaming applications with unpredictable scheduling has been already
used in [4] to accelerate a platform supporting PR through PCIe [3]. Although
the approach used in [4] proposes heuristics to increase area reuse and perfor-
mance, we present in this paper a general methodology to increase performance.
For instance, our methodology introduces a parameter to reflect the reconfig-
uration cost which does not necessarily stands for PCIe-based reconfiguration
like in [3,4] but it is also applicable for other reconfigurations interfaces like the
Internal Configuration Access Port (ICAP) on Xilinx FPGAs. Moreover, a prob-
abilistic approach to predict the achievable performance when using PR is here
presented in order to reduce the design effort required to apply the proposed
methodology. This probabilistic performance modelling can be used to evalu-
ate different strategies or heuristics targeting either area savings or performance
improvements without the need of implementing them on the FPGA. The main
contributions of this work can be summarized as follows:

– We present a generalized heuristics-based methodology to exploit PR in order
to accelerate streaming applications.

– Our approach represents the basis for probabilistic performance predictions
when using PR to accelerate streaming applications.

This paper is organized as follows. Section 2 presents related work. The
methodology to use PR for performance acceleration is described in Sect. 3.
In Sect. 4 the problem formulation and the equations to predict performance
based on the application’s characteristics are introduced. An audio streaming
application is used to validate the performance predictions when applying our
methodology. The results are presented in Sect. 5. Finally, our conclusions are
drawn in Sect. 6.

2 Related Work

Different performance prediction models when using PR have been proposed
in the last decade. The authors in [6,7] present a theoretical analysis of the
performance bounds of PR. The basis of their analysis is the full decomposition
of the application in tasks. The tasks’ timings and the operations involved in
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the PR are used to estimate performance bounds and speedups. Similarly, the
authors in [10] propose a cost model to determine the performance impact of
PR. Both approaches, however, are not directly applicable to applications with
an unpredictable tasks’ scheduling.

Different strategies using PR to maximize the area reuse or to increase perfor-
mance have been proposed. The authors in [14,15] present a novel approach for
the resource sharing of RPs by merging tasks of streaming applications with an
unpredictable tasks’ scheduling by identifying similarities between tasks. How-
ever, their approach targets the minimization of the FPGA reconfiguration time
by optimizing the allocation of the applications on the FPGA rather than incre-
menting the area reuse per RP . The authors in [1] present solutions to reduce the
PR cost. Their approach, consisting of an Integer-Linear Programming (ILP )
and a heuristic to exploit PR techniques such as module reuse, does not consider
the use of PR to increment the resource sharing of the RPs. Our methodology
not only addresses similar types of applications, but also reduces the number of
reconfigurations while prioritizing the area reuse of RP s by taking advantage of
similarities between tasks to share logic resources of RP s. In addition, our prob-
abilistic approach enables performance estimation at the design time, leading to
a reduction of the overall design effort.

3 Proposed Methodology

Our generalized methodology exploits PR to accelerate streaming applications
with non-deterministic task scheduling. This methodology consists of the three
heuristics depicted in Fig. 2. An initial classification identifies the type of incom-
ing tasks and tags them based on the Cost Table (CT ). The merging heuristic
groups tasks to be executed in parallel in the same RP based on their compatibil-
ity. The execution of all the tasks is split in iterations or time slots based on the
number of tasks and RPs. Each RP has a dedicated task’s queue which deter-
mines the time slot when the tasks are executed in the RP . However, scheduling
strategies are needed in order to minimize the PR impact, leading to the desired
performance [9]. A scheduling heuristic distributes the merged tasks between the
available time slots of the RPs. As a result, the heuristics allow a performance
acceleration by exploiting the area reuse.

Different heuristics can be applied on this methodology. For instance, the
authors in [1] propose a scheduling heuristic targeting performance compatible
with this methodology. A merging heuristic to exploit the compatibility of similar
tasks, leading to a higher reuse of the available area by allocating different types
of tasks in the same RM has been proposed in [4]. In any case, the proposed
methodology increases the area reuse by computing compatible tasks in the same
RP to accelerate the overall performance. Moreover, the proposed probabilistic
approach can be adjusted to reflect the characteristics of the heuristics, like done
in Sect. 4 for a merging and scheduling heuristics.

The usability of this general methodology is determined by the information
available in the CT . The construction of such a table does not demand additional
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Fig. 2. Overview of the proposed methodology to exploit PR for performance acceler-
ations.

effort than some profilings and measurements at the design stage. The probability
of executing a specific task is defined by the application’s characteristics and can
be estimated in advance or obtained after multiple executions. The area cost of
each task (ai) is already known when implementing the task on the target FPGA.
The number of tasks that can be allocated on the RP , which is hereby called
the level of parallelism (LP ), can be obtained based on the available resources
in the RP . The parameter ai represents the relative area demands of a task
i in terms of one RP , which corresponds to the inverse of LP . The time cost
(ti) is obtained through simulations at high level or execution profiles on the
FPGA once the task is implemented. The compatibility depends on the level
of the desired area reuse, the available I/O and the task’s characteristics. The
area reuse can be increased when combining the execution of the same, or even
different types of tasks on the same RM , like proposed in [4]. The available I/O
bandwidth determines, together with the demanded area consumption, the value
of LP . The task’s characteristics determine if multiple tasks of different types
can be executed in parallel. For instance, a high variance of ti might lead to
performance degradation when merging tasks with different ti, since the merged
tasks would have to wait for the most time demanding one. Finally, the size
of PR must be adjusted to provide enough resources to allocate the most area
demanding task. Nonetheless, its size can be enlarged to be able to allocate
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multiple instances of other tasks. Despite such enlargements would reduce the
area savings, they might increase performance.

The cost of PR is reflected in tpr, which is the time needed to reconfigure
one RP . Moreover, tpr increases with the amount of resources available in the
RP , and must be considered when determining the size of the RP . The area
overhead due to supporting PR is not considered in our approach and is assumed
significantly lower than the area demanded by the streaming application’s tasks.

The proposed methodology targets streaming applications with the following
characteristics:

– Non-deterministic scheduling: The tasks and their schedule are not known in
advance.

– Non-priority tasks: The tasks can be executed without a priority order.
– Non-data dependencies between tasks: The tasks in the same execution are

not data dependent.

Notice that the non-data dependency between tasks enables the execution of
tasks without any priority order. This is not a strong constraint for our approach
since it can be overcome by considering data dependencies during scheduling.
However, a priority order might reduce the achievable performance acceleration.

Applications like smart cameras adapt their response to the environmen-
tal context, demanding runtime decisions under unknown beforehand condi-
tions [13]. The processing of SQL queries can also be accelerated by using PR
when treating each type of SQL query as independent task. Each SQL query
presents different query plan which can be implemented with a different archi-
tecture, like proposed in [11].

4 Problem Formulation

The following probabilistic approach intends to predict the achievable speedup
obtained by using the described methodology. Let us consider a streaming appli-
cation (Fig. 2) composed of a certain number of tasks (ntasks) with a number of
different types (ntypes), which must be executed without following any particu-
lar schedule. At a certain instant, a number of independent tasks (nI

tasks) must
be scheduled to be executed on the FPGA. The probability of having a task i
(Ti) is pi. Each Ti demands a computational time (ti) of the FPGA. Finally, tpr
is the time cost of the PR of one of the reconfigurable partitions (RPs) of the
FPGA, which has a certain number of RPs (nRP ) available.

The tasks are grouped to be executed in parallel based on their area and
I/O bandwidth demand as part of the design flow. The level of parallelism of
each Ti is LPi. As a result, several RMs compatible with the available RPs are
generated to allocate all the tasks of the streaming application. A CT including
the time cost of the tasks, their area cost and the compatible RMs is generated to
be used by a set of heuristics designed to exploit the area reuse and to optimize
the merged tasks’ scheduling. The overall acceleration is determined by three
properties: the number of available RPs (nRPs), the average LP achieved by
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merging tasks, and finally, the scheduling of the tasks. The performance impact
of the last two characteristics are firstly analysed from a probabilistic point of
view.

4.1 Probabilistic Approach

Our methodology (Sect. 3) assumes that each execution on the FPGA is com-
posed of mutually exclusive and independent nI

tasks. The probability of a Ti in
nI
tasks follows a multinomial distribution. However, for a particular task it can

be approximated to a binomial. Thus, the probability of having r tasks Ti in
nI
tasks is:

P (Ti = r) =
(
nI
task

r

)
· pir · (1 − pi)(n

I
tasks−r) (1)

=
nI
task!

r!
(
nI
tasks − r

)
!
· pir · (1 − pi)(n

I
tasks−r)

The average execution time needed (texec) is:

tIexec =
⌈
nI
tasks

nRPs

⌉
·
ntypes∑

pi · ti (2)

which is simplified to Eq. 3 when assuming only one RP :

tIexec = nI
tasks ·

ntypes∑
i

pi · ti (3)

The average area cost (Acost) is defined based on the task’s relative area cost
(ai) and their probability (pi):

Acost =
ntypes∑

i

pi · ai (4)

4.2 Merging

As a consequence of the tasks’ merging, nI
tasks is reduced, the nI

types becomes
dependent of the number of RMs (nRMs) and pi is modified. The parameters
involved in the tasks’ merging have the following conditions:

nM
types ≤ nRMs (5)

nM
tasks ≤ nI

tasks ≤ ntasks (6)

where nM
types is the different types of merged tasks and nM

tasks is the number
of merged tasks to be computed. Finally, pMi is the probability of having one
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particular type of merged task i. The value of these parameters depends on the
CT and the type of the tasks’ merging supported.

The example CT depicted in Table 1 shows how some of the tasks can be
allocated in the same RP . The compatibility list reflects that only the same type
of tasks can be merged, since an unique RM is exclusively dedicated to compute
each type of task. As a result of the tasks’ merging, the initial parameters of our
approach are modified for a post-merging analysis. Hence, the probability pMi
after merging tasks Ti becomes:

pMi = pi · ai∑nI
types

j aj

·
⎛
⎝

nM
types∑
k

ak∑nI
types

m am

⎞
⎠

−1

= pi · aMi (7)

where aMi represents the demanded area for the merged type of tasks i.
The computation time of Ti after merging tasks (ti) is not modified by com-

puting LPi tasks in parallel (Eq. 8).

tMi = max(ti) = ti (8)

Notice that tMi would be the maximum of ti when merging different types of
tasks.

The number of different types of tasks after merging (nM
types) depends on the

nI
types (Table 1) and the probability of having a task of each type. This is only

true when merging the same type of tasks. If two compatible types of tasks are
merged, sharing the same RM , the value of nM

types will be lower than nI
types. The

approach can be adjusted to merge compatible types of tasks by accumulating
their probability. For the sake of simplicity, the following analysis only considers
the merging of the same type of tasks.

nM
types = nI

types ·
ntypes∑

i

pi = nI
types (9)

Notice that nI
types does not need to be equal to ntypes. In fact, nI

types is obtained
by considering the tasks’ probabilities and nI

task since it follows a multinomial
distribution. Finally, the number of tasks after merging (nM

tasks) depends on LP
and the probability of having a certain type of task (Eq. 10).

nM
tasks = nI

tasks

nI
types∑
i

pi · ai (10)

The execution time after merging tasks, based on Eq. (10), is similarly defined
like Eq. (3):

tMexec =

⎛
⎝

nI
types∑
i

pi · ai
⎞
⎠ · nI

tasks ·
nI
types∑
i

pi · ti =

⎛
⎝

nI
types∑
i

pi · ai
⎞
⎠ · tIexec (11)
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where
∑nI

types

i pi·ai must be lower than 1 in order to have acceleration. Therefore,
the theoretical acceleration by merging tasks (Speedupth) is defined as:

Speedupth =
tIexec
tMexec

=
tIexec

tIexec ·
(∑nI

types

i pi · ai
) =

1∑nI
types

i pi · ai
(12)

Notice that the PR cost is not included yet in the theoretical acceleration. In
fact, this acceleration is reduced when considering the PR cost. Let ppr be
the probability of PR and tpr the time cost of such partial reconfiguration.
Equation (11) is readjusted as follows:

tMexec =

⎛
⎝

nI
types∑
i

pi · ai
⎞
⎠ · (

tIexec + nI
tasks · tpr · ppr

)
(13)

Therefore, the achievable acceleration thanks to merging tasks (Speedup)
becomes:

Speedup =
tIexec(∑nI

types

i pi · ai
)

· (
tIexec + nI

tasks · tpr · ppr
)

= Speedupth · tIexec
tIexec + nI

tasks · tpr · ppr
= Speedupth · PRcost (14)

where PRcost represents the performance degradation due to PR and ranges
from 0 to 1.

PRcost =
tIexec

tIexec + nI
tasks · tpr · ppr (15)

and, by applying Eq. 3, can be simplified to

PRcost =
∑ntypes

i pi · ti∑ntypes

i pi · ti + tpr · ppr
(16)

Due to the fact that PRcost might be lower than 1, there is acceleration only if:

Speedupth >
1

PRcost
(17)

4.3 Scheduling

A proper tasks’ scheduling minimizes the impact of PR by reducing the number
of PR (npr). The value of npr is directly related to ppr and the merged nM

tasks.
Moreover, ppr is determined by the supported RMs and the configuration of the
RP at a certain instant.
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No Scheduling. The number of iterations in one execution after merging (nM
iter)

is expressed as

nM
iter =

⌈
nM
tasks

nRP

⌉
(18)

which equals nM
tasks when considering only one RP . Hereby, only one RP is

assumed (nRP = 1) for the sake of simplicity while introducing the probabilistic
approach.

Let us consider i ∈ <1, ..., nRPs> and j ∈ <1, ..., nRMs>. The prob-
ability to reconfigure a RPi configured with a RMj at a certain iteration
kj ∈ <1, ..., nM

iter> can be expressed as:

ppr = P (RPi[k] �= RPi[k − 1])
= P (RPi[k] = RMj ∩ RPi[k − 1] �= RMj) (19)

Notice that RPi[0] represents the initial configuration of the RPi. Each iter-
ation can be considered independent when there is no tasks’ scheduling. Hence,
ppr can be expressed as:

ppr = P (RPi[k] = RMj) · P (RPi[k − 1] �= RMj) (20)

which, based on Eq. 7, is reduced to:

ppr =
nM
types∑

idx=1

pMidx · (1 − pMidx) (21)

Without any tasks’ scheduling the probability ppr equally affects to each RP .
Similarly, ppr is independent between iterations. Hence, npr is expressed based
on Eq. 18 as:

npr = nM
tasks · ppr (22)

Therefore, Eq. 16 can be expressed as:

PRcost =
tIexec

tIexec + tpr · npr
(23)

Iteration-Oriented Scheduling. The iteration-oriented scheduling heuristic
proposed in [4] exploits the previous configuration of the available RPs to reduce
npr. This strategy searches for those tasks in the available nM

tasks compatible with
the configuration of a RP at a certain iteration. The probability of having at
least one task i in nM

tasks is equivalent to

P (ni > 0) = 1 − P (ni = 0) (24)

where ni is the number of tasks i in nM
tasks. This probability is calculated as a

binomial distribution:

P (ni = 0) = (1 − pMi )n
M
tasks (25)
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Table 2. CT of the NE proposed in [4]. Each task emulates one node’s configuration,
which is determined by the number of active microphones. The compatibility shows
that only the same types of tasks are merged. The ti values are expressed in seconds.

Task (Ti) Probability (pi) Time cost (ti) Area cost (ai) Compatibility (RMi)

52 Mics 1/4 1.0834± 0.0029 1 RM52Mics

28 Mics 1/4 1.0753± 0.0024 1/2 RM28Mics

12 Mics 1/4 1.0679± 0.0023 1/4 RM12Mics

4 Mics 1/4 1.0677± 0.0023 1/4 RM4Mics

Therefore, the probability of reconfiguring when computing nM
tasks is:

ppr =

∑nM
tasks

j=1

∑ntypes

i=1 pMi · (1 − pMi )j

nM
tasks

(26)

The numerator is the value of npr since it considers all the possible nM
tasks.

Notice the difference with Eq. 21. The current strategy searches for a particular
task in nM

tasks to avoid reconfiguration while in Eq. 21 there is no search, and
therefore, the incoming tasks are randomly selected.

5 Case Study

Our approach is evaluated on the audio streaming application detailed in [4].
This case study is a FPGA-based microphone array network emulator (NE)
which has to combine the data received from multiple nodes processing streams
of audio. A node of the network supports different configurations based on the
number of active microphones, which directly determines the accuracy and the
power consumption [3]. The response of the nodes is combined to estimate the
location of sound sources, which is used to adapt the networks’ topology and the
node’s configuration to balance the network’s power consumption and its accu-
racy. The computation is repeated an undetermined number of times to evaluate
different topologies, sound-sources profiles, node’s configurations or data fusion
techniques. As a result, tens to hundreds of nodes with different configurations
must be evaluated before converging to a valid network configuration. This audio
streaming application satisfies the constraints detailed in Sect. 3:

Non-deterministic scheduling: One execution of the NE demands an unpre-
dictable number of nodes, each with a variable configuration.

Non-priority tasks: The NE needs to collect the node’s results without any
particular priority order.

Non-data dependencies between tasks: Each node can be considered like one
independent task without data dependencies.
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5.1 Validation

Our probabilistic approach is validated through experimental simulations using
the heuristics proposed in [4]. The achievable speedup is estimated based on the
heuristics and their combination, providing an early performance estimation and
facilitating the generalized use of PR to accelerate similar applications.

The description of the application in [4] provides enough information to fetch
our approach. The evaluation presented here goes, in fact, beyond the original
evaluation and multiple tpr and LPs are used to better understand the perfor-
mance cost and acceleration when using PR. Table 2 is the CT obtained from
the node’s characteristics. The proposed probabilistic approach is used by con-
sidering a task as an emulation of one node of the NE. Therefore, the nodes of
the NE are hereby called tasks.

Despite the evaluation of our approach uses the basis of the application, it
presents some differences when compared to the experiments done in [4]:

– Single RP : The system analysed in [4] considered 4 RPs. For the sake of
simplicity, our evaluation only considers one RP (nRP = 1). Notice, however,
that our equations are general enough to be applied for any nRP .

– Classification heuristic: The tasks are not sorted per type during the clas-
sification heuristic performed before merging. This initial ordering already
improves the followed heuristics and masks their performance contribution,
justifying its absence in our approach. Furthermore, it provides a more gen-
eral evaluation by respecting the original order of the task’s execution. It
can, nevertheless, be inserted in our equations as additional parameter, but
its analysis is out of scope of this paper.

– Merging heuristic: The CT shown in Table 2 only considers the merging of
the same type of tasks. Therefore, each RM only allocates the same type of
task, which is not like in [4]. We consider that it is enough to evaluate the
accuracy of our performance prediction.

The impact of the PR is evaluated beyond the configurations detailed in
Table 2. The evaluation presented here explores the performance variance based
on tpr and Acost to show how the acceleration changes based on the tasks’ char-
acteristics detailed in Table 2:

– tpr: The original value of tpr of the system in [4] slightly changes per RP . The
average value of tpr is used as reference and scaled by a factor to evaluate
adverse situations where tpr is significantly higher than any ti. The consid-
ered scaling factor ranges from 0 to 2. Notice that there is no performance
degradation when tpr = 0.

– Acost: The original ai of the tasks is modified to cover a range of Acost (Eq. 4).
While originally Acost = 0.5, the explored range of Acost varies from 0.3 to
0.875.

Finally, notice that Table 2 provides information about pi which is not orig-
inally available in [4]. Despite there are also 4 types of tasks, each type of task
is assumed to be equally probable, since the authors in [4] do not specify this
parameter.
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Fig. 3. Average speedup due to merging tasks. No task’s scheduling is applied after
merging. Notice the impact of tpr in the performance degradation (Eq. 16). (Color
figure online)

5.2 Results

The heuristics introduced in [4] have been implemented and simulated in Matlab
2016b. The tasks’ occurrence is expressed through probabilities due to the non-
deterministic scheduling. Therefore, the experimental results are average values
obtained after 100 executions of 100 tasks. This relatively large number of execu-
tions guarantees that the tasks’s occurrence is properly represented. Finally, our
probabilistic approach is used to predict the theoretical speedup and compared
to the experimental one. Notice that both speedups are averaged values due to
the non-deterministic nature of the task’s execution.

Figure 3 depicts the speedup based on Acost when only merging the same type
of tasks. The theoretical speedup is obtained through Eq. 12. The experimental
speedup without PR cost is obtained when forcing tpr to zero in Eq. 16, leading to
no degradation in performance. A scaling factor of one (blue line) and two (black
line) are applied to tpr. The highest cost of PR occurs when tpr = 2×ti, as shown
in the bottom line in Fig. 3. The difference between the theoretical speedup and
the speedup including the PR cost represents the performance degradation due
to PR without any scheduling strategy. Notice that Acost decreases when more
tasks can be merged, since their area demanding is lower, leading to an increment
of achievable speedup.

Figure 4 shows how the performance increments when applying the iteration-
oriented scheduling heuristic described in [4]. This heuristic schedules the tasks
based on the RP ’s previous configuration to reduce the overall npr. The achiev-
able acceleration is very close to the theoretical acceleration upper bound. The
theoretical values, obtained by applying the equations described in Sect. 4 follow
the experimental trend. Nevertheless, this heuristic does not perform as good
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Fig. 4. Average speedup due to merging and scheduling tasks. The iteration-oriented
scheduling is applied after merging.

when nRP increases, as the results in [4] reflect. Their results show a lower per-
formance besides 4 RPs are used. Further analysis on how nRP affects to the
achievable acceleration is needed to properly determine the reason of this perfor-
mance degradation. Different heuristics should be proposed to target multiple
RPs in order to achieve a closer performance to the theoretical acceleration
upper bound.

The proposed probabilistic model needs to not only characterize the non-
deterministic nature of the task’s execution but also to reflect the behaviour
of the merging and scheduling heuristics required by the general methodology.
The comparison between the predicted acceleration and the experimental results
depicted in Fig. 3 and in Fig. 4 demonstrate the accuracy of this model. Never-
theless, the proposed methodology and its probabilistic model are flexible enough
to be adapted for different heuristics, like, for instance, the scheduling heuristics
proposed in [1].

6 Conclusions

The proposed methodology enables the acceleration of streaming applications
with non-deterministic task scheduling using PR. Moreover, the acceleration
upper bounds can be predicted at the design time based on the application’s
characteristics. We believe that many streaming applications can benefit from
our approach, specially the ones related to signal processing, to image processing
or even to data stream management systems which present a high parallelism
and multiple similar configurations. Future work includes the validation of our
probabilistic approach for multiple RPs, more case studies and the development
of optimized heuristics.
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Abstract. Processor-based digital systems are increasingly being used
in safety-critical environments. To meet the associated safety require-
ments, these systems are usually characterized by a certain degree of
redundancy. This paper proposes a concept to introduce a redundant
processor on demand by using the partial reconfiguration capability of
modern FPGAs. We describe a possible implementation of this concept
and evaluate it experimentally. The evaluation focuses on the fault han-
dling latency and the resource utilization of the design. It shows that
an implementation with 32 KiB of local processor memory handles faults
within 0.82 ms and, when no fault is present, consumes less than 46% of
the resources that a comparable static design occupies.

Keywords: Fail-operational system · Graceful degradation ·
Partial reconfiguration · Dynamic redundancy · Simplex architecture ·
Fallback processor · Multiprocessor system-on-chip · Soft-core processor

1 Introduction

Digital systems perform a large variety of tasks in a steadily increasing num-
ber of applications. Their advance into certain safety-critical realms, such as
autonomous driving, imposes stringent dependability requirements on them. In
order to meet these requirements, designers need to pay attention to the chal-
lenges that current state-of-the-art hardware brings along. At the same time,
they often need to achieve their goals with as little redundancy as possible.

A dependable system has the property that reliance on its correct functioning
is justified [1]. A system is safe if it does not endanger humans or the environ-
ment [18]. In practice, all electronic systems are at risk of experiencing faults.
These anomalies or physical defects can lead to situations in which a system is
unable to fulfill its desired function [12]. Such a condition is called a failure and
might, in particular, impair the safety of the considered system.

Certain systems have a so-called safe state. It describes a state that can be
entered in response to faults and ensures that the system continues to satisfy
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its safety requirements. At the same time, the actual function of the system
becomes unavailable. Such systems are referred to as fail-safe systems [18].

A fail-operational system needs to maintain a certain minimum level of func-
tionality, even when it is subject to a certain number of faults. Depending on the
exact requirements, however, a degraded functionality might be sufficient [10].

Considerable research has been conducted in the field of fault tolerance. Fault
tolerance techniques try to mitigate faults in a way that the emergence of failures
is prevented [1]. They are usually based on some kind of redundancy [12] and
play an important role in the design of fail-operational systems.

A known fault tolerance technique that aims at safety-critical systems with
fail-operational requirements is the simplex architecture [2,16]. Its general idea is
to deal with the complexity of today’s control systems by providing an additional
controller. This controller is considerably simpler than the main one, able to
deliver a functionality that meets all safety requirements of the system, and is
disabled during normal operation. As soon as the main controller fails, however,
the simple controller is activated and ensures safe but degraded operation.

Motivated by the need for efficient fail-operational systems in the automotive
context, [4] builds upon the described concept and adapts it for use on modern
and heterogeneous multiprocessor system-on-chips (MPSoCs).

Both the original and the adapted concept assume that some kind of fall-
back unit, i.e., a plant controller or a processor, is physically available during
normal operation of the system. No attempts have yet been made to develop
a processor-based simplex architecture in which the fallback processor is intro-
duced on demand, i.e., in response to faults of the main controller.

In this work, we review the concept from [4], derive a motivation for the
dynamic provision of the fallback processor, and extend the existing concept
accordingly. In addition, we present an implementation of the concept on a
commercially-available device, the Zynq UltraScale+ MPSoC from Xilinx. To
introduce the processor on demand, our implementation employs partial recon-
figuration of the MPSoC’s programmable logic. We optimize the design system-
atically and compare certain figures of merit to those of an equivalent design in
which the fallback processor is present at all times.

2 Related Work

Extensive research has been conducted on the partial reconfiguration (PR) of
field-programmable gate arrays (FPGAs). A survey that focuses on the perfor-
mance of a PR process is given by Papadimitriou et al. in [13]. In a more recent
work, Vipin and Fahmy [20] present the state of the art in this field and compare
the PR performance values of several commercially-available architectures.

A survey of fault tolerance mechanisms for FPGAs is given in [6]. Some of the
considered approaches, such as [9], make use of PR to tolerate faults at runtime.
These mechanisms have in common that they deal with low-level details of the
FPGA architecture to provide fine-grained fault tolerance. The fault tolerance
approach described in [5] makes use of partial reconfiguration as well, but acts
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on coarse-grained logic blocks of an FPGA. All these techniques handle faults of
the programmable logic itself. The approach that we present makes use of the
programmable logic to increase the dependability of the overall system.

The techniques described in [14] and [19] employ PR to achieve fault tol-
erance of soft-core processors in FPGAs. As part of [15], the authors present
a similar approach that does not require an external controller to handle the
partial reconfiguration. This process is instead performed by a hardened part of
the soft-core processor itself. Di Carlo et al. [7] propose a partial reconfiguration
controller to perform the partial reconfiguration process in a safe way.

Shreejith et al. [17] react to faults of an electronic control unit’s primary func-
tion, which is implemented on an FPGA, by performing a switch to a backup
function. While the backup function is active and ensures that the safety require-
ments are met, the primary function is restored using partial reconfiguration.

Ellis [8] considers a network of processors and deals with the dynamic migra-
tion of software in response to failing nodes. [3] and [11] focus on processor-based
systems and discuss certain aspects of fault-tolerant and fail-operational archi-
tectures in the automotive domain. However, neither of the three references deals
with the utilization of FPGAs to achieve dependability or fault tolerance.

3 Background and Motivation

The problem that [4] considers can be described as follows: Assume that a given
fail-operational system in a safety-critical environment has to perform a certain
functionality. It is connected to its surroundings via dedicated interfacing com-
ponents, such as sensors, actuators, or I/O controllers. Not all aspects of the
normally delivered functionality are necessary from a safety perspective. The
system comprises the interfacing components, an interconnection network, and
a so-called complex system. The complex system consists of components that
fulfill the actual system functionality. While both the interfacing components
and the interconnect are assumed to be dependable, the complex system might
be subject to faults that it cannot tolerate. As a result of the aforementioned
fail-operational requirements, it must be ensured that such a fault does not lead
to a failure of the overall system. Since at least a degraded functionality has to
be maintained, suitable fault tolerance techniques must be applied.

To accomplish this in an efficient way, the authors propose a concept we
will refer to as the static simplex architecture. Figure 1 shows a simplified block
schematic of this concept from a logical perspective. A so-called transaction
represents a communication channel from a transmission initiator (master) to a
receiver or responder (slave). It is assumed that the complex system is able to
detect all internal faults that the architecture needs to protect against. It could,
for instance, comprise a lockstep processor (to protect against single faults of
the CPU) or make use of a watchdog timer. The static simplex architecture
defines the mechanism that is triggered after such a fault is detected. In this
case, the control entity disables the complex system and enables the fallback
system. The latter is considerably simpler than the complex system. However, it
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Fig. 1. Logical view of the static simplex architecture

focuses on and is able to meet the overall system’s safety requirements. A set of
application-specific slave modules, S = {s1, . . . , s�}, is used to model slaves that
both the complex and the fallback system need to interact with. One example
of such an s ∈ S is a dependable CAN controller that both the complex and
the fallback system share. The overall system is always in one of two possible
modes, which are given by C = {ccomplex, cfallback} and referred to as contexts.

Depending on the active context, an access protection mechanism ensures
that the disabled system is logically isolated from the slaves. During context
switches, the state transfer entity can be used to transfer consistent snapshots
of state variables (such as CPU register values) between the two systems.

It is important to understand that this concept makes use of dynamic redun-
dancy to mitigate faults: If necessary, the essential functions of the complex
system are dynamically moved to the fallback system. The reason we refer to
this approach as the static simplex architecture is as follows: The fallback system
needs to be present at all times, even when the complex system fulfills the func-
tionality of the overall system. This implies a static resource overhead, which
could be reduced by providing the fallback system on demand. It is the aim of
this work to research and evaluate such an approach.

4 Extension of the Concept

We propose the concept of the dynamic simplex architecture. It addresses the
same problem as the static simplex architecture and adopts the same general idea
to achieve fail-operational behavior. The proposed concept, however, constitutes
two distinguishing characteristics: First, it is assumed that the functionality of
the fallback system can be implemented on a processor. Second, this processor
must be partially reconfigurable on an FPGA that is part of the overall system.
By partially reconfigurable we mean that a part of the FPGA can be reconfigured
during runtime while the remaining logic continues to operate.

At any point in time, the overall system is in one of two contexts: either
in ccomplex or in cfallback. In the first case, the complex system is enabled and the
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fallback system is disabled. In the second case, it is vice versa. At any time, the
currently enabled system has access to the application-specific slave modules and
the state transfer entity. The disabled system is isolated from these components.

Static Portion

Dynamic PortionReconfig.

Access
Protection

Control
Entity

State Transfer Entity

Complex
System

Fallback
System

s�

. . .

s1

Transaction Scope of Protection

Fig. 2. Logical view of the dynamic simplex architecture

Figure 2 shows a block schematic of this concept from a logical perspective.
The depicted dynamic portion represents a partially reconfigurable region of
the FPGA. The complex system encapsulates a set of arbitrary components
that deliver the full functionality of the overall system. It must be able to detect
all relevant internal faults and notify the control entity about their occurrence.
The fallback system consists of a soft-core processor and occupies the dynamic
portion of the FPGA if and only if cfallback is active. If this is not the case,
the dynamic portion can be utilized for other purposes. It could, for instance, be
used to implement hardware accelerators that perform non-safety-relevant tasks.

ccomplex is the initially active system context. If faults of the complex system
endanger safety, cfallback becomes active. A switch back to ccomplex is possible if
the faults are no longer present. Context switches are orchestrated by the control
entity. If a switch is pending, the entity initiates the partial reconfiguration of
the FPGA and sets the access permissions in such a way that the disabled system
is isolated from the slaves. Adherence to the access permissions is enforced by
the visualized access protection mechanism. The state transfer entity provides
a certain amount of buffered memory. Application developers can utilize this
memory to transfer consistent snapshots of internal state variables.

It is important to note that the dynamic simplex architecture is a generic con-
cept that focuses on the dynamic context switching mechanism. A valid imple-
mentation of the dynamic simplex architecture must behave according to the
concept, but is nothing more than a framework that protects the overall system
from faults of the complex system. An application developer who makes use of
it needs to build upon the provided platform and supplement both the complex
and the fallback system with their functions.
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5 Implementation

As part of the previous work described in [4], the static simplex architecture
was implemented on a Zynq UltraScale+ MPSoC from Xilinx. This device
combines a block of hard-wired components, such as a dual-core Cortex-R5 from
Arm, and an FPGA on a single chip. These portions are commonly referred to
as the processing system (PS) and the programmable logic (PL), respectively.
For brevity, we will abbreviate the Zynq UltraScale+ MPSoC as ZynqMP.

To allow for a quantitative comparison with the above-mentioned imple-
mentation, we will retain its structure wherever possible, but extend it by the
fault-triggered partial reconfiguration of the fallback system. Our implementa-
tion aims at processor-based fail-operational systems on the ZynqMP and can
be described as follows: The complex system is realized by the real-time process-
ing unit (RPU), its generic interrupt controller (GIC), and its tightly-coupled
memory (TCM). In fact, the TCM contains software to fulfill the overall system’s
complex functionality. This software is executed by the RPU’s pair of Cortex-R5
cores operating in lockstep mode. As a proof of concept, we trigger a context
switch to cfallback whenever the RPU detects a lockstep error and assume that
no other faults can occur. Doing so allows us to focus on the context switching
mechanism, which is the focus of this work. If required by a particular use case,
more sophisticated fault detection techniques may be applied.
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Fig. 3. ZynqMP-based implementation of the dynamic simplex architecture

Figure 3 shows the physical implementation of the system with the dynamic
portion highlighted in gray. The fallback system consists of a MicroBlaze proces-
sor, its local memory (MEM), and an interrupt controller (INTC). To simplify
the debug access to the MicroBlaze, we also include a MicroBlaze debug mod-
ule (MDM). For technical reasons, the MDM cannot be partially reconfigured
and therefore needs to be moved outside of the dynamic portion. Strictly speak-
ing, this means that it is not part of the fallback system.
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The platform management unit (PMU) contains a triple-redundant processor
for various platform management tasks. We run a custom PMU firmware that
implements the control entity. In response to lockstep error notifications from
the RPU, it performs a context switch from ccomplex to cfallback. Following this,
the control entity resets the RPU and, in case of a transient fault, performs a
controlled context switch back to ccomplex, i.e., the initial context.

The access protection described in the concept is performed by the Xilinx
peripheral protection unit (XPPU). This module is part of the PS and pro-
vides detailed control over accesses to the I/O peripherals (IOP), the low-power
domain units (LPDU), and the PMU. In applications, IOPs and LPDUs are fre-
quently used as application-specific slave modules. Developers who employ them
in their designs have to define access permissions for each such module and con-
text. During a context switch, the control entity uses the permission definitions
to reconfigure the XPPU. Here, only the context-dependent part of the XPPU
configuration (context-sensitive apertures) is written to save time. The state
manager (STMGR) implements the state transfer entity from the concept.

MicroBlaze
AXI

MEM
LMB

INTC
INT

MDM
DEBUG

IRQ DCPL

CTRL

wake
decouple

select

S AXI STMGR

M AXI

Fig. 4. Block schematic of the PL implementation

At design time, the developer creates two partial bitstreams for the dynamic
portion: one containing the fallback system, including the software in MEM, and
another one, for ccomplex, describing its replacement logic. At runtime, both are
stored in DDR memory and need to be accessible from the PMU. The partial
reconfiguration of the dynamic portion is managed by the control entity. During
a switch to cfallback, it reads the partial bitstream from memory and configures
the fallback system into the dynamic portion of the PL via the processor con-
figuration access port (PCAP). During a switch to ccomplex, it configures the
custom replacement logic, such as a hardware accelerators, to this portion.

Figure 4 shows a more detailed block schematic of the PL implementa-
tion. The dynamic portion is again shown in gray, while the external ports
connect to the PS. CTRL represents a control signal vector from the PMU.
S_AXI refers to an AXI slave port from the low-power domain of the PS. IRQ rep-
resents an application-specific vector of PS-PL interrupt signals. M_AXI refers
to an AXI master port to the low-power domain of the PS. The decoupling
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block (DCPL) is necessary to protect the outgoing AXI signals during the par-
tial reconfiguration process. After this process, both the fallback system and its
replacement may access the AXI connections. In particular, the MicroBlaze can
use the M_AXI interface to communicate with application-specific slave modules.
Note that the replacement block needs to have the same interface as the fallback
system. The select, decouple, and wake lines are control signals that originate
from the PMU. They are operated by the custom PMU firmware.
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Fig. 5. Proposed development process

Figure 5 visualizes the development process through which application devel-
opers can make use of this implementation. Black arrows indicate precedence
relations, while final items are shown in bold. The process is based on the Vivado
Design Suite 2018.2 and employs the Xilinx SDK for the software portions. We
developed a Tcl script that generates a partial Vivado project for the fallback
system. The corresponding SDK workspace can be used to develop and build
the fallback software. The partial project is then used by another script to gen-
erate a full Vivado project for the overall system. This project allows users to
develop the logic that replaces the fallback system in ccomplex. Its synthesis and
implementation generates a full bitstream for ccomplex and partial bitstreams for
both contexts. In the partial bitstream for cfallback, the fallback system’s local
memory (MEM) is automatically initialized with the fallback software. Using
the SDK workspace of the full project, the complex software for the RPU can
be implemented. The control software for the PMU is automatically generated
by our scripts. The shown final items are suitable for use on the ZynqMP.

6 Evaluation and Results

The proposed implementation of the dynamic simplex architecture is a generic
framework that aims to protect a ZynqMP-based system from faults of its RPU.
As described in Sect. 4, we see it as a platform that can be used by application
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developers when being faced with certain safety requirements. To compare it
against an implementation of the static simplex architecture, we will now eval-
uate two particularly important characteristics of our implementation:

Fault handling latency. In comparison to the static simplex architecture, every
context switch now comprises a partial reconfiguration of the PL. To evaluate
how this affects the duration that the framework needs to react to faults, we
will experimentally determine typical durations of context switches.

Utilization of PL resources. The primary motivation for the dynamic provision
of the fallback system is to save PL resources during fault-free operation.
To quantify the achieved resource savings, we will consider the PL resource
utilization reports that Vivado creates after implementing a design.

6.1 Evaluation Procedure and the Reference Design

The implementation is characterized by many degrees of freedom. Designs can
differ, for instance, by the configuration of the MicroBlaze, the size of its local
memory, the capacity of the state transfer entity, the number of context-sensitive
apertures, the PL clock frequency, and the region of the PL that the dynamic
portion is constrained to. We therefore performed a semi-automated design
space exploration by considering a fixed MicroBlaze configuration and a fixed
state transfer capacity, while varying the other parameters. The automation
was realized by a Tcl script that received the parameters, generated the final
items from Fig. 5, and transferred them to the ZynqMP via JTAG. A dedicated
PMU firmware module made it possible to inject a lockstep error into the RPU,
measure the latencies of the initiated process, and output the results via UART.

To perform these experiments, we employed a ZCU102 evaluation board
from Xilinx. This board is based on the XCZU9EG variant of the ZynqMP.
In all our designs, Vivado’s routing expansion option was enabled.

As the reference design, we consider a design with a PL clock frequency of
100MHz, a dynamic portion in the X2Y1 region, 32KiB of local memory, 2KiB
of state manager capacity and NCS = 1 context-sensitive apertures. Using this as
our starting point, we varied certain parameters while keeping the others fixed.

6.2 Fault Handling Latency

We will now consider measurements of subsequent context switching intervals.
Di corresponds to the i-th interval of the fault handling process. The intervals
that belong to a context switch to cfallback can be described as follows:

– D1 starts with the lockstep error injection and ends with the point in time
at which the control entity is notified about the occurrence of the fault.

– At the end of D2, the XPPU and STMGR reconfiguration is complete.
– During the third interval, D3, the partial bitstream that describes the fallback

system is read form the DDR and written to the PL.
– At the end of D4, the fallback software that is part of MEM starts to execute

on the MicroBlaze. This constitutes the end of a context switch to cfallback.
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D5 and D6 correspond to the initiation of an RPU reset, the actual reset of
the RPU and the execution of its startup procedure. These intervals are not
considered here. The remaining intervals belong to a context switch to ccomplex:

– The following interval, D7, corresponds to the time that the MicroBlaze needs
to terminate the execution of the fallback software.

– D8 comprises the partial reconfiguration of the PL as well as the XPPU and
STMGR reconfigurations. It can be seen as the counterpart to D2 and D3.

– At the end of D9, the RPU begins to execute the complex software again.
This completes the context switch back to the initial context.

Table 1. Measured latencies for the reference design and a variation of NCS

Average interval duration and uncertainty (in μs)
NCS D1 D2 D3 D4 D7 D8 D9

1 2.340(4) 1.741(3) 1477.2(2) 19.76(5) 1.4(1) 1477.5(3) 5.8(2)
10 2.340(4) 4.82(1) 1477.2(2) 19.73(4) 1.4(1) 1480.5(4) 5.8(2)

100 2.340(5) 34.97(5) 1477.2(2) 19.74(4) 1.4(1) 1510.8(4) 5.8(1)

Table 1 shows the calculated means (μ̂i) and standard deviations for the ref-
erence design in its first row (NCS = 1). For this design, the average measured
duration of a fault-induced context switch from ccomplex to cfallback sums up to
τfallback ≈ ∑4

i=1 μ̂i = 1.5ms. This is the average time between the injection of a
fault and the point in time at which the fallback system begins to execute its pro-
gram. The subsequent context switch back takes τcomplex ≈ ∑9

i=7 μ̂i = 1.5ms.
Note that the overall latency of a context switch is heavily dominated by the
duration of the dynamic portion’s partial reconfiguration process (D3 and the
largest part of D8). The table also illustrates that a variation of NCS, the num-
ber of context-sensitive apertures, has an effect on the duration of intervals D2
and D8. Each row of the table is based on 100 independent measurements.

Table 2. Measured latencies for a variation of different parameters

Average interval duration and uncertainty (in μs)
Variation of. . . D1 D2 D3 D4 D7 D8 D9

(a) Memory size 2.340(4) 1.741(3) 1477.2(2) 19.75(4) 1.4(1) 1477.5(3) 5.8(2)
(b) Clock region 2.340(5) 1.741(3) (�) 19.8(1) 1.4(1) (�) 5.8(2)
(c) PL frequency 2.340(5) 1.741(3) 1477.6(8) (�) (�) 1478.0(8) 5.8(1)

Using the reference design as a starting point, we then performed a variation
of (a) the memory size, (b) the clock region of the dynamic portion, and (c) the
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PL clock frequency to identify further parameters that have a significant influ-
ence on the latencies. Table 2 shows the average interval durations over these
variations. Scenarios that are marked with (�) or (�) exhibited a strong depen-
dence on the performed variation. A detailed analysis of these cases will be given
in the following. From the table, it can be seen that the interval durations are
largely independent of the size of the local memory (a). Note that the reference
design with 32KiB of it leaves many BRAMs of the X2Y1 region unutilized. In
our experiments, X2Y1 provided room for up to 128KiB of local memory.

Table 3. Measured latencies for varying locations of the reconfigurable partition

Average duration and uncertainty of D3 (in µs)
Col. Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1861.46(7) 1861.4(2) – 1861.4(2)
X1 3520.6(6) 3520.6(5) 3524.4(2) – 1717.3(2) 1717.3(3) 1717.3(2)
X2 1477.2(1) 1477.2(2) 1477.2(2) 1477.23(8) 1477.2(2) 1477.2(1) 1477.2(1)
X3 1378.9(1) – 1378.9(1) 1378.9(2) 1370.23(5) 1370.25(8) 1370.2(1)

Average duration and uncertainty of D8 (in µs)
Col. Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1861.6(5) 1861.6(5) – 1861.7(4)
X1 3520.6(10) 3520.4(12) 3524.9(2) – 1717.4(5) 1717.4(6) 1717.5(4)
X2 1477.5(3) 1477.5(3) 1477.5(4) 1477.4(4) 1477.4(4) 1477.5(3) 1477.5(4)
X3 1379.2(3) – 1379.2(3) 1379.2(4) 1370.4(4) 1370.4(4) 1370.5(3)

Table 4. Size of the partial bitstream as a function of the clock region

Size in KiB
Col. Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1292.73 1292.73 – 1292.73
X1 2441.41 2441.41 2441.41 – 1192.91 1192.91 1192.91
X2 1026.78 1026.78 1026.78 1026.78 1026.78 1026.78 1026.78
X3 958.63 – 958.63 958.63 952.63 952.63 952.63

As indicated by the (�) symbols in Table 2, varying clock region constraints
for the dynamic portion (b) lead to significant changes in D3 and D8. More
detailed measurement results for this variation are shown in Table 3. No imple-
mentation was possible for the cases with omitted values. It is important to note
that the clock regions differ not only in their location, but also in their size and
resource composition. Table 4 gives the size of a partial bitstream for a design in
which the dynamic portion is constrained to the specified clock region. Compar-
ing the values from the two tables shows a strong correlation between the size
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of a partial bitstream and the average durations of D3 and D8. However, note
that this observation alone does not prove a causal relation between minimizing
the bitstream size and achieving a minimum fault handling latency.

The (�) symbols in Table 2 indicate that a variation of fPL (c) has a significant
influence on D4 and D7. More detailed results for this variation are shown in
Table 5. The achievable savings, however, are small compared to the overall fault
handling latency. Since the latter is dominated by D3 and D8, we focused on the
location constraint of the dynamic portion for further improvement.

Table 5. Measured latencies for varying frequencies of the PL clock (fPL)

fPL in MHz D4 in µs D7 in µs

100 19.76(5) 1.4(1)
150 13.6(1) 1.24(1)
215 9.77(2) 1.24(1)
300 7.41(1) 1.24(1)

A more detailed analysis showed that within a certain clock region, lower
reconfiguration times can be achieved by reducing the width of the reserved
reconfigurable region. We did not consider reconfigurable regions spanning mul-
tiple clock regions or the influence of an enabled bitstream compression. Start-
ing off with the reference design again, we reduced the width of the recon-
figurable region as much as possible, ending up with what we refer to as the
optimized design. 100 measurements of it resulted in μ̂3 = 800.85(9)µs and
μ̂8 = 801.2(2)µs. Taking the region-independent durations from the refer-
ence design into account leads to overall latencies of τfallback ≈ 0.82ms and
τcomplex ≈ 0.81ms.

To perform a quantitative comparison with a design in which the fallback
system is always present, we created an implementation of the static sim-
plex architecture that is—apart from the missing PR aspect—equivalent to
the optimized design. Measurements of this version yielded overall latencies of
τ̃fallback ≈ 5.31µs and τ̃complex ≈ 7.5µs. This means that with respect to the
static case, a dynamic provision of the fallback system leads to a significant time
overhead.

6.3 Resource Utilization

We now compare the resource utilization of the optimized design to that of its
static equivalent. In particular, we focus on the following two aspects:

– The number of resources that can be saved during fault-free operation when
employing the dynamic instead of the static simplex architecture.

– The resource overhead that goes along with the dynamic simplex architecture
while the fallback system is active, i.e., while cfallback is active.
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Table 6. PL resource utilization of the optimized design and its static equivalent

Dynamic design
Type Static design cfallback ccomplex

LUT (in CLB) 2932 2888 1209
Register (in CLB) 3171 3182 1459
Multiplexer (F7) 117 149 38
BRAM (36 Kb) 10 10 2
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Fig. 6. Relative resource utilization of the optimized design in its two contexts

Table 6 shows that the relative utilization of PL resources in ccomplex decreases
considerably when employing our implementation of the dynamic simplex archi-
tecture instead of an equivalent static simplex architecture. This is also visualized
in Fig. 6. From the figure, it can be seen that the optimized design in ccomplex
saves 59% of the LUTs, 54% of the registers, and 68% of the multiplexers that
its static equivalent consumes. In cfallback, its resource overhead is negligible
for LUTs and registers, and amounts to 27% for multiplexers.

7 Discussion

From a qualitative perspective, the evaluation results show that the choice
between a static and a dynamic simplex architecture involves a specific trade-
off. The dynamic version exhibits prolonged context switching latencies and a
slightly increased utilization of FPGA resources in cfallback. At the same time, it
consumes considerably fewer FPGA resources during fault-free operation of the
system. The saved resources can, for instance, be used to implement hardware
accelerators that are required for non-safety-relevant tasks in ccomplex only.

It should be noted that context switching latencies are critical in the sense
that during these intervals, no processor fulfills the desired functionality of the
system. In general, we consider the dynamic simplex architecture a feasible
solution for cases in which the context switching latencies are tolerable and
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the PL resources in ccomplex are too scarce to have the fallback system available
at all times. We believe that the semi-automated design space exploration that
we performed is a helpful procedure to map an implementation of the dynamic
simplex architecture to arbitrary ZynqMP devices in an efficient manner.

The fault handling latencies that we achieved for our exemplary implementa-
tion with 32KiB of MEM are lower than 1ms. The results indicate that designs
with up to 128KiB of MEM have fault handling latencies of about 1.5ms. In
cases where these latencies are tolerable, we consider the implementation to be
a suitable choice for systems that are subject to certain safety requirements.

8 Conclusion

Our goal was to develop a more resource efficient version of the static simplex
architecture, a concept that aims at particular fail-operational systems.

The dynamic simplex architecture utilizes the partial reconfiguration capa-
bility of an FPGA to protect the overall system from hazardous failures. It
does so by partially reconfiguring a fallback system to the FPGA in response to
certain faults. We proposed an implementation of this concept and systemati-
cally optimized its fault handling latency. An exemplary design with 32KiB of
local MicroBlaze memory handles faults within 0.82ms and, considering the non-
faulty case, consumes less than 46% of the resources that an equivalent design
in which the fallback system is present at all times occupies.

Our future work will focus on an even more comprehensive design space
exploration and an application to practical use cases. The latter will especially
include an extensive analysis of the overall safety in such use cases.
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Abstract. Partial reconfiguration is a powerful technique to adapt the
functionality of Field Programmable Gate Arrays (FPGAs) at run time.
When performing partial reconfiguration a dedicated Intellectual Prop-
erty (IP) component of the FPGA vendor, i.e. the Partial Reconfiguration
Controller (PRC), among a wide range of IP components has to be used.
While ensuring the functional safety of FPGA designs is well understood,
ensuring hardware security is still very challenging. This applies in par-
ticular to reconfiguration-based countermeasures which are intensively
used to form a moving target for the attacker. However, from the system
security perspective a critical component is the above mentioned PRC
as noticed by many papers implementing reconfiguration-based counter-
measures against SCA/DPA attacks. In this work, we leverage a new
proposed safety mechanism which creates a container around an IP, to
encapsulate and thereby to protect and observe the PRC of an FPGA.
The proposed encapsulation scheme results in an architecture consisting
of so-called ReCoFuses (RCFs), each capturing a specific protective goal
which have to be fulfilled at any time during PRC operation. The termi-
nology follows the classical electric installation including a fuse box. In
our scheme we employ formal verification to guarantee the correctness
in detecting a security violation. Only after successful verification, the
RCFs are integrated into the ReCoFuse Container. Experimental results
demonstrate the advantage of our approach by preventing attacks on the
PRC of a system secured by reconfiguration.

1 Introduction

Substantial progress for both, Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs) has been achieved over the last
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decade. In particular, the programmable nature of FPGAs allows for great flexi-
bility, and the strong feature of partial reconfiguration pays off in many applica-
tion fields today. Practical examples include increasing fault tolerance [1], power-
aware reconfiguration [2,3], and area reduction by time division multiplexing [4].

Although the realization of partial reconfiguration varies depending on the
FPGA model, it commonly relies on vendor specific proprietary library cells
and Intellectual Property (IP). Due to the black box characteristic of these IP
blocks, the internal operation (i.e. source code) can not be examined, tested or
verified by the user. As a consequence, integrating these components in a sys-
tem requires trust in the test and verification methodologies of the respective
IP vendor and – in worst case – jeopardizes the system’s stability. Hence, sev-
eral approaches to overcome this problem have been proposed. Unfortunately,
many of these approaches require some knowledge of the design sources, which is
impractical for the aforementioned scenario. For this reason, the encapsulation
of an IP component has been thoroughly investigated in the past. The behavior
of the encapsulated component is then monitored, controlled or even fixed by
the surrounding logic at runtime. For example, in [5] a “shield” is synthesized
which continuously monitors input/output of the design and corrects its erro-
neous outputs. A more general approach has been proposed in [6,7]. The paper
presents the notion of a “container”, in which the IP component is instantiated.
The concept was applied in order to monitor and fix bus protocol glitches by
automatic synthesis of correction logic from a property specification language.
This way the container protects both, the IP and the surrounding system respec-
tively. A similar principle was also applied on a hardware level by implementing
a instruction replacement scheme for a modern RISC-V processor IP to circum-
vent errata and design flaws [8]. In [9] a similar technique has been proposed.
Hardware sand boxes are employed for secure integration of non trusted IPs in
modern System-On-Chips (SoCs). Only permissible interactions between the IP
and the rest of the system are allowed by exposing the IP interface to isolated
virtual resources and checking IP signals’ correctness at run time.

Coming back to partial reconfiguration, the safe and secure operation of the
overall system heavily depends on the Partial Reconfiguration Controller (PRC)
of the FPGA which typically initiates the reconfiguration process in the design.
In particular, reconfiguration-based countermeasures forming a “moving target”
for the attacker may completely collapse, if the underlying IP-based reconfigu-
ration fails or is attacked.

Contribution: In this work, we leverage the container principle – originally pro-
posed as safety mechanism – to the security domain. We present a tailored encap-
sulation scheme for the PRC. The new architecture consists of individual ReCo-
Fuses. Each ReConfigurationFuse (abbreviated as RCF) captures one specific
protective property. During PRC operation (i.e. reconfiguration) all properties
have to hold at any given time. To guarantee the correctness of each ReCoFuse,
we require the formal verification of its behavior, i.e. to formally capture which
PRC communication is “good” or “bad” and what will be the resulting action
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in the respective case. Overall, the ReCoFuses are integrated into the ReCoFuse
Container.

For demonstrating the proposed scheme, we consider systems which use
reconfiguration-based countermeasures and by this implementing the above men-
tioned moving target principle. Mentens et al. showed in [10] that introducing
temporal jitter based on reconfiguration improves side channel attack resistance
significantly. In their work, the importance for securing the reconfiguration con-
trol (i.e. the PRC) has already been recognized, but was not targeted there (as
well as in many following papers). In the case study of this paper, we present
two initial ReCoFuses to tackle two major vectors of attacks against the system
via the PRC, i.e. to attack

1. the timing of the reconfiguration by keeping one single reconfiguration active
for an extended period of time and

2. by disturbing the diversity of individual reconfigurations, such that (in the
worst case) the same reconfiguration is used permanently.

In both cases, the moving target becomes a static one making reconfiguration-
based countermeasures against physical attacks useless.

Related Work: The Partial Reconfiguration Controller (PRC) is an IP com-
ponent of the respective FPGA vendor. Besides this black box realization,
researchers have implemented their own PRC with the focus on higher perfor-
mance [11], better timing wise predictability during reconfiguration [12] and even
fault tolerance [13]. Dedicated protection of the PRC has not been considered
in these works.

The authors of [14] proposed the secure reconfiguration controller (SeReCon).
Semantically, it also provides an additional barrier to the partial reconfiguration
infrastructure. This effectively forms an additional anchor of trust in terms of
a gateway to the reconfiguration infrastructure in the design, granting more
reliability in the case of IP core based reconfigurable FPGA systems. However,
the aforementioned work primarily focuses on authentication of IP cores (in this
context bit streams for partial reconfiguration).

Recently, Xilinx announced a security monitor based on a IP soft core which
allows monitoring the partial reconfiguration process [15]. To the best of our
knowledge, no non-IP-based protection of the PRC for reconfiguration-based
countermeasures is offered.

Outline: The paper is structured as follows: First, Sect. 2 describes the adversary
model we consider in this work. In Sect. 3 the preliminaries of partial reconfigura-
tion and formal verification are reviewed. Our proposed encapsulation scheme for
the PRC, implemented as ReCoFuse Container, is introduced in Sect. 4. Then,
Sect. 5 presents a case study demonstrating the advantages of our scheme for a
reconfiguration-based encryption system. The experimental evaluation, i.e. fault
injection and resource utilization, is reported in Sect. 6. Finally, the paper is
concluded in Sect. 7.
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2 Adversary Model

The proposed architecture provides increased protection against attacks tar-
geting reconfiguration-based countermeasures. Adversaries are derived from
assumptions made in [10] and [16], allowing passive and semi invasive attacks.
The malicious user desires to extract confidential information from the system
by exploiting available attack measures to circumvent the security mechanisms.

Differential Power Analysis (DPA) represents a passive attack scenario where
the malicious user can obtain – possibly a very large number – power consump-
tion measurements of the attacked system over time. Since activity in the design’s
circuitry correlates to its power draw, DPA allows attacks based on statistical
methods (e.g. Welch’s t test [17]) to successfully extract cryptographic secrets.
These attacks can be carried out with relatively small investments, since com-
puter based oscilloscopes are readily available at decreasing price points.

For semi-invasive attacks, we assume an adversary, who can disturb (or deac-
tivate) the reconfiguration procedure, thus leaving the system vulnerable to the
aforementioned DPA-based passive attacks. Only on die attacks are assumed
for this scenario. If mitigation against DPA is based on partial reconfiguration,
directly attacking the PRC is most rewarding, since failing reconfiguration will
leave the system unprotected. Where a single attack was sufficient in the past,
the attacker must now attack at least two places at the same time to break the
reconfiguration-based protection.

In practice, injecting faults into multiple wires or positions in the FPGA fab-
ric increases the cost of an attack. Multiple instances of the proposed protection
scheme allow mitigation (i.e. out scale) of attackers, by employing n modular
redundancy in terms of ReCoFuses1.

A second vector of attack is offered from black box IP cores in the design.
As motivated in the introduction, malfunctions, flaws or malicious intents can
jeopardize the system’s stability. Even Trojans in cryptographic hardware blocks
were reported in the literature [18]. If the IP core in the design is considered an
adversary, it has direct access to signal lines inside the circuitry (e.g. stalling a
shared bus). This scenario was reported to be realistic as demonstrated in [19].
The authors demonstrated an on chip power monitor based on ring oscillators to
observe the power consumption of other modules on the FPGA. Furthermore, it
allowed a DPA attack against an on chip (i.e. same FPGA) RSA crypto module,
as well as side channel attacks against the CPU of the host system (PCIe based
FPGA). The proposed RCFs must be capable to capture malformed communica-
tion with the surrounding system and reliably detect malicious behavior during
operation (i.e. skipped reconfigurations in this particular use case).

1 Please note that we advise to distribute (place) the ReCoFuses evenly in the FPGA,
while attaching them to different clock buffers or PLLs.
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3 Preliminaries

In this section we briefly review the basics of partial reconfiguration of FPGAs.
Afterwards, an overview on formal verification as used later in order to verify
the behavior of the ReCoFuses is provided.

3.1 Basics of Partial Reconfiguration

Partial reconfiguration is implemented with highly proprietary means inside the
FPGA depending on the FPGA model. Different manufacturer achieve partial
reconfiguration with different components. In the course of this work, we will
focus on the specific implementation of partial reconfiguration from Xilinx [20],
but our approach is also applicable for other FPGA vendors.

Figure 1 presents the essential components of the partial reconfiguration
infrastructure:

FPGA

MEM

ICAP

PRC

RP0

RM

RP1

RM

RP2

RM

RP3

RM

RP4

RM

RP5

RM

RP6

RM

RP7

RM

RP8

RM

RP9

RM

RP10

RM

RP11

RM

Fig. 1. Overview of partial reconfiguration infrastructure

– Reconfigurable Partition (RPs) describe the area and position in the FPGA,
where Reconfigurable Modules (RMs) are placed (see RP0...11 in Fig. 1).

– Reconfigurable Modules (RMs) represent the actual implementation which
serves as replacement at runtime (see dashed squares in Fig. 1). For each
additional RM a new partial bitfile is generated which is stored in the memory
to be accessed by the PRC. (see MEM in Fig. 1)

– The partial bitfile represents the actual configuration data for the RM in
the FPGA. This data is stored in on or off chip memory and it contains the
configuration of the logic primitives (e.g. LUTs, DSPs, RAMs) and the con-
nections in the RMs. For reconfiguration, such a bitfile is fed to the Internal
Configuration Access Port (ICAP) by the PRC at runtime.
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1 property check req ack ;
2 // Assume part Prove part
3 t ##0 req == 1 implies t ##3 ack == 1 ) ;
4 endproperty

Listing 1.1. Example property

– The ICAP implements the access to the partial reconfiguration infrastructure
(see ICAP connecting the PRC to the RPs in Fig. 1). It is treated as a regular
primitive in the tool flow during development, synthesis and place and route.

– The PRC is necessary to control the reconfiguration process in the FPGA. It
is attached to the memory (e.g. via AXI4), holding the (partial ) bitfiles, as
well as to the aforementioned cell primitive. Depending on the manufacturers,
different options are available, such as internal or external triggers to perform
the reconfiguration.

3.2 Formal Verification

Formal verification as used in this work is the task of checking whether a circuit
implementation satisfies its specification or not. The specification is thereby
expressed with temporal properties. Several standardized property specification
languages are available. In this work, we use SystemVerilog Assertions (SVA) in
combination with Timing Diagram Assertion Library (TiDAL) for SVA which
comes with the commercial property checking of OneSpin. TiDAL allows one to
specify the temporal properties in a very intuitive way, i.e. (a) the time points
when an expression is evaluated can be explicitly defined and (b) the properties
follow a logic implication style.

A simple property example is presented in Listing 1.1. This property states
that if request is 1 at timepoint t + 0 (assume part), then three clock cycles
later, i.e. t + 3, the acknowledge should be 1 (prove part). Such properties can
be verified on the circuit. If a property fails, a counter example is provided, i.e. a
wave trace which can be simulated which shows the violation of the property.

In case of larger numbers of properties the time, spent for verification, will
increase. However, due to impracticality of full re-verification, our proposed app-
roach still provides a significant advantage.

4 ReCoFuse Container

This section presents our encapsulation-scheme for the Partial Reconfiguration
Controller (PRC) of a FPGA which implements reconfiguration-based counter-
measures against physical attacks. The scheme is based on two main compo-
nents: (1) A “container” encapsulating the PRC, and (2) individual ReCoFuses
to monitor and react on untrusted communication with the PRC which would
compromise the security of the reconfiguration-based countermeasure.
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In the following, we first introduce the overall architecture of the ReCo-
Fuse Container. Then, we detail the interfacing of the PRC and the ReCoFuse
Container which hosts the individual ReCoFuses. Finally, the required formal
verification of ReCoFuse behavior is described.

Reconfiguration
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ICAP-Primitive
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Reset
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Fig. 2. Original PRC architecture vs proposed ReCoFuse container architecture

4.1 Architecture of ReCoFuse Container

The left part of Fig. 2 depicts the original unprotected PRC architecture. On the
right of Fig. 2 the proposed architecture realizing our encapsulation-scheme for
the PRC is shown. As can be seen the ReCoFuse Container has several “slots”
for individual ReCoFuses (details see next section). The ReCoFuses are denoted
as RCF0...n in Fig. 2. Moreover, all outgoing data connections between the main
components, i.e. Reconfiguration Memory, PRC and ICAP, are now also fed into
the ReCoFuses. Furthermore, a configuration register has been added which
allows the user to dynamically enable or disable each RCF.

4.2 Interfaces and ReCoFuses

Listening on all reconfiguration interfaces allows to monitor the reconfiguration
operations requested by the reconfiguration-based countermeasures. In Fig. 2,
these are the AXI4 and ICAP interfaces. The ICAP protocol follows a valid/ac-
knowledge scheme where the header of each partial bitfile can be analyzed dur-
ing data communication. For more details, we refer to the Xilinx 7 Series partial
reconfiguration user guide [21].

As can be seen in the architecture, the observed input data is sent to the
ReCoFuses. A ReCoFuse essentially implements a Finite State Machine (FSM),
and hence performs state transitions based on the observed data. Reaching a
predefined “good” or “bad” state determines whether the usage of the PRC is
considered as trusted or untrusted. The output signal of a ReCoFuse (e.g. in this
work an error signal) allows each ReCoFuse to communicate untrusted behavior.
As a consequence emergency actions can be executed, for instance to shut down
the system. For simplicity, in Fig. 2 on the right we have just ORed all the error
signals from each ReCoFuse.
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1 property r a i s e e r r o r ;
2 ( t ##0 en t e r bad s t a t e ( )
3 implies
4 t ##1 r a i s e e r r o r s i g n a l ( ) ) ;
5 endproperty

Listing 1.2. ReCoFuse signal bad state property

4.3 Verification of ReCoFuses

To guarantee the correctness of each ReCoFuse, we require the formal verification
of its behavior. Hence, temporal properties describing the state transitions of a
ReCoFuse have to be specified by the user. In other words, these properties are
used to prove which PRC communication with the control of the reconfiguration-
based countermeasures is untrusted and what will be the resulting action in that
case. Typically, a ReCoFuse observes the communication over several clock cycles
and finally reaches a “bad” state. An example property for this last proof step
basically states the following: If a ReCoFuse enters the bad state, the associated
action must be taken in the next clock cycle. The corresponding property is
shown in Listing 1.2.

In the next section we demonstrate our proposed scheme on a concrete case
study.

5 Case Study

This section demonstrates the proposed encapsulation-scheme for the PRC. As a
case study we selected an encryption system using AES. The system implements
the moving target principle via reconfiguration by switching between different
implementations of the AES. By this, the attacker is not faced with static logic
in the FPGA, but permanently changing one and hence physical attacks become
much harder.

In the following, we first describe two major attack vectors. Then, we present
the ReCoFuse Container and the two ReCoFuses. Finally, we consider their ver-
ification.

5.1 Attack Vectors

Breaking the reconfiguration-based moving target characteristic of a crypto-
graphic system, allows attackers to extract secret information via side channel
leakage. In order to attack a specific area (e.g. the PRC) in a FPGA, electro-
magnetism and fault injection based attacks have both been reported to be effec-
tive [22] and are viable methods for disturbing the reconfiguration procedure.
We identified two major attack vectors on the PRC – viable for both adversaries:

1. Time-out attack: Forcing the PRC to keep the same reconfiguration active for
a too long time, would result in no protection. It removes the moving target
characteristic of the design and makes it vulnerable to side channel attacks.
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1 property advance t imer ;
2 disable i f f ( r s t ) (
3 t ##0 ( cnt !=TIMEOUT and RP active )
4 implies
5 t ##1 ( cnt==$past ( cnt )+1)
6 ) ;
7 endproperty
8
9 property d e t e c t e r r o r ;

10 disable i f f ( r s t ) (
11 t ##0 ( cnt==TIMEOUT and RP active )
12 implies
13 t ##1 ( e r r o r )
14 ) ;
15 endproperty

Listing 1.3. Example properties for timer

2. Replay attack: Forcing the PRC to chose a single reconfiguration continuously
(or more often) removes the moving target characteristic as well.

This list, however, is not exhaustive and can must be extended by the respective
adopters needs. The next section presents how the proposed ReCoFuse Container
helps in protecting against the two attacks.

5.2 ReCoFuse Container

We encapsulated the PRC in a ReCoFuse Container. It instantiates the PRC
and provides connection to the configuration memory via AXI and the ICAP
primitive as described in Sect. 4. ReCoFuses are integrated inside the ReCoFuse
Container to achieve countermeasures against the time out and replay attack.
The concrete ReCoFuse are presented in the following two sections.

5.3 Timeout ReCoFuse

Functionality: The timeout ReCoFuse (RCF0) basically keeps track of the time
between two consecutive reconfigurations. Hence, after a successful reconfigu-
ration, a timer is started. If this timer expires before a new reconfiguration
procedure is initiated, the timeout ReCoFuse signals an error. Keeping a specific
reconfiguration active for an extended period of time – rendering the moving
target principle ineffective – can be detected reliably by this ReCoFuse.

Interface Events: The counter of the time-out ReCoFuse is started by a
RP_active, which is derived from several signals, provided by the proprietary
reconfiguration infrastructure. Alternatively, the sync word in combination with
the bitfile length could serve for the same purpose.

Verification: In Listing 1.3, a subset of the properties for verifying the timeout
ReCoFuse RCF0 are shown. The first property advance_timer (Line 1–Line 7)
states that the counter (which realizes the timer) advances with each time step
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after the previous reconfiguration is done. Here, TIMEOUT (Line 3) defines the
allowed active duration of one Reconfiguration Module (RM), i.e. a concrete AES
implementation. The RP_active (Line 3) signal is derived from multiple signals
from the reconfiguration infrastructure and captures whether the Reconfigurable
Partition (RP) is active, i.e. no reconfiguration is currently performed. In Line
5, the $past() statement is used to refer to the previous time point.

detect_error names the second verification property (Line 9–Line 15 in
Listing 1.3). It ensures that RCF0 enters the “bad” state (i.e. raising error),
when the respective RM was not reconfigured in time (i.e. before cnt reaching
TIMEOUT) (Line 11).

5.4 Replay ReCoFuse

Functionality: The replay ReCoFuse (RCF1) contains an individual counter for
each Reconfiguration Module (so, different AES implementations in our case
study), i.e. functional alternative which is swapped in. Based on the individual
counter values the distance of the Least Frequently Used (LFU) RM as well
as the Most Frequently Used (MFU) RM is determined. This distance indicates
whether the usage of the available RMs is uniform. Hence, this forms an effective
measure to detect if a specific RM is preferred or used continuously, since the
corresponding counter will advance faster. To illustrate the developed uniformity
check, Fig. 3 shows a reconfiguration procedure over 13 reconfigurations (i.e.
steps) in form of a bar chart, choosing from four different RMs. In Fig. 3, the y
axis shows the four different RMs (i.e. different AES implementations). The x
axis shows the frequency, how often the RMs were reconfigured. For example,
after 2 time steps only RM1 and RM2 have been reconfigured both once; after 6
time steps this changes to respective frequencies of (1, 2, 2, 1) (for RM1, RM2,
RM3, RM4).

A challenge when implementing this ReCoFuse in hardware, was that the
logic (i.e. the counters) should not become too costly. The solution was the
implementation of a shift window operation which essentially “cuts” all counters
(similar to a histogram) at the bottom. As a consequence, the least frequently
used counter is zero aligned. Figure 3 depicts this “cutting” in terms of the shift
window operation in the left (highlighted gray), while preserving the distance
between the LFU and MFU RM, i.e. shift window reduces the counters from (1,
2, 2, 1) to (0, 1, 1, 0) after step6.

For the example at hand, we allow a distance of 6 between the least frequently
used RM and the most frequently used RM. Assuming an attack (e.g. a replay
attack) resulting in a more frequent reconfiguration of RM1 is depicted in the
figure: In step13 we see a violation of our security condition of MFU − LFU =
7 − 0 = 72 and hence an error is signaled by the ReCoFuse.

Interface Events: The uniformity check of the replay ReCoFuse is applied
between reconfiguration memory and PRC in the AXI communication. A unique
2 The gray boxes have been removed by the shift window operation, so the counters

are (7, 1, 1, 0).
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Fig. 3. Uniformity check and shift window operation

1 property dec r ea s e count e r ;
2 disable i f f ( r s t ) (
3 t ##0 ( s t a t e==SHIFT WINDOW and RM seen==ALL RM)
4 implies
5 // omitted technicality
6 t ##1 ( s t a t e==SYNQ and RM seen==NORM
7 and cnt==$past ( cnt )-1)
8 ) ;
9 endproperty

10
11 property d e t e c t e r r o r ;
12 disable i f f ( r s t ) (
13 t ##0 ( d i s t==MAX and s t a t e==CHECK ERR)
14 and t ##1 ( s t a t e==CHECK ERR)
15 implies
16 t ##1 ( e r r o r )
17 ) ;
18 endproperty

Listing 1.4. Example properties for uniformity check

identifier of the individual RMs can be derived from the Frame Address Register
(FAR) value together with its address in the configuration memory. To incre-
ment a specific counter, the replay ReCoFuse scans the transmissions on the AXI
interface for its respective identifier which can be observed when the respective
bitfile is loaded by the PRC.

Verification: In Listing 1.4, a subset of the properties to verify the behavior of the
replay ReCoFuse are shown. Please note that the shown 2 properties are checked
for each RM since the replay ReCoFuse has per RM an individual counter as
explained above. The decrease_counter property is central to the shift window
(state==SHIFT_WINDOW) operation in hardware. It is ensured that all counters
are decreased (i.e. previously mentioned “cutting”, cnt==$past(cnt)-1) when
all RMs were active at least once (RM_seen==ALL_RM). In order to immediately
capture new reconfigurations, the underlying FSM must transition to the SYNQ
state, where it screens the AXI communication for the RM identifier. RM_seen
is reset (RM_seen==NO_RM) in the next step to allow continuous counter cutting.
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The second property in Listing 1.4 is called detect_error starting from Line
11. Following the idea from Listing 1.3, the ReCoFuse must raise its error signal,
when the maximum allowed distance (dist==MAX) is exceeded. A dedicated error
checking state (CHECK_ERR) in the FSM checks this violation (Line 13 + 14) and
raises the error signal in the next cycle (Line 16). The FSM remains in this error
state (i.e. the “bad” state).

In the following section, we present an experimental evaluation of our app-
roach for our case study.

6 Results

All experiments have been conducted on a Xilinx Zync-7000 Series FPGA, more
precisely our evaluation platform is a Zedboard featuring a XC7Z020-CLG484-1
FPGA component. More recent FPGA generations feature the same reconfigura-
tion interface, thus our approach maintains applicability in the future. Enhanced
capabilities, such as better encryption and authentication however can help to
increase the difficulty of attacks further. Our encryption system implements the
moving target principle by switching between different implementations of the
AES core “tiny AES” from https://opencores.org/project/tiny aes via reconfig-
uration. A dedicated controller in the FPGA (called SYSCTRL) initiates the ran-
dom (i.e. uniform) replacement of a Reconfiguration Module (RM), i.e. between
the different AES implementations.

We have synthesized the encryption system using Vivado 16.04. The partial
bitfiles are copied from the SD card to the on board DDR3 memory (serves as
partial bitfile memory), using a bare metal executable which runs on the ARM
core of the FPGA. To access from the programmable logic of the FPGA, we
switched the DDR3 memory to AXI slave mode. The PRC is directly attached to
the AXI slave DDR3 memory in the design and instantiates the ICAP primitive
as well. A ReCoFuse Container encapsulates the PRC as presented in Sect. 4. The
two ReCoFuses time out (RCF0) and replay (RCF1), as described in Sect. 5.2,
are integrated in the ReCoFuse Container to protect against the two attacks as
introduced in Sect. 5.1.

6.1 Injecting Faults

As mentioned above, the controller SYSCTRL for reconfiguring between the
different AES implementations initiates the random (i.e. uniform) replacement
of a RM and for this communicates with the PRC. During normal operation
SYSCTRL replaces the current RM with a random successor before the timer of
RCF0 expires, such that no ReCoFuse raises an error. To run the experiments, we
attacked the reconfiguration process by injecting faults in the encryption system
in order to disturb the operation of the PRC. This was achieved by additional
logic on the FPGA. Essentially, we disable the initiation of the replacement
at runtime or alternatively remove the randomness from the RM selection. The
following results have been obtained when using the Xilinx Integrated Logic Ana-
lyzers (ILAs):

https://opencores.org/project/tiny_aes
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Time-Out Attack. Figure 4 illustrates the functionality of RCF0 for the time-
out attack. The timer must expire, if a RM is kept active longer than acceptable;
we set the TIMEOUT to 10 time steps. For demonstration we captured the
activity for 960 ms (i.e. 15 time steps). After 64 ms, RM1 is loaded, followed
by, RM2 and RM3 (each active for 1 time step (64 ms)). RM4 is kept active
indefinitely (10 time steps), which exceeds the acceptable period (640 ms), such
that the error signal is raised, when the counter value (ctr) reaches 640. The
error signal indicates a violation of the time-out requirement.

0 960
error 1

ctr 0..63 0..63 0..63 . . .

RM RM1 RM2 RM3 RM4

[ms]

0 639

Fig. 4. Behavior of RCF0 (time-out)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
error 1

RM1 0 1 0 1 2 3 4 5 6 7

RM2 0 1 2 1

RM3 0 1 2 1

RM4 0 1 0

[step]

Fig. 5. Behavior of RCF1 (replay)

Replay Attack. Figure 5 shows a sequence of the reconfigurations after 15
steps. We have for different RMs. The maximum allowed distance of the RMs
is set to 6 as in Fig. 3. In step 7, the occurrence of RM4 decreases all counters
by the shift window operation, resulting in a zero alignment of all counters. At
this point, the PRC is attacked (i.e. internally triggered faults are injected). In
the 15th step, loading RM1 will activate the error signal of the RCF1. Since the
difference between the most and least frequently used RM exceeds the allowed
limit.

In summary, both experiments based on injecting faults demonstrated the
effectiveness of our approach. In the next section, we report the resource utiliza-
tion of our ReCoFuse Container for the encryption system.

6.2 Resource Utilization

Table 1 shows the utilization of the FPGA after implementation in Vivado. All
synthesis runs and P&R runs were executed with the same settings. The first
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Table 1. Hardware resource utilization

“Moving target AES” Original ReCoFuse protected

Elements Usage Usage Increase

Slices 2976 3036 2.02%

LUT as logic 10520 10620 0.95%

LUT as memory 203 203 0.00%

LUT FF pairs 4367 4409 0.96%

column elements of the table presents the respective resource. The second col-
umn Original shows the our encryption system employing reconfiguration based
on different tiny AES cores and the Xilinx reconfiguration infrastructure follow-
ing the moving target principle. Three different AES cores and a blank module
(Xilinx recommendation for system initialization) have been included and are
randomly chosen for reconfiguration by the SYSCTRL. The third column ReCo-
Fuse protected: Usage contains the resource utilization for the encryption system
protected with the introduced ReCoFuse Container. Finally, the fourth column
ReCoFuse protected: Increase shows the negligible overhead, caused by our solu-
tion.

7 Conclusion and Future Work

In this work, we leveraged an originally proposed safety mechanism which creates
a container around an IP, to encapsulate and protect the PRC of an FPGA. We
introduced ReCoFuses inside our encapsulation-scheme, each capturing a specific
property of interest which has to be fulfilled at any time during PRC operation.
Formal verification was employed to guarantee the correctness in detecting a
security violation. For evaluation of our scheme, we have created a reference
design, which we attacked by injecting faults. The experiments showed that the
implemented measures – leveraging the proposed scheme – realize an effective
and cost efficient protection for reconfiguration-based secured designs. Our flexi-
ble architecture allows adding more ReCoFuses (e.g. CRC, additional encryption,
hash-based finger printing etc.) easily. The protective measures are dependent
on the required degree of protection. Possibly, a full catalog of fuses can be
maintained in the future. In summary, this work closes the gap of vulnerable
reconfiguration infrastructure as identified in [10] by Mentens et al.
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Abstract. Reconfigurable hardware has received considerable atten-
tion as a platform that enables dynamic hardware updates and thus
is able to adapt new configurations at runtime. However, due to their
dynamic nature, e.g., field-programmable gate arrays (FPGA) are sub-
ject to a constant possibility of attacks, since each new configuration
might be compromised. Trojans for reconfigurable hardware that evade
state-of-the-art detection techniques and even formal verification, are
thus a large threat to these devices. One such stealthy hardware Tro-
jan, that is inserted and activated in two stages by compromised elec-
tronic design automation (EDA) tools, has recently been presented and
shown to evade all forms of classical pre-configuration detection tech-
niques. This paper presents a successful pre-configuration countermea-
sure against this “Malicious Look-up-table (LUT)”-hardware Trojan, by
employing bitstream-level Proof-Carrying Hardware (PCH). We show
that the method is able to alert innocent module creators to infected
EDA tools, and to prohibit malicious ones to sell infected modules to
unsuspecting customers.

1 Introduction

Hardware Trojans, i.e., malicious circuit inclusions, have grown into a mature
research field over the last two decades, which has raised many questions regard-
ing the integrity, security and trust in digital systems. Attack vectors are plen-
tiful, especially since nowadays most integrated circuit (IC) designers rely on
third-party Intellectual Property (IP) cores and closed-source Electronic Design
Automation (EDA) tools, while the manufacturers outsource the actual fabri-
cation step to third-party foundries that are often in different countries or even
continents, to lower the cost and to speedup the development. As a consequence,
attackers have the opportunity to manipulate a design at almost any stage of the
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IC development life cycle [13]. Such an undesired modification of a circuit can
alter its functionality, provide a covert channel to leak sensitive information, or
even open a back door into the IC. A hardware Trojan is usually defined to com-
prise a trigger and a payload [2]. Typically, a trigger mechanism is implemented
in a way that activates the payload mechanism either always, upon reception of
some stimulus specified at design time, or at a some pre-determined time dur-
ing the operation. Triggers of Trojans play an important role to conceal them
throughout the development process of an IC. In order to hide the malicious
circuitry, an adversary would design the trigger in a way that the Trojan does
not affect the functionality of the original circuit under normal conditions. In lit-
erature, various trigger implementations have been published so far and most of
them depend on rare events such as counters or a specific unlikely signal pattern
to evade detection at the functional testing stage [2,13]. However, such Trojans
can be caught by extensive functional simulation and testing during design time,
as state-of-the-art detection techniques are exploiting the fact that malicious cir-
cuitry is more likely to reside in the rarely or unused portions of the circuit and
thus investigate these areas with much more scrutiny.

Most of the work on hardware Trojans has been focused on static circuits, i.e.,
application-specific integrated circuits (ASICs), while very little effort has been
shown towards dynamically reconfigurable hardware such as field-programmable
gate arrays (FPGAs), where Trojans can affect not only the static (ASIC) part,
but also the dynamic configuration. In this paper, we follow the attack presented
in [8], in fact using the reference implementation provided by the authors, where
compromised EDA tools add and activate a hardware Trojan into a design in
two stages, making sure that it is dormant, and thus virtually undetectable, in
every step of the design flow except the final bitstream. We propose to use a
bitstream-level proof-carrying hardware (PCH) approach to detect the stealthy
Trojan that is injected and activated in the compromised design flow. Replacing
the consumer’s need to trust in other parties with hard evidence is the core
benefit of our approach, which places the computational burden of verification
on the producer of a hardware module.

The novel contributions of this paper are as follows:

– We present a bitstream-level proof-carrying hardware method within the sce-
nario defined in [8], which, to the best of our knowledge, is the first that is
able to detect a stealthy Trojan before it runs on an FPGA.

– Using also tools from the IceStorm project [12], we present a complete open-
source design-and-verification flow for iCE40 FPGAs that is able to protect
bitstreams for these targets with the full power of PCH.

The rest of the paper is organized as follows. In Sect. 2, we look at the related
work and background in hardware Trojans and their detection. Section 3 pro-
vides the overview about our proof-carrying hardware approach and the tool
flow for iCE40 FPGAs. Section 4 elaborates our experimental setup and imple-
mentations. Finally, we conclude the paper and point to future work in Sect. 5.
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2 Related Work and Background

In general, it is harder to attack a circuit on an FPGA in a foundry compared
to an ASIC, as the actual functionality of the FPGA is only determined at
runtime, when the static part and the dynamic configuration are combined to
form the circuit. Attacks on the static part of the FPGA are closely related
to ASIC attacks and out of the scope of this paper. Attacks on the FPGA
configuration during the design step, can, e.g., be performed by compromising
the EDA tools which are used to synthesize the design. This attack can be
carried out either by actually modifying or replacing the tools themselves, as
is described for instance in [9], or as a post-processing step, as demonstrated
in [3], where the authors investigate the possibilities and limitations of direct
bitstream modification attacks. For an attacker, compromising EDA tools can
be very attractive, as potentially a higher number of designs can be compromised
in one attack.

Recently, Krieg et al. [8] have published such an attack that basically adds a
second trigger to the Trojan design, which is tied to specific steps in the FPGA
design flow, as depicted in Fig. 1(a). Their stealthy Trojan relies on compromised
design tools: First the front end synthesis tool injects the Trojan into a user
design (Fig. 1(b)) and then the back end synthesis tool activates (triggers) it
when writing the bitstream configuration file, and only then (Fig. 1(c)). The
injected Trojan can still comprise a classical trigger-payload pair, which can then,
e.g., be activated at operation time. The novelty of the approach lies in the fact
that the infected circuit is functionally equivalent to the hardware specification
during post-implementation simulation and testing, as the Trojan is dormant
after insertion. This Trojan can thus circumvent all state-of-the-art detection
techniques that rely on identifying unused, nearly unused or redundant inputs
or portions of circuit, such as unused circuit identification (UCI) [6]. The only
possibility to detect this stealthy Trojan pre-configuration, i.e., before the FPGA
is configured with the design, is to analyze the configuration bitstream itself, as
also the authors point out.

In this paper, we apply the idea of [4] to the tool flow from [8] to use PCH
to detect the stealthy hardware Trojans for the lattice semiconductor iCE40
family of FPGA [1] using mainly tools from the open-source flow IceStorm [12].
Our approach differs from state-of-the-art Trojan detection techniques where
comparison or equivalence checking is done at the RT level or netlist level to
detect stealthy Trojans. While the attack we counter will not be caught by
such techniques, as the activation is done at last stage, i.e., while writing the
bitstream, our bitstream-level PCH scheme is able to detect Krieg et al.’s stealthy
Trojans using an open-source tool chain.

3 Proof-Carrying Hardware Approach for ICE

The proof-carrying hardware concept was proposed by Drzevitzky et al. [4].
PCH considers third-party IPs that are integrated into FPGAs in a bitstream
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Fig. 1. (a) Depicts the function principle of the attack. In (b), a malicious front end
injects malicious HDL code into an original design based on pattern matching. Whereas
(c) shows a malicious back end which activates the attack by looking for the previously
inserted cells and altering them. Figure from [8].

configuration format, as this is the lowest possible abstraction in reconfigurable
hardware, which explicitly excludes the closed-source vendor EDA tools from
the trusted base. To verify the third-party IPs, PCH uses automatic formal
verification techniques that are easy to retrace, so as to enable the recipient of
module and proof to perform a lightweight verification with the full power of
the initial one. Principally, PCH has been evaluated using abstract and virtual
FPGAs due to the unavailability of bitstream documentation to be used as
a prototype for FPGA providing companies. Therefore, Wiersema et al. [11]
evaluated and implemented PCH on a fine-grained virtual fabric, where they
demonstrated and experimentally evaluated PCH at the bitstream level of virtual
bitstreams for an overlay placed on a real FPGA. In this paper, we present a
PCH prototype directly for the bitstream of a real FPGA by leveraging reverse
engineering-based open-source design tools from the IceStorm project [12].

Figure 2 outlines the steps performed in our PCH scenario, derived from
the steps described in [11]. The consumer specifies the functionality of the IP
module as well as the security specification. As a simplifying assumption for our
prototype, the design specification is provided as Verilog source code and the
security specification is agreed upon in advance as demanding the full functional
equivalence between the (golden) Verilog source and the circuit represented in
the final bitstream, thereby detecting any Trojans that alter the functionality.
The producer synthesizes the IP module for the target platform, in our case the
iCE40 FPGA, resulting in a bitstream that will be sent to the consumer, as
depicted in Fig. 3. The producer then re-extracts the Verilog from the bitstream
to combine it with the original specification into a miter1 function in CNF form.

1 For details on miter functions in Proof-Carrying Hardware see, e.g., [4].
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Fig. 2. PCH tool flow

This CNF formula is proven to be unsatisfiable by a SAT solver, which proves
functional equivalence between specification and implementation. This works
for combinational and time-bounded sequential circuits; for unbounded ones, or
ones with no practical bounds like triggers using long running counters, more
advanced proving techniques like induction are needed, which can also be found
in related PCH work [7]. The resulting proof trace together with the bitstream
is then sent to the consumer, who also formulates the miter with the reversed
Verilog in order to compare this miter CNF with the one that is the basis of
the proof trace. The consumer can only be sure that the provided proof trace
is actually about the specified IP module, if the miters match. In case of a
match, the consumer verifies the proof using the proof trace. If this step also is
successful, the consumer configures the FPGA with the bitstream. If any of the
two checks fail, the consumer indicates the failure through its user interface on
the PC, about the rejection of an IP module.

3.1 Tool Flow for ICE

Project IceStorm is an open-source project by Wolf and Lasser that provides tools
to create and manipulate or analyze bitstreams for Lattice iCE40 FPGAs [12].
The project aims at reverse engineering and documenting the iCE40’s bitstream
format, and together with other open-source tools they have defined a completely
open-source tool flow for the iCE40 FPGAs. Lattice FPGAs, and especially the
iCE family, can be used for smaller circuits for the verification of the design.
Figure 3 shows the parts of the iCE40 tool flow that we used to implement the
PCH approach. Here, yosys is used to synthesize the HDL description of the
design. The output of yosys is a synthesized (and optimized) netlist in Berkeley
logic interchange format (BLIF), that is then given to the place and route tool,
Arachne-pnr [10], which after placement and routing, encodes the placed and
routed design/netlist into a text file (ASCII). To generate the binary file, e.g.,
a bitstream configuration file, we use the Icepack tool. To reverse convert the



132 Q. A. Ahmed et al.

bitstream, we use Iceunpack, which converts the binary file again to a text file
(.asc). Furthermore, we use the icebox vlog tool to convert this text file again to
HDL, i.e., structural Verilog which we use to form the miter function.

Fig. 3. Shows the iCE40 tool flow used for PCH

3.2 Threat Model

As explained in Sect. 2, IP modules obtained from third parties can be mali-
ciously infected. We explain our threat model by discussing three different pos-
sible scenarios and show that in all three scenarios of attack, our bitstream-level
PCH approach identifies the malicious intrusion and notifies that the imple-
mented design is not functionally equivalent to the specified design. In the follow-
ing subsections, we highlight the resiliency of the verification technique against
attacks from various parties; Table 1 summarizes the details.

Scenario: 1. In this scenario, we assume that the adversary is either the vendor
of an underlying IP Core used by the producer to make their own core, or an
employee of the producer who deliberately inserts the stealthy Trojan into the
original design specification received from the consumer, while the EDA tools and
the transportation of IP modules in this case are not compromised. The Trojan
would then remain dormant through all internal validation steps performed by
the producer to be only activated upon writing the final bitstream. Since this
bitstream forms the basis for the remaining PCH verification, the producer would
subsequently compute the miter function using the compromised implementation
with the active Trojan, as discussed in Sect. 3.1. There are two possibilities now:

1. The producer uses the consumer’s original specification. This would lead to
a satisfiable miter function, as the design extracted from the bitstream has
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Table 1. Threat scenarios

Scenario Malicious party Attack vector Detected at

1 Design house Design specification Producer

Both specifications Consumer

IP vendor Underlying IP core Producer

2 EDA Tools Bitstream [8] Producer

3 Communication → Design specification Producer

→ Both specifications Consumer

← Bitstream Consumer

← Bitstream & proof Consumer

Any Any Trojan infection with Undetected:

valid new proof Harmless

altered behavior, and hence the proof creation step would fail, meaning the
producer would not be able to send a proof-carrying bitstream (PCB) to the
consumer. Remark: Were the miter not satisfiable in this step, would the
alteration of the Trojan be deemed harmless, since that would essentially
mean that the inclusion of the Trojan does not violate the previously agreed
upon property (functional equivalence in this case).

2. The producer uses a compromised specification with activated Trojan
instance. With this specification, the producer would be able to create a
proof of conformity of their core with the specification. The consumer, how-
ever, would compute the miter using their original copy of the specification,
which cannot be compromised, which would lead them to a different miter
compared to the producer. They would thus not accept the received proof, as
the miter comparison step would fail.

Our proposed PCH approach would thus alert the consumer to the Trojan’s
presence in every possible case in this scenario, as long as the (activated) Trojan
violates the property.

Scenario: 2. In this threat scenario, we assume that the producer and commu-
nication channel can be trusted, but the EDA tools used by the producer are
compromised. One reasonable instance of this scenario would be a pre-compiled
version of an open-source EDA tool that includes malicious code. This basically
matches the attack from [8] shown in Fig. 1.

Since in this case no collaborator within the producer would replace the
design received by the consumer, the verification miter would always be formed
using the original specification and the infected bitstream with activated Tro-
jan, which would lead to again either a satisfiable miter, which would alert the
producer to the fact that their tools are compromised, or it would help to ensure
that the Trojan is harmless, if its activation does not violate the property. In any
case the producer again cannot, even by accident, create a malicious bitstream
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and matching proof that would fool the consumer into configuring an FPGA
with it.

Scenario: 3. In this scenario, we assume that the design house and the EDA
tools are trustworthy and the adversary has compromised the communication
channel between producer and consumer, e.g., by performing a man-in-the-
middle attack. There are several attack vectors, which would be detected in
different steps of the flow:

1. The attacker replaces the design or security specification before it reaches the
producer, inserting the Trojan in the specification or relaxing the properties
that need to be proven. The producer would then go ahead and unknowingly
(a) produce a wrong design, or (b) create an erroneous proof for the property
afterwards. Since the consumer has an unmodified version of both specifica-
tions, however, and will use these to create their own version of the proof
basis, both (a) and (b) would lead them to reject the module.

2. The attacker reverse engineers the proof-carrying bitstream and injects the
Trojan into it. Since in this case the proof would not match the bitstream,
the consumer would also be alerted when comparing the miter functions that
the module is not trustworthy.

3. The attacker injects the Trojan into the PCB and modifies the proof. This
leads to different outcomes, depending on the proof modification. If the new
proof uses the correct miter, but consequently cannot actually prove its unsat-
isfiability, the consumer will reject the module. If the new proof is a correct
proof of unsatisfiability using an alternative miter, the miter mismatch will
be detected again. If the miter matches and the new proof indeed shows its
unsatisfiability, then the attacker effectively has proven that their addition
is not violating the property and is hence not considered to be malicious by
the consumer. The last case would hence not be detected, but that would be
considered a non-issue.

The consumer would thus be alerted of any malicious, i.e., property violating,
alteration of the design in the PCB, no matter which communication direction
the attacker compromises or what vector they choose, allowing the consumer to
reject the module as untrustworthy.

4 Experimental Validation

In this section, we present experimental results obtained using an example mod-
ule represented in Verilog description. In order to demonstrate the ability of the
presented iCE40 PCH flow to counter the attack presented in [8], we have used
the example Verilog provided by the authors and the tools that they described
where applicable. We have infected the EDA tools with the patches provided by
them, and thus to the best of our knowledge have a faithful recreation of one of
their experiments at our disposal, which we embedded into the flow described
in Sect. 3.
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For our experiments, we have first used the example Verilog code with unmod-
ified EDA tools, thus validating the overall flow depicted in Fig. 2. Using unin-
fected versions of yosys and arachne-pnr on the producer side allowed us to
synthesize the design for an iCE40 1K FPGA, and icepack produced the cor-
responding bitstream (.bin in Fig. 3). Using the reverse tool iceunpack together
with one of the icebox scripts allowed us, also on the consumer side, to obtain a
Verilog representation of the implemented design. Using the original (behavioral)
Verilog as specification counterpart, generically synthesized by a clean yosys, we
formed a miter circuit and successfully proved its unsatisfiability using a SAT
solver. On the consumer side, we then matched the miter functions and retraced
the proof, leading us to an accepted proof-carrying bitstream. This confirmed
that we had indeed successfully merged the iCE40 tool flow with the PCH tool
flow to enable PCH-certified bitstreams for iCE40 1K FPGAs. We then replaced
the synthesis tools with the infected versions and reran the experiment. After
computing the bitstream on the producer side, we unpacked and reversed it
again in order to form the miter function with the specification (the specifica-
tion blif was still generated by a clean yosys). This miter, however, proved to be
satisfiable, since the implementation now actually had been altered. We hence
achieved the expected result from Table 1, where PCH allowed us to detect the
malicious modification of the design at the producer. A malicious producer could
now try to hide the infection from the user, but as detailed in Sect. 3.2 this would
then definitely be detected by the consumer in a later phase.

5 Conclusion

As already concluded by Krieg et al. [8], bitstream formats have to be publicly
available to enable users to reveal and protect themselves against malicious bit-
stream manipulations. Unfortunately, for commercial EDA tools this is usually
not the case. In this paper, we have demonstrated that bitstream-level verifi-
cation using proof-carrying hardware is indeed able to reveal the stealthy two-
stage hardware Trojan attack presented in [8], which is undetectable using reg-
ular state-of-the-art pre-configuration detection approaches. The power of PCH
ensures that even in a two-party contract work scenario, where the producer’s
tools are compromised, the consumer is protected against the modifications. We
thus underline the claim by Krieg et al. that their attack is only possible because
of the closed nature of commercial bitstream formats, and conclude that in a
world with open bitstream formats the problem would not only be solvable but
is indeed already solved. Not only for the one party version described in [8] (con-
sumer + attacker), but also in the two party version defined by PCH (consumer,
producer + attacker), which is a common case in today’s market, where designers
build their designs from a multitude of third party IP Cores. In our future work,
we aim to implement our approach also for commercial FPGA tools like Xilinx
Vivado, to bring the potential of PCH certified bitstreams demonstrated here
directly to actual, modern devices. We are planning to compensate the absence
of bitstream documentation in this world with the help of external tools like
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RapidSmith2 [5], which will help us to at least remove most of the closed-source
tools from the trusted base.
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Abstract. Trading intellectual property (IP) for FPGAs relies on configuring
devices securely. This is achieved by using built-in security features of modern
FPGAs, i.e. internal decryption engines. The disadvantage of using these fea-
tures is that a trusted third party (TTP) needs to be involved for the preparation
of the devices. Previously published schemes, in this area, are dependent on a
TTP that mediates between core vendors (CVs) and system developers (SDs),
which poses a major flaw in the chain of trust. In this paper, we propose a
scheme where CV and SD can establish a licensing agreement without the
participation of a TTP using off-the-shelf products. The IP is delivered in a
secure format using state-of-the-art encryption methods. Decryption of the IP is
handled by an application running on the FPGA that furthermore guarantees a
secure configuration of the device. In order to prevent reverse engineering
(RE) of the application, we rely on the progress made in hardware-assisted
software (HAS) protection using a tamper and side channel attack (SCA) resis-
tant hardware component. As a result, the application establishes a chain of trust
between CVs and SDs without the need for a TTP.

Keywords: Intellectual property � FPGA � Trusted third party �
Hardware-assisted software protection � IP licensing � Partial reconfiguration

1 Introduction

Since their beginning in the 1980s, Field Programmable Gate Arrays (FPGAs) have
evolved from simple devices of a couple of thousand gates to fully programmable
system on chips (SoCs) that are capable of implementing a multitude of diverse high-
end digital systems. Today, industries that make use of FPGAs include consumer
electronics, high performance computing, security, automobiles, aerospace, defense
and telecommunication [1], reaching a market size of $63.05 billion in 2017 with an
estimated growth to $117.97 billion by 2026 [2]. Their in-field reconfigurability makes
FPGAs easily adaptable to changing requirements, eases prototyping and therefore
reduces time-to-market as well as overall design cost. With the ever-increasing com-
plexity in hardware design, reuse-based approaches that allow the use of hardware IP
licensing have become commonplace. Here, third party CVs offer their designs as sub-
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modules to SDs. In the context of FPGAs, IP designs might be distributed as register
transfer level (RTL) descriptions, netlists or as bitstreams. While RTL descriptions and
netlists ensure compatibility with vendor tools, they also reveal the exact contents of
the IP to the customer, which poses a major conflict with the CV’s interest in pre-
venting its IP from being duplicated, sold or used in other unauthorized manners. Using
a bitstream for distribution increases the required effort to reverse engineer the IP [5], at
the same time security against a sophisticated attacker cannot be guaranteed [6].

Several countermeasures against unauthorized IP use have been proposed in aca-
demia, and a common approach is to include a trusted third party (TTP) that mediates
between CVs and SDs by managing secret keys or confidential data [7–12]. This way,
an IP can be distributed as encrypted bitstream without giving customers access to any
design data. The use of a TTP gives access of the devices, IPs and other confidential
data to a third party that could be untrustworthy.

The main contributions of this paper is an IP licensing scheme that is secure, non-
restrictive and convenient on existing devices without any modification. The scheme is
based on a pay-per-device approach which gives CVs more flexibility to generate
income, unlike one-time payment schemes, e.g. Xilinx’ SignOnce IP Licensing [16].

2 Related Work

Zhang et al. proposed a pragmatic scheme in [11]. Steps of the scheme are depicted in
Fig. 1, which is then followed by a summary. Since we consider this scheme to be the
most feasible, we will use it as a reference going forward.

Fig. 1. A pragmatic IP licensing scheme by Zhang et al. [11]
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In the 1st and 2nd step of the scheme, the Hardware Manufacturer (HM) produces a
fixed amount of devices for the FPGA Vendor (FV). Afterwards, in 3rd and 4th steps, the
FV stores secret keys onto the devices and registers them. Meanwhile, a CV that wishes
to sell its IP needs to generate a Core Installation Module (CIM) including a key for IP
decryption. Then, CV requests IP’s registration into the FV’s IP store by providing IP’s
ID along with the CIM where FV will encrypt CIM with the device specific key, as
shown in Fig. 1 from steps 5 to 8. The 9th and 10th steps involve the delivery of
encrypted CIM to the CV, which stores it in a database. Next come steps 11th and 12th in
which SD provides its own identity, target device IDs and implementation requirements
to the FV while requesting a license for a specific IP. If the device IDs are successfully
verified against the FVs database of legal device IDs, the SD’s request is granted and CV
is notified to finalize the transaction that are the 13th and 14th steps. Now, the CV
generates an encrypted authenticated IP according to the SD’s requirements as well as
device and license tokens. After invoicing the SD, the secured IP, CIM and tokens are
delivered to the SD who can now configure its devices with the IP using the tokens and
CIM. Altogether, the scheme exerts a very high complexity through many secured steps,
which can be explained by the fact that some threats (like excess production by the HM)
are considered, which are beyond the scope of this work. Nevertheless, even if these
measures are ignored, complexity and overhead are substantial.

Before discussing other licensing schemes, we define four limitations that will help
in the comparison of the schemes.

• Trusted Third Party Involvement (TTPI): Involvement of an external participant
with access to devices, IPs or secret keys.

• High Execution Steps (HES): Excessive amount of steps in communication,
logistics and execution among participants.

• Hardware Modification (HMO): Modification of FPGA devices [5, 10, 13, 14].
• Resource Overhead (RO): Induced overhead in execution time, area and power.

Usually, the use of additional logic, e.g. by PUFs [20–22] or CIMs [5, 7, 10–12],
leads to such overhead.

An early protection-based scheme was proposed by Kean et al. in [9]. There, tokens
are used to securely communicate with the FPGA devices. These tokens are created by
encrypting a user key with a secret key, whereas the secret key is stored in the FPGA
itself, hence giving it the capability to decrypt tokens and extract user keys. Storing the
secret key requires physical access to the device meaning a TTP is necessary. Guneysu
et al. proposed another well-known scheme in [10], where multiple stages of protection
are used. In this scheme, the HM acts as the TTP and programs a key into the non-
volatile memory (NVM) of the device. A personalization module (PM) is encrypted
with this key and delivered to the SD. The dedicated decryption engine (DDE) decrypts
the PM and configures it onto the programmable logic (PL) of SD’s device. The PM is
used for public key establishment between the device and CV. The PM, by establishing
the key, decrypts the IPs from CV and configures them on the PL. Both schemes [9, 10]
involve a TTP which requires physical access to the device that makes them fall prey to
multiple limitations like TTPI, RO and HES.

Drimer et al. [5] proposed an extension of [10] for protecting multiple IP cores.
Similar to [10], their use of public key cryptography implies primitives that have large
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implementations with unique bitstreams for each device, resulting in a larger con-
sumption of FPGA resources and increased communication between participating
parties. Public key cryptography resulting in larger implementation can be seen in
Table 2, which shows 10.60%, 14.44% and 33.40% of LUTs resource consumed, by
Drimer et al. [5], Guneysu et al. [10] and Zhang et al. [12] respectively. A more practical
scheme was proposed by Maes et al. in [7], which can easily be ported to current devices
and does not require any hardware modification. However, it suffers from TTPI and
HES limitations. Vliegen et al. published an improvement of the aforementioned scheme
in [8]. Their improvements only focus on reducing overhead in the FPGA area by
moving key storage from slice flip-flops to the configuration memory. Table 1 depicts
an overview of the limitations in existing schemes. The proposed scheme, presented in
the next section, improves upon all the defined limitations.

The evaluation of TTPI and HMO is clear: either they exist or not. For HES, if a
scheme has more steps than that in ours, it is considered to suffer from this limitation.
For RO, we define a scheme to be suffering from this limitation if a resource is blocked
permanently. The significance of this limitation depends on the amount of resources
consumed. Table 3 depicts the related schemes’ area consumption in # of LUTs as well
as the utilization rate relative to the total amount of LUTs available on a Xilinx
XC7Z020 device.

Table 1. Limitations in existing IP licensing schemes

[9] [13] [10] [5] [14] [22] [7] [8] [11] [12] [15] [21] [28]

TTPI * * * * * * * * * * * * *
HES * * * * * * * * * * * * *
HM * * * *
RO * * * * * * * * * * *

Table 2. Resource consumption in number of LUTs and utilization on a Xilinx XC7Z020

Schemes # of LUTs Utilization rate
Guneysu et al. [10] 7706 14.44%
Drimer et al. [5] 5674 10.60%
Gora et al. [22] 4563 8.50%
Maes et al. [7] 5656 10.60%
Vliegen et al. [8] 2636 4.95%
Zhang et al. [11] Unprotected 2972 5.50%

SCA resistant 8116 15.20%
Fault attack resistant 5472 10.20%
Physical attack resistant 15832 29.75%

Zhang et al. [12] 17772 33.40%
Sudeendra et al. [15] Not reported
Abtioglu et al. [21] 7379 13.87%
Kepa et al. [28] 4272 8.03%
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3 Proposed Scheme

Common features of modern reconfigurable devices fulfill the technical requirements of
our scheme. Thus, it is applicable to a wide range of FPGA products. Furthermore, the
organizational effort is low compared to previous schemes [5, 7–9, 12–14, 22], as we
do not require complex communication between system developer and core vendor.
Nevertheless, some requirements are inevitable and are presented below:

• Partial Reconfiguration: Target device must support partial reconfiguration.
• Processor Core: A processor core is needed to run software applications.
• Software Protection Solution: Prevents unauthorized use of applications by

encrypting or obfuscating the software binaries to prevent RE and tampering. They
make use of hardware-based protection dongles that provide their own crypto-
graphic algorithms and secure memory for storing keys and licenses.

• Secure Communication: The communication between SD and CV needs to be
authenticated and confidential, but is otherwise not limited and it is up to the CV to
choose a preferred way of communication.

3.1 Scheme Execution

At the planning phase, the SD can search a CV’s IP Store for required IPs. Each IP has
a detailed description about its functionality, supported interfaces, possible sizes,
performance etc. Once an IP is chosen, the SD can initiate a license request for that
IP. The request includes an identification number (ID) of the selected IP, implemen-
tation requirements, and identification information of the SD. This can be seen as steps
1 and 2 in Fig. 2. Based on this request, the CV generates a bitstream IPj for the
requested IP according to the requirements. An IP key KIP is generated, which is used
for authenticated encryption of the IPj using a standard algorithm such as Advanced
Encryption Standard [29] - Galois/Counter Mode [30] (AES-GCM). Afterwards, the
CV updates an application APPKIP with KIP. This application uses the secret key KIP to
decrypt the encrypted bitstream EncKIP IPj

� �
and configure it onto the FPGA. Since the

key KIP is in the application, it should be protected against SCA, RE and tampering;
otherwise, such methods could be used to extract the key, which in turn will put the
encrypted bitstream at risk. This is achieved using a HAS protection supported by an
USB dongle. The CV uses this solution to make a protected application Pro APPKIPf g
and stores the corresponding license on the dongle. As a result, Pro APPKIPf g will only
work if it has access to this specific dongle, which contains a valid license. CV may
choose between different license types that can, for example, be limited to a specific
amount of usages or to a single device [26].

Now, the encrypted IP EncKIP IPj
� �

and the protected application Pro APPKIPf g can
be delivered to the SD. This can be seen as step 7 in Fig. 2. SD then runs Pro APPKIPf g
on a target device with the dongle attached and EncKIP IPj

� �
accessible. At this stage

the application is executed, which performs decryption and configuration of the
IP. Note that the CV does not need to ship the dongle to its customers, but rather the SD
may obtain them as an off-the-shelf product and CV can configure license on it
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remotely. Moreover, it is possible for the SD to reuse the dongle for multiple IPs and
devices, making the acquisition of the dongle a one-time requirement. This results in a
major simplification of logistics and required execution steps compared to previous
schemes. Figure 2 depicts an overview of the execution steps needed in our scheme
and there is a clear improvement over scheme [11], which is shown in Fig. 1.

In case multiple IPs are requested from same CV, single application is enough.
However, if IPs from several CVs are to be used, every CV has to provide its own
application. The upside is one dongle can be used because it supports multiple licenses
simultaneously. In addition, the proposed scheme can easily be used in a multi-device
scenario by restricting the usage of license to a set of devices using their device IDs.
Furthermore, the dongle is able to track license usage and can enforce a limit on the
total amount of IP decryptions and configurations on a device. For further explanation,
please refer to Sect. 3.2.

3.2 Implementation

This section shows a proof of concept of the proposed scheme, where available off-the-
shelf products such as Xilinx’ Zynq-7000 SoC device and Wibu’s CodeMeter are used
to demonstrate its execution. A tool command language (TCL) based flow for Xilinx’s
Vivado Design Suite is developed, which is used to generate bitstreams from a design
that supports dynamic partial reconfiguration (DPR). Using this flow, a full bitstream
(FB) (bitstream representation of static design) is generated from SD’s design. Two
partial bitstreams (bitstream representation of partial design) are generated that repre-
sents CV’s design. An encryption application that implements AES-GCM is used to
encrypt all the bitstreams with a key length of 256-bit. A Decryption-Configuration
Application (DCA) is developed which implements AES-GCM decryption and
authentication. Since DCA contains secret information, it is protected against RE using
CodeMeter (a HAS protection solution from Wibu Systems). For protection, Code-
Meter uses an AES-based algorithm in Cipher Block Chaining Mode (CBC) [26]
backed by a crypto-controller and secure memory, both packaged in a single USB

Fig. 2. Proposed IP licensing scheme
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dongle. Licenses are generated and distributed to customers using the CodeMeter
License Server solution [26]. The dongle is referred to as CmDongle, which is part of
CodeMeter. This kind of approach is used in software IP licensing, but has not been
used for protecting hardware IPs to the best of our knowledge.

As license type, we chose a pay-per-configure approach that allows a fixed number
of FPGA configurations. Records of each consecutive FPGA configuration are kept on
the USB dongle and the license turns invalid as soon as the usage limit is reached.
Whenever a user runs the protected application, connectivity to a dongle containing a
valid license must be provided. Failure to do so will prevent the application from
running. For our test setup, we used Xilinx Zynq-7000 SoC, which combines software
and hardware programmability by integrating an ARM-based Processing System
(PS) and Programmable Logic (PL). Before the Linux image is built using Xilinx’s
PetaLinux tool flow, the protected DCA is added. The bootable image with the pro-
tected application and encrypted IPs are stored on an SD card, and used to boot the
device. After booting, PS loads the Linux OS, and a user can execute the protected
DCA to configure IPs from a CV. In order to allow the application to run, the required
security dongle is connected via on-board USB ULPI.

Static and partial designs have been implemented using Xilinx Vivado, targeting
ZYNQ ZC702 (XC7Z020-CLG484). A full bitstream of the static and two partial
bitstreams (PBs) for the partial design are generated. One of the PB is the IP and the
other one is a blank design. Since both PBs are of same size (149 KB), their decryption
and configuration times are equal, which are 140 ms and 32 ms respectively. The total
execution time of the protected DCA is 230 ms with HAS protection and 180 ms
without. The 27.7% increase in time overhead is due to the HAS protection solution’s
license checking and unwrapping procedures. The time overhead is acceptable because
the objective is configuring licensed IPs that will stay configured for a longer period.
Execution time of the application and its sub-blocks is shown in Table 3.

4 Security Analysis

This section examines the complete chain of trust, starting with the CV and going all
the way down to the point of configuration to SD’s device, covering possible vul-
nerabilities. As stated in Sect. 1, it is common to distribute IPs either as a synthesized
netlist or as a fully implemented bitstream. Netlists do not offer any kind of security
and therefore are prone to all kinds of attacks [5]. While they might not be easily

Table 3. Execution times of the application and its sub-blocks

Execution time (ms) % of total the execution time

Protected DCA 230 100%
HAS protection overhead 50 21.7%
Copying bitstreams to RAM 4.2 1.8%
Decryption & Authentication 142 61.7%
Configuration 32 13.9%
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understandable, any design tool can analyze them and extract the functionality of the
underlying circuit, as this is what they are made for. Bitstreams, on the other hand, add
a simple security layer by obfuscation. Their format is not documented in detail and
varies between devices and manufacturers, making attacks a time consuming and
tedious task. Nevertheless, this kind of security is delusive as it is only based on the
assumption that the format stays unknown. Consequently, additional reliable security
measures are needed for bitstream based IP distribution. The major threats to IPs are
Cloning, RE, Readback Attacks and SCA [6] as well as Trojan or Fault Insertion [11].
Except Readback and SCAs, which are only applicable during or after device con-
figuration, all of them can be prohibited by using cryptographic primitives [6].
Therefore, we rely on state-of-the-art encryption of all IP bitstreams. We recommend
symmetric AES-GCM encryption with a key length of 256-bit as suggested by the
Intelligence Apparatus and governments [17, 25], but in general, any symmetric or
asymmetric cryptographic algorithm is suitable.

In order to keep the bitstream’s content secret from other parties including SD, it is
encrypted with a secret key which is embedded inside a software application that
handles decryption and configuration of the FPGA. It would be easy to extract the key
from the application by RE or SCA. Therefore, we use HAS for the protection of the
application. While purely software based protection against RE of the application
typically relies on obfuscation [18, 19] and thus at most helps against semi-professional
attackers, HAS approaches use strong cryptographic procedures and include counter-
measures against SCAs [27]. Even though serious attempts by security experts have
been made, those measures have not been breached [23]. The CmDongle used in our
implementation provides AES encryption (in CBC mode) for the application and
protects its execution [26]. Note that the CmDongle in our implementation is used as an
example and the proposed scheme is not limited to a specific product.

The proposed scheme is secured against attacks from SD, but there are few areas
where an uninvolved party can attack, specifically the transmission of IP and remote
storage of licenses from CV to SD. These communications can be secured by cryp-
tographic protocols used in network security such as Transport Layer Security
(TLS) [6]. With secure communication, only the device is left as a target. Since an
unencrypted bitstream is configured on the PL, the configuration process in the device
is more prone to eavesdropping. The fact that the whole FPGA system is under full
control of the SD makes this task even simpler and a well-designed protection utterly
important. After decryption, the raw bitstream is passed to a driver, which then utilizes
the kernel-managed configuration interface to program the device. At this point, either
a modified driver or kernel could be used to redirect or copy any data sent to
peripherals on the fly, i.e. the bitstream. We prevent driver modification by providing
our own version of it within the application. Protection against kernel modification on
the other hand cannot be fully guaranteed. However, we can increase the required effort
for this kind of attack. In academia, sophisticated approaches on running trusted
applications on untrusted OS have been proposed that could be used in this case [3, 4].
Alternatively, a custom operating system with restricted user access and a kernel
module that provides kernel’s authentication to the application can be provided. This
flow provides security to the application against a tampered operating system, similar
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work in presented in [24]. However, for attackers with vast resources it would still be
possible, though it would require effort beyond financial benefit.

5 Conclusion

In this work, an IP licensing scheme for FPGA IP cores is proposed, which to the best
of our knowledge, is the first one that does not involve any TTP. In fact, it does not
require any third party - CV and SD can get into a licensing agreement without sharing
their devices’ or IPs’ confidential information with anyone. These features make the
scheme a very secure and feasible one, unlike other publications who suffer from
limitations that are shown in Sect. 2. The proposed scheme improves upon those
limitations by providing e.g. independence from a trusted third party, lower resource
overhead, and fewer execution steps. However, the scheme also has a noticeable
drawback, which is the cost of using a hardware-assisted software protection solution.
The upside is a single dongle is sufficient for the configuration of multiple devices.

Acknowledgements. This work was supported by the German Federal Ministry of Education
and Research (BMBF) with funding number 16KIS0662.
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Technische Universität Dresden, Dresden, Germany
{lester.kalms,ariel.podlubne,diana.goehringer}@tu-dresden.de

Abstract. The field of computer vision has been increasing over the
past years as it is applied to many different applications nowadays.
Additionally, they have become more complex and power demanding.
On one hand, standards and libraries such as OpenCV and OpenVX
have been proposed to ease development. On the other hand, FPGAs
have proven to be energy efficient on image processing. The tendency
over the last years has turned into using High-Level Synthesis (HLS), to
ease their programmability. We present a highly optimized, parametriz-
able and streaming capable HLS open-source library for FPGAs called
HiFlipVX. Due to its structure, it is straightforward to use and simple to
add new functions. Furthermore, it is easily portable as it is based on the
OpenVX standard. HiFlipVX also adds different features such as auto-
vectorization. The library achieves an efficient resource utilization and a
significant scalability, also in comparison to the reference (xfOpenCV),
as shown in the evaluation.

Keywords: OpenVX · FPGA · SoC · High-Level Synthesis ·
Computer vision · Image processing

1 Introduction

The complexity and applications for image processing and computer vision
are growing continuously [1]. To ease the development process, standards and
libraries such as OpenCV and OpenVX have been proposed. The first one is an
open source computer vision software library, which is built to provide a common
infrastructure for computer vision applications [2]. The second one is an open,
royalty-free standard for cross platform acceleration of computer vision applica-
tions [3]. Field Programmable Gate Arrays (FPGAs) have proven to be energy
efficient on image processing tasks [4] in comparison to other architectures like
CPUs or GPUs. Using High-Level Synthesis (HLS) for FPGA has several ben-
efits, like an easier and faster way of testing functional correctness, portability
of code and shortened design cycles. Tools, such as Vivado HLS [5] from Xil-
inx, use pragmas to improve code for FPGAs. Intel’s OpenCL SDK and Xilinx’s
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SDAccel tool further abstract the underlying hardware using OpenCL and Xil-
inx’s SDSoC [6] for System-on-Chips (SoCs) using C/C++. C++ has advantages
to OpenCL (version 2.0 and older) for the implementation of a parametrizable
library, e.g. due to templates.

In this work, we introduce an Open Source High-Level Synthesis FPGA
Library for Image Processing (HiFlipVX), available at [7]. It is highly optimized,
parametrizable and includes, in its current form, 28 image processing func-
tions based on the OpenVX specification including some extension. For exam-
ple, an auto-vectorization of the functions is included to increase throughput
and decrease latency. Most functions support additional data-types to increase
the usability. HiFlipVX uses SDSoC for HLS, which can easily be changed for
other HLS tools. SDSoC uses the same directives as Vivado HLS except for the
interface. SDSoC additionally creates the software layer and hardware needed
for memory access and control, for an easy HW/SW Co-Design. Furthermore,
HiFlipVX implements all functions for streaming, which makes it easy to con-
nect them, since it creates a simple stream interface. Different vendors like AMD
(AMDOVX) or NVIDIA (VisionWorks) already follow the standard. Using C++
for HLS with OpenVX eases the cross-platform development. Furthermore, no
new programming language has to be learned, as if a Domain-Specific Language
(DSL) is used. HiFlipVX does not require additional libraries, which eases the
integration to an existing project. In the following, Sect. 2 provides information
about the related work, Sect. 3 describes the implementation of HiFlipVX, Sect. 4
compares the achieved results with related work and Sect. 5 contains conclusion
and outlook.

2 Related Work

Several approaches have been done to decrease the complexity of developing
image-processing applications targeting FPGAs. Özkan et al. [8] propose a highly
efficient and parametrizable C++ library for image processing applications. It
targets HLS to produce optimized algorithms for FPGAs. The motivation behind
their work is the implementation of image processing applications that can be
expressed as (DFGs). They also provide designers multiple Pareto-optimal archi-
tectures for the same library instances to tailor their implementation. The new
programming language for image processing and computational photography
Halide [9] is designed to ease high-performance image processing code writing.
It supports several CPU architectures, Operating Systems and GPU’s APIs.
Pu et al. extend Halide so a portion of the software can explicitly become a
hardware accelerator [10]. They also provide a compiler for such task and a
complementary code for the user to access the hardware created to accelerate
the specified portion of the software. Membarth et al. proposed a framework
for automatic code generation image processing algorithms based on DSL. They
showed that domain knowledge can be captured in the proposed language and
that this knowledge enables to generate tailored implementations for a given
target architecture [11]. Reiche et al. extend the work by proposing a code gen-
eration technique for C-based HLS from a common high-level DSL description
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1 template<typename T, vx uint8 v e c t o r s i z e >
2 s t ru c t img { T data [ v e c t o r s i z e ] ; } ;
3
4 void Example ( img<vx uint8 , 1> ∗ in , img<vx int8 , 1> ∗out ){
5 s t a t i c img<vx int8 , 1> l x [PIXELS FHD ] ;
6 #pragma h l s stream va r i ab l e = lx depth = 512
7 s t a t i c img<vx int8 , 1> l y [PIXELS FHD ] ;
8 #pragma h l s stream va r i ab l e = ly depth = 512
9 #pragma h l s dataf low

10 Scharr3x3 < . . .>( in , lx , ly ) ;
11 Magnitude < . . .>( lx , ly , out ) ;
12 }

Listing 1.1. Example application showing how to connect a HiFlipVX function and a
template based data type for auto-vectorization.

targeting FPGAs. This is done to circumvent the issue that designers still need
to tailor their HLS coding techniques to obtain efficient implementations based
on the used target [12]. Xilinx released their own FPGA-oriented OpenCV imple-
mentation called xfOpenCV. It includes a large number of functions and it is
based on OpenCV. Using a library over a DSL does not force the developer to a
restricted language. Besides, HiFlipVX follows OpenVX to provide designers the
flexibility to add new functions easily, as long as they comply with the proposed
standard. Furthermore, it maximizes functional and performance portability, e.g.
between CPU and FPGA. In this work, we targeted embedded applications and
the hardware-software co-design optimizations were carried out using SDSoC.
The library provides an optimized base structure for different function types,
like windowed and pixel-wise functions. Therefore, it is easy and straightforward
to implement new efficient image processing functions.

3 Implementation

This section describes the implementation of HiFlipVX and its 28 vision func-
tions. They follow the OpenVX standards [3,13], but include additional param-
eters to make the library more flexible. HiFlipVX is written in C++, template-
based, optimized for FPGAs and in our case for Xilinx’s products. To make
the library easier to use, it uses static assertions to throw an error if parame-
ter values or data types with undefined behavior are used. For arbitrary data
types not given by C++ we use bit masks and for bit-widths above 64-bit we
use template based data types. We did not use the Arbitrary Precision Fixed-
Point Data Types from Xilinx, to be more vendor independent. Listing 1.1 shows
the template based data type used for auto-vectorization. Since all functions are
streaming capable, it is easy to connect different functions with each other (List-
ing 1.1). The static arrays are converted to FIFOs at synthesis time, to stream
data between functions. HiFlipVX provides functions to allocate global memory
and the pragmas in Listing 1.1 are the only ones needed.

3.1 Pixel-Wise Functions

Table 1 shows the implemented pixel-wise functions, which have several char-
acteristics in common. They carry out their operations on the input image(s)
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Table 1. Image pixel-wise functions.

Bitwise AND out(x, y) = in1(x, y) ∧ in2(x, y)

Bitwise XOR out(x, y) = in1(x, y) ⊕ in2(x, y)

Bitwise OR out(x, y) = in1(x, y) ∨ in2(x, y)

Bitwise NOT out(x, y) = in1(x, y)

Arithmetic Addition out(x, y) = in1(x, y) + in2(x, y)

Arithmetic Subtraction out(x, y) = in1(x, y) − in2(x, y)

Min out(x, y) = [(in1(x, y) < in2(x, y)) → (in1(x, y))]∧
[(in1(x, y) ≥ in2(x, y)) → (in2(x, y))]

Max out(x, y) = [(in1(x, y) > in2(x, y)) → (in1(x, y))]∧
[(in1(x, y) ≤ in2(x, y)) → (in2(x, y))]

Data Object Copy out(x, y) = in1(x, y)

Absolute Difference out(x, y) = |in1(x, y) − in2(x, y)|
Pixel-wise Multiplication out(x, y) = in1(x, y) · in2(x, y) · scale
Magnitude out(x, y) =

√
in1(x, y)2 + in2(x, y)2

pixel by pixel. Input and output data types are the same and can be signed or
unsigned integer values with a bit-width of 8, 16 or 32-bit. Independent of the
bit-width, 1, 2, 4 or 8 pixels can be computed in parallel in a vector. Due to the
template-based implementation, higher vector widths would also be possible. A
shared, template-based function is used to implement all pixel-wise operations
for an easy expandability of new functions. It includes the verification of data
types and template parameters, reading the input vector(s) and writing back
the result. The function is pipelined to exploit temporal parallelism and the
operation is executed on each element of the vector in parallel. In general, to
reduce resource consumption while maintaining precision, we internally perform
fixed-point integer operations.

To illustrate the pixel-wise function implementation in HiFlipVX we use
the Multiplication and Magnitude functions as examples. The first one performs
element-wise multiplication between two images and a scalar value (see Table 1).
The scalar value can be fixed at synthesis time, and we use this to optimize the
implementation. In particular, we use a shift operation instead of a multiplication
if the scalar is a multiple of two. This saves a significant amount of FPGA
resources because fixed shifts can be performed with re-routing wires. The only
difference can occur while rounding, if a negative value is shifted to the right (e.g.
(−3 >> 1 = −2) and (−3/2 = −1)). Therefore, we have added a shift operation
that gives equal results to the division. To reduce the resource consumption
of the Magnitude function, we implemented our own HLS integer square root
function (see Listing 1.2). Here, N is the output bit-width that is half of the input
bit-width. For each output bit, two additions and one comparison is performed.
The shift values are signal connections, computed at synthesis time and the OR-
operation simply concatenates the result bits. Only for the computation of a
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1 A1 = 0 ; // Intermediate r e s u l t
2 A2 = 0 ; // Square o f in te rmed iate r e s u l t
3 f o r (n = N − 1 ; n < N; n−−) {
4 #pragma HLS unro l l
5 // (A1 + B1) ˆ2 and add new b i t at po s i t i on n
6 B1 = 1 << n ; B2 = B1 << n ; AB = A1 << n ;
7 A2 next = A2 + B2 + (AB << 1) ;
8 // Store i f A2 next does not exceed value
9 i f ( A2 next <= input ) {

10 A1 |= B1 ;
11 A2 = A2 next ;}}

Listing 1.2. Integer square root function. Each stage computes 1 bit of the resulting
vector.

Table 2. Image filter functions.

Gaussian Filter Median Filter Box Filter Sobel Filter

Custom Convolution Dilate Image Erode Image Schar Filter

square root that computes on data with a width of 64-bit, we use the double
precision floating point unit from Xilinx. This is done, since we do not need a
higher precision to comply with OpenVX and it reduces the resource utilization
for this bit-width. If the result of an arithmetic operation cannot be represented
with the chosen bit-width, overflow or underflow occurs. Therefore, we implement
different policies. On the one hand, overflow can be ignored (Wrap) or the min-
max representable number is used (Saturate). On the other hand, underflow can
be ignored (Truncated) or rounded to the nearest integer value. The needed
operations (min-max) for saturation are chosen depending on the function (e.g.
add, sub) and data type (unsigned/signed).

3.2 Filter Functions

Table 2 shows the implemented HiFlipVX filter functions, which have several
characteristics in common. HiFlipVX determines the kernel of a specific filter
at synthesis time, since it will not change during run-time. Kernel sizes (KS) of
3, 5, 7, 9 and 11 are supported for all filters, except for the Scharr filter, which
is fixed at 3 due to its characteristics. Further, they support the same data
bit-widths and vector sizes as the pixel-wise operations (see Sect. 3.1). Every
filter supports three different border behaviors: Values beyond borders can be
undefined, constant zero, or replicated. In some feature detection and description
algorithms, we experienced better results using replicated border handling.

Filter Structure: HiFlipVX uses a common pipelined structure for all filters,
which is inspired by [4], containing several stages (see Fig. 1). A base function
for filters contains all of these stages and depending on a parameter, only the
Kernel function is exchanged at synthesis time. To add a new function only a
new case needs to be added that implements the new Kernel function. An image
filter needs parallel access to a window of pixels, to compute one output pixel
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Fig. 1. The common structure used for all filters shown for a 3 × 3 kernel. Numbers
mark the different stages in the pipeline.

in each clock cycle. These observed pixels are stored in a sliding window built
of registers. In this window, pixels are shifted from left to right in every clock
cycle. The number of rows of this sliding window is equal to the kernel size
(KS). The number of columns WC in the sliding window depends on the kernel
radius (KR =

⌊
KS

2

⌋
) and vector size VS , which determines the amount of pixels

computed in parallel.

WC = 2 · KR + VS + [VS − (KR mod VS)] mod VS (1)

These window columns are divided into three parts, separated by a left border
(CL = WC − VS − KR) and a right border (CR = WC − VS). The input source
of the left and middle parts, depend on the proximity of the kernel to the image
boundary. To be able to stream data and read each pixel only once from memory,
complete image rows are buffered in line buffers. Line buffers and the sliding
window need to be filled, before the first output value can be generated. The
overhead to fill the line buffer is equal to the kernel radius KR. The overhead to
fill the sliding window can be computed as follows: (OC = (WC −KR)÷VS −1).
The filter gets image rows (IR) times image columns (IC) pixels as input. The
amount of image columns is reduced to vector columns (VC = IC/VS), due to the
vectorization. To compute the total latency of the filter, the line buffer overhead,
the sliding window overhead, and the pipeline stages (P ) need to be accounted
for:

Latency = (IR + KR) · (VC + OC) + P (2)

To achieve an optimum usage of Block Random-Access Memory (BRAM),
which is needed for the line buffers, we pack the data into new data types, before
writing them to the line buffers. The maximum usable bit-width of the used
18 Kb BRAM from Xilinx in C++ is 32-bit. Depending on the bit-width of 1 pixel
(DW ), our complete bit-width of data to store is: VS · (KS − 1) ·DW . Therefore,
the data is evenly packed into new data types with a maximum width of 32-
bit. Data that needs to be accessed in parallel cannot be packed in consecutive
memory addresses in BRAMs. This is because we would lose latency, since the
BRAM is only dual port and we need one port to read and one port to write
in each clock cycle. In Fig. 1 we use numbers to mark the different stages of the
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Fig. 2. The common structure used for all separable filters shown for a 3 × 3 kernel.

pipeline. Depending on the x- and y-coordinate of the image the key operation
in each stage is:

1. If (y < IR) and (x < VC) read the next input pixel-vector.
2. Read and unpack data from line buffers at x coordinate.
3. Pack and write data to line buffers at x coordinate for next output row.
4. If parts of the kernel go outside the border, the border handling method is

invoked (e.g. replicated or constant zero).
5. The sliding window shifts pixels from left to right. The source changes if the

pixel is beyond the image border:
(a) If x = 0, border data is written into middle columns (CL ≤ C < CR).
(b) If x ≥ VC , border data is written into left columns (CR ≤ C).

6. Compute the kernel function for each vector element (pixel) in parallel.
7. If (y ≥ KR) and (x ≥ OC) write the next output pixel-vector.

Separable Kernels: Some 2-dimensional filters have the advantage that they
can be computed by using two 1-dimensional filters in sequence [14]. Such filters
are called separable, and we exploit this property to reduce resource consumption.
The effect is most significant for larger compute kernels. For example, the window
elements for a 7 × 7 kernel would be reduced to a 1 × 7 and a 7 × 1 kernel.
Equation 3 exemplifies this optimization using a 3 × 3 Gaussian filter:

Gausskernel =
1
4

[
1 2 1

] · 1
4

⎡

⎣
1
2
1

⎤

⎦ =
1
16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ (3)

Figure 2 shows the compute pipeline used for separable filters. It is similar to
the non-separable pipeline. The separable filter pipeline first reads the input pixel
and writes it into a horizontal sliding window with a size of 1×WC . This sliding
window only needs to check the image boundaries on the x-axis. The next stage
computes the horizontal compute kernel and stores its intermediate results in the
line buffers. As mentioned for the non-separable filter, data is packed before it is
written to the line buffers. Then, data is read from the line buffers and written
to a vertical sliding window with a size of (KS × VS). This sliding window
only checks the image boundaries on the y-axis. The final stage computes the
vertical compute kernel and writes the result back to memory. HiFlipVX provides
separable filter implementations of the Gaussian, Box, Dilate and Erode filters.
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There is a non-separable implementation of the Box and Gaussian filter, because
the values of the results in comparison to the separable filter differ by a maximum
of one. The deviation results due to the fact that normalization is done in both
filter steps of the separable filter, to not increase the data bit-width of the line
buffers. The Median filter cannot be expressed using a separable filter, since it
needs the complete input window at once. Bigger Sobel or Scharr kernels would
benefit for the consumption of Lookup Tables (LUTs) and FlipFlops (FFs) when
using a separable filter. Since these filters compute the x and y derivatives,
different parts after the vertical kernel (e.g. line buffer) are needed for each
derivative separately and therefor more BRAM is used.

Filter Kernels: HiFlipVX optimizes the operations of its filters depending on
the pattern of the kernel coefficients. This can be done, because the coefficients
are fix at synthesis time. For example, the coefficients of the Gaussian kernel are
symmetrical on the x and y axes independent of the kernel size, as shown in Eq. 3.
This symmetry gives us the possibility to optimize the amount of multiplications
for different functions, such as the Gaussian, the Sobel and the Scharr filter.
Equation 4 shows the optimized computation of 1 pixel (Ix,y) for symmetric 1d
kernels, like the Gaussian kernel (B), for an input window (A).

I(x,y) = B(KR) +
KR−1∑

n=0

(
B(n) · (

A(n) + A(KS−n−1)

))
(4)

We use shift operations to implement normalization, if the normalization
value is a multiple of two (e.g. Gaussian and Scharr filter). Otherwise, we approx-
imate the normalization by multiplying (mult) and shifting (shift), to avoid a
costly division operation (e.g. Box filter). The type of normalization and the nor-
malization values are computed at synthesis time using a provided function (e.g.
Custom Convolution and Sobel filter). To compute the mult and shift values
for a 16-bit accurate normalization, first all kernel coefficients are summed up
(sum). Then, the normalization value is computed as floating point value. After-
wards, this values is shifted to the maximum value, which can be represented by
a 16-bit unsigned integer number: mult = �(1/sum) << shift�. Higher Gaus-
sian and Sobel kernel coefficients are computed using discrete convolution of
the 1d kernels with the standard smoothing kernel [1 2 1] as shown in Eq. 5 for
the Gaussian kernel. We also supply a function that computes a more accurate
Gaussian kernel based on standard deviation input using floating point numbers.
The function returns a fixed-point kernel and the bit-width of its fraction part.

B =
[
1 2 1

] ∗ [
1 2 1

]
=

[
1 4 6 4 1

]
(5)

The Median filter implementation differs from the other filters because it
requires searching for the median value within the input window. A common
algorithm for computing the median is to sort the pixels of the input window
and select the middle value of the sorted array as output. Several sorting net-
works exist, such as odd-even merge-sort, bitonic-sort and shell-sort. These net-
works are a good fit for FPGAs, since they can be implemented with simple
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Table 3. Image conversion and analysis functions.

Convert Bit Depth Integral Image Scale Image Color Convert

Channel Combine Channel Extract Histogram TableLookup

comparator networks. We have chosen the odd-even merge-sort algorithm, since
it requires fewer comparators than the others [15]. Since the array size is not a
multiple of two, we use a generic sorting algorithm [16]. Furthermore, specific
sorting networks have been proposed for specific array sizes. Since 3 × 3 filters
are common, we use the sorting network proposed by [17] for these filters.

3.3 Conversion and Analysis Functions

This Subsection describes the implemented conversion and analysis functions
shown in Table 3. The Channel Combine function takes multiple unsigned 8-
bit planes and combines them to a multi-planar or interleaved image format.
Whereas the Channel Extract function extracts a single plane (channel) from
a multi-planar or interleaved image format. The main supported image formats
are RGB, RGBX and gray-scale (8-bit unsigned). For gray-scale conversion, we
approximate to the BT.601 recommendation: (gray = R · 306 + G · 601 + B ·
117+512) >> 10. The Color Convert function can convert between these image
formats. Additionally, the Channel Combine and Channel Extract functions sup-
port interleaving two or four 8-bit pixels in an unspecified 16- or 32-bit image
format. Since C++ does not define 24-bit variables, we use 32-bit variables to
store RGB values in memory (e.g. [RGBR][GBRG][BRGB]). The Convert Bit
Depth function, can convert between any signed/unsigned 8, 16 or 32-bit format
and also supports vectorization.

The Scale Image function re-sizes an image to a smaller resolution. It supports
nearest neighbor or bi-linear interpolation for an unsigned 8-bit data type. The
bi-linear interpolation needs to buffer pixels of two consecutive rows in BRAM
for streaming capability. In the Integral Image function, an output pixel is the
sum of the corresponding input pixel and all other pixels above and to its left.
Equation 6 shows the hardware optimization for the Integral Image function.
The integral result (area) is the sum of the current row (sumrow) added to the
integral value at position I(x, y− 1). Therefore, the function buffers the integral
results of one row (buf) in BRAM. The bit-width is 8-bit for the input image
and 32-bit for the output image.

sum = sum + srcx,y

dstx,y = area = [(y > 0) → (sum + bufx)] ∧ [(y ≤ 0) → (sum)]
bufx = area

(6)

The Histogram function counts the number of occurrences of each pixel value
for each image region dependent of the number of bins. A pixel with its inten-
sity value I will result in incrementing Histogram bin i as shown in Eq. 7 [13].
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Table 4. Standard configuration of functions in evaluation.

Kernel Size 3 Frequency 100 MHz

Vector Size 1 Border Type Constant

Output Type 8-bit Conversion Type Wrap

Input Type 8-bit Scale 0.25

The function supports 8-bit and 16-bit unsigned data types, and sets the Range,
Offset and Bins values as template parameters. It is separated in three stages.
The first stage resets the Histogram entries to zero. The second one reads one
input pixel in each clock cycle and increments the Histogram. It increments two
independent Histogram buffers alternately since incrementing a BRAM entry
cannot be done in one clock cycle. The last stage sums the Histogram bin of
both buffers at positions (i) and writes them pixel by pixel to the output.

i = (I − Offset) · Bins

Range
, Offset ≤ I < Offset + Range (7)

The TableLookup function takes the image input pixels to index into a LUT
and stores the indexed value in the output image. The function supports 8-
bit unsigned and 16-bit signed data types, which are equal for input, LUT and
output, and sets the LUT size and offset as template parameters. The implemen-
tation consists of two stages. The first one adds the LUT contents to a table. The
second stage computes the output pixel (output[i] = table[input[i] + offset]).
The implementation outputs a zero value when the index is out of range because
the output expects an image stream.

4 Evaluation

In this section, we evaluate resource utilization and latency of the synthesis
results of HiFlipVX. Table 4 shows the standard configuration of the tested func-
tions. The input and output data type are 8-bit unsigned, filter functions have
a kernel size of 3, no vectorization is applied, the frequency is set to 100 MHz.
Data is truncated (Wrap) for overflow handling, the pixel-wise multiplication is
scaled with a factor of 0.25 and a constant border of zero is considered for filter
functions. From this configuration, additional settings have been tested, where
only one parameter changes from the standard one. Furthermore, we compare
HiFlipVX with the xfOpenCV library from Xilinx. The evaluation has been car-
ried out on the Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit from Xilinx
using SDSoC 2017.4 for 1080p images. A part of the library has been verified in
hardware [18] for dynamic voltage scaling and dynamic partial reconfiguration.

4.1 HiFlipVX Resource Utilization and Latency Results

Table 5 shows the resource utilization of the HiFlipVX functions for the standard
configuration (see Table 4). The filters consume one BRAM for each line buffer
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Table 5. Resource utilization of the HiFlipVX functions on the Zynq UltraScale+
MPSoC ZCU102 for the standard configuration, shown in Table 4.

Function FF LUT DSP BRAM

Dilate Image, Erode Image 257 580 0 2

Box Filter 257 536 2 2

Gaussian Filter 257 624 0 2

Sobel Filter 292 758 0 2

Scharr Filter 292 822 0 2

Custom Convolution 393 760 6 2

Median Filter 490 1180 0 2

Data Object Copy 27 147 0 0

NOT 27 162 0 0

AND, XOR, OR, Addition, Subtraction 27 171 0 0

Min, Max 27 175 0 0

Absolute Difference 27 195 0 0

Pixel-wise Multiplication 27 156 1 0

Magnitude 345 1106 0 0

Convert Bit Depth (signed 16-bit to unsigned 8-bit) 27 154 0 0

Channel Extract (1 × 8-bit from RGBX image) 27 147 0 0

Channel Combine (4 × 8-bit to RGBX image) 27 195 0 0

Color Convert (RGBX to Grayscale) 50 258 2 0

Integral Image 82 389 0 4

Table Lookup 52 293 0 1

Histogram 113 593 0 2

Scale Image (Bilinear, from 1080p to 720p) 617 1282 8 2

and the Box filter needs one DSP for each normalization (horizontal and vertical
filters). The DSP consumption of the Custom Convolution is not 10 (one for
each kernel coefficient and one for normalization) as expected, because we let
the compiler decide to use LUT or Digital Signal Processor (DSP) for multipli-
cations. Testing different fixed solutions for the usage of LUT vs. DSP has shown
that this is the most flexible solution, independent from the FPGA. The Data
Object Copy function, which is a memory copy function, indicates the overhead
of the interfaces and the logic needed to read and write data. When combining
two functions for streaming in one accelerator as shown in Listing 1.1, only 75
FFs, 150 LUTs and 2 BRAMs are consumed additionally. The latency of most
of the functions can be computed with Eq. 2. For the pixel-wise functions, the
kernel radius KR and the columns overhead OC are zero. The pipeline stages P
of the different functions are between two and six (Magnitude). Only the His-
togram and TableLookup functions adds two or one loops respectively with a
latency of BINS + P each, needed for the histograms.
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Fig. 3. Compares relative LUT & FF utilization (Top) and absolute DSP & BRAM
utilization (Bottom) in comparison to standard (std.) configuration for scalability.

4.2 HiFlipVX Scalability Results

Figure 3 shows the scalability results of the resource consumption in relation to
the standard configuration. We compare one separable filter (Gaussian) and one
non-separable filter (Sobel). Furthermore, the Sobel filter computes two kernels.
The graph on the top shows relative values for better readability and the graph
on the bottom shows absolute values to avoid division by zero because some
functions do not consume DSPs or BRAMs. From the pixel-wise operations, we
evaluate the two functions, which have the highest resource consumption. The
BRAM consumption is equal for both filters and scales with the amount of line
buffers, which depends on the kernel size. Only for a vector-size of 8, double the
amount of BRAM is consumed, since it was not possible to further pack data
without increasing the latency. Increasing the bit-width of the data type also
increases the overall BRAM usage, since the 1920 image columns consume almost
all available 2048 BRAM entries. Many multiplications have been eliminated,
by making use of the kernel coefficient patterns. For example, this reduces the
multiplications for coefficients of a 9×9 Sobel kernel (without the zero line in the
middle) from (2·(KS−1)·KS = 144) to (2·KR·(KR+1) = 40). Additionally, DSPs
are replaced by LUTs for small multiplications by the compiler. Furthermore,
HiFlipVX replaces multiplications by shift operations if the normalization is a
multiple of two. The FF and LUT usage scales well, since increasing the bit-width
or vector size does not increase by the same factor. Increasing the vector size
decreases the total amount of clock cycles, which also gives the opportunity to
decrease the frequency and do Dynamic Voltage and Frequency Scaling (DVFS).
Only 5 times more FF and LUT are consumed for a Sobel filter with a kernel size
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Fig. 4. Compares relative LUT & FF utilization (Top) and absolute DSP & BRAM
utilization (Bottom) between HiFlipVX and xfOpenCV.

of 9, although the sliding window is 9 times bigger and contains 12 times more
coefficients. For the separable filters, such as the Gaussian filter, the scalability
is even better. The vector size has no effect on the FF and LUT usage for the
Multiply function, since most computation is done by the DSP. The Magnitude
function shows a different behavior for the 32-bit data type, since we use floating
point numbers for the needed 64-bit square root function.

4.3 HiFlipVX Comparison to Related Work

Figure 4 compares the resource utilization between HiFlipVX and xfOpenCV
for some selected functions. Results for BRAMs or DSPs are only shown if one
of the libraries utilizes resources. We obtained the results for xfOpenCV by
creating the bitstream. In most cases, xfOpenCV complies with our standard
configuration and also allows a vectorization of 8 or kernel sizes of 5 and 7. For
most functions, we allow additional kernel sizes (9 & 11), data types (16-bit &
32-bit signed/unsigned), border types (replicated & undefined) or vectorization
sizes (2 & 4), which makes HiFlipVX much more flexible. For some functions,
xfOpenCV implements one 16-bit data type. We have changed the border type of
the Median filter (replicated) and the data type of the Magnitude function (16-
bit signed), due to the fact that xfOpenCV supports only that border and data
type respectively. A small difference relies in the input/output data types of the
Sobel and Scharr filters. In xfOpenCV they are u8/s16 (unsigned 8-bit/signed
16-bit) or u8/u8 and for HiFlipVX they always are from unsigned to signed.
In general, all filter and pixel-wise functions consume less FFs and LUTs in
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the different configurations. Other filter and pixel-wise functions show similar
behavior than the selected ones. HiFlipVX consumes 0.39 of FFs and 0.32 of
LUTs in average for the selected functions in comparison to xfOpenCV.

The libraries perform more similar when vectorization is enabled and the
difference is more significant for the larger kernel sizes. The main reason is that
HiFlipVX uses separable filters or exploits the kernel coefficients. For the Gaus-
sian kernel, xfOpenCV computes the kernel based on a standard deviation while
HiFlipVX uses the OpenVX Gaussian kernel. Supporting arbitrary standard
deviations require using more bits to represent the kernel and therefore require
more FPGA resources. If a specific standard deviation is required, HiFlipVX
provides a function that can pre-compute a Gaussian kernel for an arbitrary
standard deviation. The highest total resource usage is observed for higher ker-
nel sizes of the Median filter, due to the high amount of comparisons in the
sorting network. The most significant difference for the DSP usage can be seen
for the Gaussian and Box filter. The xfOpenCV Gaussian filter consumes up to
51 DSPs for the 8-bit data types while HiFlipVX consumes none, due to the
simplified Gaussian kernel. Conversely, the HiFlipVX Box filter consumes two
DSPs for each vector element, because it uses separable filters, while xfOpenCV
only uses one DSP. Therefore, HiFlipVX implements the Gaussian and Box filter
using separable and non-separable kernels. In average, HiFlipVX consumes 1.42
less BRAMs for the shown filter functions than xfOpenCV.

Comparing the relative results for FFs and LUTs of the multiplication for a
scale that is not a power of two (scale = 0.2) to the standard (scale = 0.25),
shows the advantage of detecting the power of two. For the Subtraction and
Multiplication functions, HiFlipVX highly decreases the consumption of all
resources. The results for other arithmetic (Addition, Absolute Difference) and
bit-wise (AND, OR, XOR, NOT) are similar to the result of the subtraction
function. The Magnitude function, which has the highest resource consump-
tion, reduces the FF and LUT utilization, the advantage decreases for a higher
vectorization.

5 Conclusion

In this work, we have introduced HiFlipVX, an OpenVX based, open-source,
image-processing library for FPGA-SoCs. It is implemented and highly opti-
mized for streaming capable functions using HLS. Due to its modular structure,
it is easy to add new optimized functions. They are template-based, to enable
several compile time optimizations and a variety of options for a high flexibil-
ity. On one hand, the described compile time optimizations lead to an efficient
resource utilization. On the other hand, we have also shown that a high flex-
ibility was achieved due to the template based structure of the functions. In
comparison to xfOpenCV, HiFlipVX consumes less LUTs and FFs for all func-
tions and, in average, less BRAMs and DSPs. Additionally, HiFlipVX achieves
a remarkable scalability in terms of resource utilization. Using a standardiza-
tion like OpenVX with its graph-based representation gives several possibilities
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for the future. HiFlipVX can easily be combined with other available libraries,
which consider GPUs or CPUs. Additionally, HiFlipVX will be combined with an
application distribution tool, which also considers hardware-software co-design.
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Abstract. We present a hardware implementation in reconfigurable
logic of a single-pass connected component labelling (CCL) and con-
nected component analysis (CCA) module. The design supports a video
stream in 4 pixel per clock format (4 ppc) and allows real-time processing
of 4K/UHD video stream (3840× 2160 pixels) at 60 frames per second.
We discuss the applied modification and simplifications and their impact
on the algorithm’s performance. We verified the proposed module in an
exemplary application – skin colour areas segmentation – on the ZCU
102 evaluation board with Xilinx Zynq UltraScale+ MPSoC device.

Keywords: FPGA · Zynq UltraScale+ MPSoC · 4K · UHD ·
Real-time video processing · Connected Component Labelling (CCL) ·
Connected Component Analysis (CCA)

1 Introduction

Connected component labelling (CCL) and connected component analysis
(CCA) are operations often used in vision systems. The first one will assign
an unique label to each connected group of pixels. Pixels belong to the same
group if there is a path of adjacent pixels between them. Usually an 8-pixel, less
frequent a 4-pixel neighbourhood is used. The second operation allows to cal-
culate selected parameters of detected objects. Most often these are: bounding
box, area and centroid. Others are: number of pixels on the perimeter, major
axis length, minor axis length and orientation (obtained using ellipse fitting) and
other so-called shape coefficients. However, not all of them can be computed effi-
ciently in a pipeline pixel processing system.

CCL and CCA are an intermediate step between image analysis and recog-
nition. Their input is a binary image obtained after binarization (threshold-
ing) or segmentation (e.g. of moving or foreground objects). The output is
a list of detected objects (i.e. groups of connected pixels) and their features.
The described approach is widely used in advanced video surveillance systems
(AVSS), e.g. for abandoned luggage or prohibited zone violation detection. On
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this basis simple classification can be implemented – for example, rejection of
objects that are too small or of incorrect shape. In addition, using the bounding
box to select a ROI (Region of Interest) can significantly reduce the computa-
tional complexity of the algorithm.

In recent years, we observe a dynamic development of vision sensors. The
analysis of a high definition images or video stream allows to improve the effi-
ciency of the considered vision system – e.g. to detect objects further away from
the camera, which is important in the case of advanced driver assistance systems
(ADAS), advanced video surveillance systems (AVSS), as well as autonomous
vehicles (cars, drones). Higher resolution also results in a larger field of view
of a single camera, which allows to limit their number within the considered
surveillance system. Currently, the most common are three resolutions: High
Definition (HD – 1280 × 720), Full High Definition (FHD – 1920 × 1280) and
recently Ultra High Definition (UHD, or 4K – 3840 × 2160). There are also 8K
(7680 × 4320) and 16K (15360 × 8640) solutions, but due to the high cost they
are currently not widely used. It should be noted that the resolution directly
affects the amount of data to be processed or stored.

An uncompressed 4K video stream i.e. 3840 × 2160 at 60 frames per second
(fps) results in a data flow of 1424 MB/s. Its processing in real-time is quite
a challenge and requires the use of a proper computing platform. The designer
can choose from the following solutions:

– general purpose processors (GPP),
– general purpose graphical processing units (GPGPU),
– application specific integrated circuits (ASICs),
– field programmable gate arrays (FPGAs),
– heterogeneous multi-processor system on chips (MPSoC) – which are com-

posed of an ARM processor system, reprogrammable logic and GPU (e.g.
Zynq UltraScale+ from Xilinx).

It is worth emphasizing that energy efficiency and the ability to update the
applied algorithm are very important in applications such as: ADAS, AVSS or
autonomous vehicle perception systems. We claim, that the best solution in
these cases is the use of state-of-the-art FPGA or reconfigurable heterogeneous
MPSoC devices – they allow 4K video stream processing in real-time, are rela-
tively energy-efficient and can be reprogrammed many times.

The main contributions of this paper are:

– according to the authors knowledge this is the first FPGA implementation of
CCL and CCA modules capable of processing a 4K @ 60 fps video stream in
real-time,

– verification of the proposed module in a skin colour detection vision system
on a development board with Zynq UltraScale+ device.

The remainder of this paper is organized as follows. In Sect. 2 research related
to CCL and CCA algorithms and their FPGA implementation is presented. In
Sect. 3 the properties of a 4K video stream are discussed. The proposed CCL and
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CCA module is described in Sect. 4. Its evaluation in the skin colour detection
system is presented in Sect. 5. The paper ends with conclusion and possible
further research directions.

2 Previous Work

2.1 CCL Algorithms Overview

There are two approaches to connected component labelling. The first one can
be described as region growing [3]. The binary input image is analysed line
by line. When a pixel belonging to an object without a label is encountered,
a new label is assigned and a neighbourhood search procedure is executed. Then
connected pixels are labelled recursively. It should be noted that this solution
in not suitable for implementation in a pipeline vision system, where pixels are
processed “one-by-one” and practically there is no possibility of random access
to image data.

The second solution assumes linear/sequential image processing. These are
so-called two-pass and single-pass algorithms. The two-pass solution by Rosen-
feld and Platz [9] should be considered as “classic”. It consists of two scans of
the image and three stages. During the first scan, pixels are given temporary
labels and possible conflicts (mergers), i.e. situations in which the same object
has received two or more labels, are written to the equivalence table, which has
a graph structure. For example, a conflict occurs for an U-shaped object. Within
the first scan, two separate labels are given to pixels and information about the
connection appears when both arms are converging (Fig. 1). In the second stage,
the equivalence table is analysed – the transitive closure of the graph is cal-
culated. As a result, the final labels are determined and assigned to particular
pixels during the second image scan.

In the context of hardware implementation, this solution requires buffering of
the pre-labelled image. Due to the limited internal memory resources of FPGA
devices, it is necessary to use external modules. These increases the complexity
of the system and impacts energy efficiency.

Fig. 1. A “U” shaped object. The place where a conflict (merger) occurs is marked
with a red cross (8-pixel neighbourhood). (Color figure online)
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There are also single-pass algorithms that do not require buffering of a pre-
labelled frame. Emerging conflicts are resolved “on-line” during the first scan.
The implementation is more complex than in the two-pass case – this will be
shown in detail in Sect. 4. It should also be noted that the result of this operation
is not an image with labels, but only a set of parameters of the detected objects.
However, in the vast majority of applications, this information is sufficient.

2.2 CCL/CCA Implemented in FPGA

Due to the large practical significance of CCL and CCA in vision systems, a num-
ber of articles about the hardware implementation of these operations in FPGA
have been published. In the further part of this sub-section we briefly discuss
the most representative ones.

A classic two-pass approach implementation has been described in the work
[8] from 1995. The proposed system used 9 Xilinx XC4010 FPGA devices and
processed up to 30 images with a resolution of 512 × 512 per second.

A two-pass approach was also proposed in the paper [1] from 2010. It is
distinguished by the analysis of a series of pixels appearing in a single row (so-
called run). The algorithm works in four steps:

– Conversion of pixels into series in the form (ID, EQ, s, e, r), where: ID - series
identifier, EQ - assigned label, s - series start in the given line, e - end of the
series in the given line, r - number of the image line.

– The first run over series and creation of the equivalence table.
– Solving mergers/conflicts.
– Second pass over the image – assigning appropriate labels.

The solution has been implemented on the RC340 platform with a Xilinx Virtex 4
device. Real-time processing of a 640× 480 @ 35 fps video stream was obtained.

In the case of hardware implementation in FPGAs, however, the single-pass
approach seems to be the most attractive solution. It was first proposed by the
team Ma, Bailey and Johnston in 2008 [2]. In this approach to CCL, only the
last line of the image that has already received its labels is required during anal-
ysis thus reducing the amount of buffered data (single delay line vs. frame). An
equivalence table is also used to correctly handle any mergers of labels. In addi-
tion, the authors proposed a mechanism that protects against so-called merge
chains, i.e. the occurrence of several mergers within the same object, in one
line. For this purpose, a special stack was created, in which both labels involved
in such merger were stored. Then, during the horizontal blanking time in each
line (the period in the video signal during which no pixels are transmitted), the
equivalence table was updated with the stored mergers. The only disadvantage
of this solution is the limitation of the maximum number of mergers present in
the chain. The worst case requires the length of blanking time to be about 50%
of the length of the actual image line. Meanwhile, this value usually does not
exceed 30%. In real applications, however, the chance of the “worst case sce-
nario” is very low, as usually some pre-processing operations like morphological
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or median filtering are applied. In addition, the authors proposed a mechanism
for recovering labels between successive image lines. The module has been imple-
mented in the Handel-C language and verified on the RC300 card with the Xilinx
Virtex II FPGA device. For 640 × 480 resolution, 100 frames per second were
processed.

A development of the above presented idea is described in the work [5] from
2016. A module was added that protects against incorrect labelling in very spe-
cific cases when using the label re-use approach. The possibility of implementing
the module on various FPGA devices: Virtex 6, Spartan 6 and Kintex 7 for differ-
ent resolutions – also 4K and 8K was analysed. However, the obtained maximum
operating frequency of the module does not allow real-time (i.e. 60 fps) operation
for such large resolutions. For Virtex 6 and Kintex 7 real-time processing was
obtained for 1920 × 1080 (pixel clock about 150 MHz).

A non-standard implementation of a CCL module was described in the work
[4] from 2016. The equivalence table was omitted and a shift register of length
equal to the entire image line was applied. This register kept n+ 1 last assigned
labels, where n – width of the image. To implement the required functional-
ity, DRAM (Distributed RAM) memory resources are required. In consequence,
in case of a merger event, all labels could be updated in the shift register at
the same time. However, the solution has significant limitations. The maximum
number of labels is 63 or 127. The rather complicated logic results in a small
maximum clock frequency which translates into the number of frames that can
be processed in one second. For example, for 1920× 1080 resolution and 127
labels: 37 fps (calculating only bounding box) or 28 fps (calculating bounding
box and centroid) were obtained. The Altera Cyclone IV device was used in the
experiments.

Summarizing this short survey, it should be noted that the single-pass solu-
tion proposed in the work [2] is the most popular one. In addition, according
to the authors’ knowledge, no module capable of processing a 4K video stream
with a frequency of 60 fps has been presented so far.

3 4K Video Stream

A video stream in RGB format with a resolution of 3840 × 2160 and 60 frames
per second sent in 1 pixel (24 bits) per clock format (the so-called pixel clock)
requires a pixel frequency of approx. 500 MHz. The so-called vertical and hori-
zontal blanking fields present in the video signal increase these value to 600 MHz.
This is the “limit” value for currently available reconfigurable systems (FPGA
and reconfigurable SoC). Admittedly, selected components, such as block mem-
ories (BRAMs), hardware multipliers (DSPs) are, according to the Xilinx man-
ufacturer’s declaration, able to work with even higher frequencies (this depends,
among others, on the version of the device (speed grade), supply voltage, type
of operations). However, in practice, for more complex logic, achieving such fre-
quencies can be very difficult, since the delay associated with the connection
resources has also to be considered.



170 P. Ciarach et al.

Due to the above described 4K signal parameters and the limitations of
the currently available reconfigurable devices, it is not possible to use the 1
pixel per clock scheme (1 ppc), which was the basis of the modules described in
Sect. 2 and most of the works related to real-time vision systems implemented in
this technology. Therefore, for a 4K signal, 2 ppc or 4 ppc format is used. This
allows to reduce the pixel clock frequency to 300 MHz and 150 MHz respectively.
However, its use has quite significant implications for the way the CCL/CCA
operation is implemented in a pipelined vision system – this will be discussed
in detail in Sect. 4. It is also worth mentioning that for the 2 or 4 ppc format it
is necessary to multiply the used computing resources. In addition, contextual
operations such as filtering or median require modification of a typical context
generation scheme [7].

4 The Proposed CCL/CCA Module

The starting point for the design of the proposed module were: literature analysis
presented in the Sect. 2, previous work on a CCL module by the first author and
the characteristic of a 4K video signal. Firstly, we decided to work with the 4 ppc
format, as obtaining a frequency over 300 MHz for a quite complex labelling
logic could be very difficult (thus the 2 ppc format will be part of future work).
Then, we considered how the extended context (4 pixels simultaneously) affects
the CCL algorithm itself. It turned out that this configuration may have pixels
arrangements that were not present in the 1 ppc approach. The most complex
is the case of merging three labels. Its handling in one clock cycle is impossible,
as it requires two memory operations.

Therefore, we proposed a solution to eliminate the above-described case. It
is based on connecting two adjacent (binary) pixels using the “OR” operator,
which eliminates the possibility of three mergers event. This is shown in Fig. 2.
The applied approach also reduces the necessary hardware resources required to
implement the module.

Fig. 2. Illustration of the proposed concept. Pixels joined by the OR operator are
marked with colours, P1–P4 - pixels to be labelled.

We compared the presented approach with popular morphological opera-
tions with a 3× 3 mask: erosion, dilation, opening and closing, as their use also
eliminates the possibility of triple merging. Experiments carried out in the MAT-
LAB environment showed that all simplifications/filtrations affect the three key
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objects parameters: area, bounding box and centroid. The biggest changes were
observed for small objects, but these are usually discarded from analysis. The
use of the proposed method for medium and large objects results in an area
change of 4% and 2%, respectively. However, the error for the bounding box and
centroid was in the range of ±1 pixel. Considering the obtained benefits, such
deterioration is fully acceptable.

An overview of the proposed algorithm is presented in Fig. 3. First, the con-
text is extracted from the incoming video stream. Then, if at least one of the
considered pixels (P1–P4) belongs to an object a label is assigned. Details of

Fig. 3. Overview of the implemented algorithm.
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this process are depicted in Listing 1.1. Moreover, object parameters like area,
bounding box or centroid are updated. Additionally, at the end of a line, if
some labels were merged the used look-up-tables are updated, as well as object
parameters.

Fig. 4. Scheme of the proposed 4K CCL/CCA module. Colours indicate the difference
to a standard 1 ppc version: orange – large, yellow – medium, green – slight modifica-
tions. (Color figure online)

The scheme of the proposed connected components labelling and analysis
module for the 4K video stream is shown in Fig. 4. The used colours indicate
the differences to a typical 1 ppc single-pass approach – like in [2]. In the next
subsections, we will discuss each sub-module separately. All were described in
Verilog hardware description language. For simulation and implementation the
Vivado 2017.4 tool was used.

4.1 Neighbourhood Analysis

The module assigns labels to subsequent groups of two pixels – two labels in
parallel for four pixels previously integrated with OR operation. The information
about the neighbourhood is obtained from A, B, C and D registers (c.f. Fig. 5a).
If the group belongs to a new object, the stack of labels is used (see Subsect. 4.5).
Because of the 4 ppc format, the context generation scheme is different than
e.g. in the work [2]. The value from register C is transferred to A, whereas B
and C get values from the delay line (the values read from the delay lines are
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updated according the equivalence table in the LUT module). Register D stores
the value that has been assigned to the two connected pixels P3 and P4 in the
previous clock cycle and register L the value assigned to connected pixels P1
and P2. Multiplexers in front of registers A, B and C are used in the case of
merging – the correct (merged) label is passed directly to all registers. Their
usage eliminates the latency introduced by the equivalence table implemented
as a BRAM memory (its update takes at least one clock cycle). In result, the
module informs about the given label and a possible merger event.

The label assignment pseudocode is depicted in Listing 1.1. It is worth to
emphasize the separation of operations into two cases – when P1 belongs to
the background or object. In the first one, a separate sub-case is additionally
handled when P2 also belongs to the background. Then a specific situation may
occur, in which, despite the fact that both considered elements are equal to 0,
a merger operation should be performed.

Listing 1.1. Label assignment procedure – pseudocode. ct. – conflict.

i f P1 == 0 ( background ) then
i f P2 == 1 ( ob j e c t s ) then

i f B == 0 and C == 0 then
s e t new l a b e l ( Case 1)

e l s e
i f B == 0 and C != 0 then

s e t l a b e l C ( Case 2)
e l s e

s e t l a b e l B ( Case 3)
e l s e

i f B != 0 and D != 0 and B != D then
no l a b e l −− ct . B, D ( Case 4)

e l s e
i f B != 0 then

i f D == 0 or D == B then
s e t l a b e l B ( Case 5)

e l s e
s e t l a b e l min (B, D) −− ct . B, D ( Case 6)

i f C == 0 then
i f A != 0 then

s e t l a b e l A ( Case 7)
e l s e

i f D != 0 then
s e t l a b e l D ( Case 8)

e l s e
s e t new l a b e l ( Case 9)

e l s e
i f A == 0 and D == 0 then

s e t l a b e l C ( Case 10)
e l s e
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i f A != 0 then
i f A != C then

s e t l a b e l min (A, C) −− ct . A, C ( Case 11)
e l s e

s e t l a b e l A ( Case 12)
e l s e

i f D != C then
s e t l a b e l min (C, D) −− ct . C, D ( Case 13)

e l s e
s e t l a b e l C ( Case 14)

The listed cases are shown in Fig. 5. The sub-image in Fig. 5a contains
a reminder of used symbols, and each next corresponds to the cases from List-
ing 1.1. White boxes are background, blacks are the analysed groups of objects,
labels are marked with orange and blue colours. In case when two values of one
register are possible, the respective colours are placed in two halves of a given
block – as it can be seen in Fig. 5d. The C register may have the same value
as the B register or it may belong to the background and it will not change
the result of the analysis. In addition, pixels coloured in grey are not taken into
account in the analysis or are not yet known at this stage of the processing.

(a) Symbols (b) Case (1) (c) Case (2) (d) Case (3)

(e) Case (4) (f) Case (5) (g) Case (6) (h) Case (7)

(i) Case (8) (j) Case (9) (k) Case (10) (l) Case (11)

(m) Case (12) (n) Case (13) (o) Case (14)

Fig. 5. All the possible cases from Listing 1.1. (Color figure online)
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4.2 Delay Lines

We used block memory resources (BRAM) to implement delay lines, as in the
work [7]. The use of two module instances results from the processing of two
elements in parallel.

4.3 LUT Tables

To allow the reuse of previously merged labels we decided to assign two LUT
tables for each group of two pixels. The applied solution is based on the work [2].
The first table contains equivalences of labels that have occurred at least once
during the scan of the previous image line. Those are used for resolving correct
value of labels coming from delay lines. On the other hand, all assigned (new
and already existing) labels during analysis are stored in the second LUT. Every
merger imposes the update of this table in order to preserve the correctness of
equivalents during the next line scan. At the end of each image row, the roles of
the mentioned tables are swapped.

4.4 Merger Chain Control

The merger chain is a situation in which several mergers occur in one line for
the same object. In the software version of the algorithm, the correct handling
of this event is guaranteed by the used graph structure. In a pipelined hardware
version, where a new label must be determined during one clock cycle, it is
necessary to use an additional mechanism. This module uses a solution derived
from work [2].

Its basis is a stack storing the merged and the given labels (only in case
when the label with greater value is located to the left of the analysed group
of pixels). Then, during the horizontal blanking period, three operations are
performed: (1) retrieving from the stack, (2) reading the equivalent of the given
label from the corresponding LUT table, (3) writing this value into the LUT
table at the address of the merged label. In addition, in the second step, it
is necessary to check whether the currently considered label is equal to the
merged one from the previous stage (which protects against access conflict to
the BRAM memory). Finally, it is worth noting that the use of an appropriate
pre-processing (morphological operation, median filtering) allows to significantly
reduce the occurrence probability of this type of pixel configurations.

4.5 Label Stack

In the described module, we applied a mechanism for recovering unused (i.e.
merged) labels – we used a stack-based approach. The value of a new label (that
could be used) is present on the top of the stack. Labels “recovered” during
merging are placed on the stack at the end of the image line.

An important stage of the module’s operation is restoring the stack to its
initial state between consecutive frames. It is filled with successive numbers in
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the opposite order (the maximum number of labels is a parameter of the module).
Due to the specificity of the 4K signal and the data transfer in the AXI Stream
format (bus used on ZCU 102 hardware platform), it was not possible to reset
the entire stack (BRAM memory) during the vertical blanking period, as it was
too short1. We therefore decided, to implement a stack restoring mechanism that
starts operation during the blanking period and when necessary also continues
to work in parallel with the processing of the next frame.

4.6 Calculation of Parameters

The single-pass connected components labelling module would be practically
useless if it was not integrated with the functionality allowing to compute object
parameters. The calculation of bounding box coordinates, area (m00) and the
first order moments (m01,m10) has been implemented. Based on the last two,
objects’ centroids can be calculated.

The implementation uses a double buffering mechanism. In one data struc-
ture, the parameters of the objects from the previous frame are stored and
available for further processing. In the second one, the current calculations are
carried out. The switch is performed at the beginning of a new frame.

The key element of the module is merger handling. In the case of a 1 ppc
stream, the single-pixel gap between two objects is used. It allows, after merger,
to read the feature vector of the second object and save the integrated results
to the data structure.

For the 4 ppc format, the application of the above described approach would
require a gap of at least 4 pixels. Therefore, a solution based on a FIFO queue is
used, where values of merged labels are stored. The data integration itself takes
place during the horizontal blanking period.

It should be noted that in the considered system, the blanking period lasts
about 60 clock cycles. For this value, the maximum number of “handled” mergers
is 30. During analysis of the test sequences, we established that there are usually
no more than 10 such events in a single line, which justifies the use of the
described solution.

5 Evaluation and Analysis

5.1 Sample Application

One of the applications of the created CCL/CCA module is the segmentation
of areas with a given colour, e.g. skin. It is a component of face detection and
recognition systems that enables pre-selection of candidates and speeds-up fur-
ther image analysis.

1 It should be noted that the blanking periods in the native format are much longer
and the conversion to AXI Stream format “shortens” them. This is a result of the
assumption that in AXI Stream only valid data is transferred.
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Fig. 6. Working system. Right screen – input image. Left screen – CCA/CCL result.

The vision system consists of the so-called video pass-through, colour space
conversions and segmentation module, CCL/CCA and visualization of its results.
The source of the image is a computer graphics card or a 4K camera with HDMI
output. Image processing is performed on the Xilinx ZCU 102 evaluation board
with the Xilinx Zynq UltraScale+ MPSoC device. The results are displayed on
a 4K monitor.

The input image in RGB format is subjected to a series of operations, which
result in segmentation of skin colour areas – finally a binary image is obtained. In
order to minimize the impact of variable lighting, different skin colour, occlusion
and shadows, the frame is analysed in three colour spaces: RGB, YCbCr and
HSV. Thus, the necessary conversions are carried out first.

Then, based on the algorithm described in the paper [6], the image is bina-
rized by thresholding channels R, G, B, Y, Cb, Cr, H, and The obtained binary
map is subjected to median filtration and morphological operations (erosion
and dilatation) in order to remove minor disturbances. The next step is the
CCL/CCA described in the Sect. 4. Its result is a description of the detected
objects in the form of bounding box coordinates and geometric moments m00,
m01 and m10.

In the final stage visualization is carried out. First, it is checked whether
the object has an area larger than a pre-defined threshold. If so, its parameters
are saved to one of the K registers (K = 10 – it is also the maximum number
of objects that can be displayed). Then, for each pixel from the video stream,
it is checked whether it belongs to one of the pre-designated bounding boxes.
This is performed in K modules in parallel. In the last step, the OR operation
is applied on the outputs from the modules – if a pixel belongs to at least
one bounding box, its colour is changed (to red). The working system is shown
in Fig. 6 and the use of hardware resources is summarized in Table 1. Power
consumption estimation by the Vivado tool of the Zynq UltraScale+ device
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Table 1. Resource utilization – 4 ppc format.

Resource Video pass-through CCL/CCA System

LUT 32025 (11.68%) 1724 (0.63%) 50272 (18.34%)

FF 39037 (7.12%) 796 (0.15%) 65632 (11.97%)

BRAM 6 (0.66%) 11 (1.21%) 23 (2.52%)

DSP 3 (0.12%) 0 (0.00%) 3 (0.12%)

Table 2. Comparison of the proposed solution with state of the art

Paper Alg. Features Device/Clk. freq. Real-time processing

[8] (1995) 2-pass — 9 x Xilinx XC4010 512× 512

10 MHz @ 30 fps

[2] (2008) 1-pass Label re-use Xilinx Virtex II Pro 640× 480

— @ 100 fps

[1] (2010) 2-pass Pixel runs analysis Xilinx Virtex 4 640× 480

65 Mhz @ 35 fps

[5] (2016) 1-pass Label re-use Xilinx Virtex 6, Kintex 7 1920× 1080

180 MHz, 150 MHz @ 60 fps

[4] (2016) 1-pass Shift register Altera Cyclone IV 1920× 1080

58–90 MHz @ 37 fps

Proposed (2018) 1-pass 4 ppc support Xilinx Zynq UltraScale+ 3840 × 2160

150 MHz @ 60 fps

equals 4.973 W (2.151 W for programmable logic and 2.822 W for processing
system). It should be noted that the proposed CCL/CCA module does not use
much logic resources. Significant is only the BRAM utilization (11 modules),
as they are used for context generation and at different steps of the algorithm.
Therefore, the module could be also used on a lower grade FPGA device. The
only limiting factor is the possibility to receive a 4K video stream, which requires
high-speed serial differential transceivers.

5.2 Comparison with Other Solutions

In Table 2 the modules discussed in Sect. 2, as well as the proposed one are sum-
marized. The used “pixel merging” and other algorithmic advances allowed to
obtain real-time processing for 4K @ 60 fps video stream in 4 ppc format. It
should be emphasized that this performance is not a simple derivative of using
a rather new device. To process this type of video stream, the well known mod-
ules had to be significantly re-designed. Moreover, the module could also be
implemented in e.g. Virtex 7 series – here the main limitation is HDMI 2.0 for-
mat support (high-frequency differential input and output (for visualisation)).
We did not compared the used logic resources for two main reasons. First, not all
papers provide this information [1,2,8]. Second, in all other cases the utilization
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is rather low (one exception [4]). In our opinion, the main issue with real-time
implementation of CCL/CCA modules is the design of a rather complicated
control logic (label assignment, label merging, label re-use and parameters com-
putation) and not resource optimization (like for example in advanced image
filtering – Vector Median Filter or Non-Local Means filter).

6 Summary

The combining of two neighbouring pixels allowed to obtain real-time processing
for a 4K @ 60 fps stream. At the same time, the conducted experiments showed
that this modification does not have a significant impact on the determined
object parameters (bounding box, centroid, area). The proposed module has
been verified on the ZCU 102 development board with a Xilinx Zynq UltraScale+
device as a component of a skin-colour area segmentation application. For the
currently available programmable logic it is not possible to process a 4K stream
in 1 ppc format, as it would require designing all modules to work with 600 MHz
clock. In the 4 ppc format some complex merge operations need to be handled
in one clock cycle, which is very difficult or almost impossible – this is why
the neighbouring pixels were merged in the presented module. Therefore, the
most promising solution to run connected component labelling in 4K without
any simplifications is the 2 ppc format. This requires very careful design to
support 300 MHz clock frequency and will be the first step in our further work.
We also plan to analyse the reasonableness of pixel series analysis (like in [1]).
In addition, we considered to describe the presented algorithm in C/C++, use
a HLS (High Level Synthesis) tool like Vivado HLS to generate the module
and then to compare the results with the implementation in Verilog hardware
description language.
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of computing resources organization in latest generation of heterogeneous reconfig-
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Abstract. The current state of the art of Simultaneous Localisation
and Mapping, or SLAM, on low power embedded systems is about sparse
localisation and mapping with low resolution results in the name of effi-
ciency. Meanwhile, research in this field has provided many advances
for information rich processing and semantic understanding, combined
with high computational requirements for real-time processing. This
work provides a solution to bridging this gap, in the form of a scalable
SLAM-specific architecture for depth estimation for direct semi-dense
SLAM. Targeting an off-the-shelf FPGA-SoC this accelerator architec-
ture achieves a rate of more than 60 mapped frames/sec at a resolution
of 640×480 achieving performance on par to a highly-optimised parallel
implementation on a high-end desktop CPU with an order of magnitude
improved power consumption. Furthermore, the developed architecture
is combined with our previous work for the task of tracking, to form the
first complete accelerator for semi-dense SLAM on FPGAs, establishing
the state of the art in the area of embedded low-power systems.

Keywords: Simultaneous Localisation and Mapping · FPGAs ·
Embedded systems · Custom computing · Computer vision

1 Introduction

In recent years, there has been a lot of interest and research effort surround-
ing intelligent machines and systems. One area of particular interest is the
push towards fully autonomous machines that can move and interact in an
unknown environment. This includes emerging applications such as household
robots, environment-aware industrial robots, autonomous drones that can oper-
ate indoors and self-driving cars among others. One of the core elements in this
effort is a family of algorithms and systems called Simultaneous localisation and
Mapping (SLAM), which aims to provide a solution to the problem of exploring
an unknown environment while keeping tracking of one’s own position in it.

From this point, the paper focuses on real-time SLAM, which refers to per-
forming all processing at the camera’s rate of operation. The exact rate neces-
sary can vary per application. Focusing on robotics which is one of the central
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motivations for this work, research has shown that effective localisation needs a
performance of at least 30 frames/sec for most moving robotic platforms. Moving
to faster platforms, such as self-driving cars and quadcopters, higher framerates
are required for SLAM not to fail under agile movement [5]. Meanwhile, the reso-
lutions used are normally in the region of 640×480. It was found that increasing
the resolution provides a small benefit to some algorithms [3], while the runtime
usually increases at least linearly with the number of pixels. However, the state
of the art in algorithms has focused on resolutions in this region and research
results indicate that the camera resolution is not currently the limiting factor.

SLAM in the literature is usually comprised of two main tasks [2,8]. Local-
isation, often referred to as tracking, is the act of continuously estimating the
position and orientation, or pose, of the camera. Mapping is the task of gen-
erating and continuously updating a coherent model of the environment based
on the sensor observations. These two tasks are very closely interconnected and
strongly dependent on each other. Tracking compares the incoming data from
the sensor with the map that has been generated to estimate a current pose.
Then, the accuracy of that estimation will determine the quality of the updated
map, and how close it will be to reality.

In the past, different sensors have been used including Lidar, sonar and
recently RGB-D cameras. The first two generate a map in two dimensions around
a moving platform, and are used for their simplicity and effectiveness. How-
ever they are usually heavy, require high power consumption and are mostly
constrained in two dimensions, making them unsuitable for many applications.
Active RGB-D cameras recover depth directly by projecting a light pattern in
infrared or using time-of-flight. They have enabled high-quality dense 3D recon-
struction in indoor spaces [13] but are constrained in their area of operation
because of their design. They are also more expensive and power-hungry than
a simple visual sensor, making them less attractive for embedded low-power
robotics and outdoor spaces. As such, this work focuses on enabling high quality
embedded SLAM using visual information from RGB or greyscale cameras.

Towards addressing the challenges of real-time visual SLAM, the field has
gradually split in different approaches, each with their own advantages and dis-
advantages. A main categorisation is in terms of Sparse to Dense SLAM. Repre-
sentative examples of these are [2,8,13], demonstrated in a continuum in Fig. 1.
Sparse SLAM uses a smaller set of observations for tracking and maintains a
sparse map of the environment consisting of a few points of interest. These
approaches exhibit relatively lower computational requirements, but are mainly
limited to accurate localisation.

SLAM algorithms categorised as Dense are able to construct a complete
model of the environment as interconnected surfaces, but are very computation-
ally intensive. In published works usually they require GPU acceleration, as for
example in the work of Whelan et al. [13], to process all of the available infor-
mation in real time. To address this drawback a family of works described as
semi-dense SLAM have emerged, e.g. [2]. These aim to provide a more dense and
information-rich representation compared to sparse methods, while achieving
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better computational efficiency from processing a subset of high quality observa-
tions. However, they are still computationally complex and target desktop-grade
multicore CPUs for real-time processing.

Sources: ORB SLAM (R. Mur-Artal), LSD-SLAM (J. Engels et al.), Elas cFusion (T. Whelan et al.)

Sparse Semi-Dense Dense SLAM

Mobile CPU High-end Desktop GPU AcceleraƟon

Fig. 1. SLAM continuum from sparse to dense

Another important distinction is the difference between a full SLAM system
and a visual odometry algorithm. Visual odometry focuses on maintaining an
accurate position estimate and uses the most efficient form of map possible. On
the other hand, full SLAM methods attempt to recover as much of their environ-
ment as possible, as well as keep a globally consistent map and enabling loop-
closing. Recent solutions, such as SVO [4], can achieve high accuracy tracking
using a small set of high-quality observations. However, much of their efficiency
stems from their generation of sparse and local maps which encode significantly
less information about the environment.

There are many examples of emerging applications that require a high level of
understanding of their environment that sparse SLAM or visual odometry inher-
ently cannot provide. At the same time, due to safety and robustness require-
ments, there is often a need for a low processing latency, while most embedded
platforms have significant power and weight constraints. These specifications rule
out most of the conventional hardware that can perform cutting-edge SLAM in
real time. In this context, to close this gap we propose a novel architecture, based
on an FPGA-SoC to accelerate semi-dense mapping, targeting state-of-the-art
semi-dense SLAM. This accelerator design combines dynamic iteration pipelines
and traditional streaming elements to achieve high performance and power effi-
ciency, with a combination of dataflow processing and local on-chip caching to
match the unique demands of these algorithms. Our contributions are twofold.
First the design of a scalable and high performance, power efficient specialised
accelerator architecture, that can process and update a map in less than 20 ms.
Second, a system which, when combined with our previous work in [1], forms
the first, to the best of our knowledge, complete SLAM accelerator on FPGAs,
pushing the state of the art in performance and quality for SLAM on low-power
embedded devices.
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2 Related Work

Since platforms in the embedded space have significant constraints in power and
performance, most embedded visual SLAM implementations focus on sparse
SLAM that is adapted towards reducing computational requirements further
such as [11]. The downside to these approaches is that they map a sparse selection
of features that reduces the quality of the reconstruction as well as the robustness
of tracking in different types of environments. Another approach towards embed-
ding SLAM has been to design a lightweight, sparse but accurate visual odometry
algorithm that can achieve real-time performance on-board an embedded devic
[4]. This, however, comes with the limitations discussed above for sparse odom-
etry algorithms. The option of offloading computation to a remote server and
reconstructing a dense map there has also been explored [9]. This comes with
increased power consumption for wireless communication, increased latency, a
reduced area of operation and high bandwidth requirements.

Dense SLAM has been advancing rapidly but its requirements in sensors,
energy and computation are infeasible for an embedded platform. Works in semi-
dense methods such as LSD-SLAM, are more applicable to the embedded space
thanks to lower computational complexity and reliance on simpler cameras. LSD-
SLAM [2] for example, provides a tracking accuracy comparable to other state
of the art sparse methods but generates a much denser map that provides more
information about the environment. As such, it was selected as the target for
the custom accelerator presented in this work.

Recently, there have been attempts in designing custom hardware for SLAM
in the embedded space. Suleiman et al. [10] demonstrated a custom ASIC design
for visual-inertial odometry targeting nano-drones. It belongs in the category of
sparse odometry and achieves high performance together with power efficiency,
realised as a chip printed at 65 nm CMOS technology. It enables environment
awareness for very lightweight robots, but because of its specialisation it only
performs the version of sparse visual-inertial odometry it was designed and can-
not be extended to semi-dense or dense SLAM. This is a typical example of an
optimised ASIC implementation of an algorithm, which trades flexibility and
cost to achieve the highest performance and power efficiency for a specific task.

Most related work on FPGAs in the past has been limited in scope to accel-
erating selected computation kernels for sparse SLAM such as [12]. In contrast,
our work targets a more complete implementation of a semi-dense mapping task.
Honegger et al. [6] proposed a custom board combining an FPGA and a mobile
CPU for robotic vision, evaluated by offloading a disparity estimation algorithm
(SGM stereo) to the FPGA. Disparity matching with a fixed stereo camera is
well-known on FPGAs but is only a pre-processing step needing further process-
ing to be utilized for SLAM. Additionally, their work is focused on a fixed system
architecture, providing a one way link with the FPGA between the camera and
off-chip memory. In contrast, we target a more flexible system architecture that
can allow more fine-grained cooperation between hardware and software.

In our previous work [1] we presented an architecture for high-performance
tracking for semi-dense SLAM on embedded platforms. However, that work did
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not provide a solution for mapping, still performed on an embedded CPU at
a relatively low performance. This work addresses this so that both of these
demanding, interdependent tasks can be offloaded in an efficient way to a recon-
figurable platform. The two accelerators are combined to provide higher system
performance and release the mobile CPU to be used for other tasks.

3 Mapping Algorithm

LSD-SLAM [2], a state-of-the-art semi-dense SLAM algorithm, is the target of
acceleration. For tracking, LSD-SLAM uses the most recent depth observations
projected on the current camera frame to optimise directly on the pixel intensity
residual. This is expressed as a weighted least squares optimisation, using only
the information-rich points in the camera’s view. These points are selected based
on the intensity gradient in their immediate area. It is then the aim of the
mapping algorithm to use the camera pose, estimated from the tracking task, to
triangulate points from two views; the current camera frame and the Keyframe, a
previous frame in the camera’s trajectory stored with its world-to-camera pose
along with depth information in a data structure with the same name. That
set of depth observations and the selected camera frame on which they project
constitutes the current depth map.

All points with a sufficient gradient successfully matched from Keyframe
to camera frame will have a depth value stored in this data structure. Using
this information, the mapping algorithm adds a new observation for the points
observed for the first time, and performs a filtering update to improve the esti-
mate for points seen in the past. At the end of this process, successfully observed
points in space will have an estimated depth and depth variance value stored in
the Keyframe. For a more detailed description of the algorithms that constitute
LSD-SLAM and the theory behind them one can refer to Engel et al.’s work
[2]. From this point on, for reasons of brevity the paper will focus on just the
information necessary to discuss the proposed custom hardware architecture.

The aim of Depth Estimation is to perform an exhaustive search for each
high quality point in the Keyframe using its pixel intensity, along a line on the
current frame to then be able to estimate its depth. This line is the epipolar
line. Geometrically, if the relative position and orientation of the camera for two
captured frames is known, it is proven that a point observed on one camera
frame will always project to a line on the plane of the other camera’s frame.
Two camera frames will not always observe the same point. The line may lie
completely outside the frame that a sensor will capture. As such the search is
restricted on the intersection of the line and the image frame.

In LSD-SLAM a maximum amount of steps is used to define the search dis-
tance. Also, if there is a prior estimation with sufficient confidence, the estimated
variance is used to limit the search interval to d ± 2σd, where d and σd denote
the mean and standard deviation of the prior hypothesis. At the end of the
search for a good match, a sub-pixel accurate localisation is performed for the
matching disparity. In [2], instead of scanning to match a single pixel, a squared
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error function comparing 5 equidistant points is used to improve accuracy. This
approach significantly increases robustness with a small increase in complexity.

In this work, the tasks involved in SLAM were profiled, running as software
on an Intel i7-4770 CPU. The results showed that the mapping task was one of
the most demanding tasks happening during LSD-SLAM. It consumed 44% of
the computation time spent on SLAM and together with tracking constitutes
85% of the CPU cycles spent on the SLAM algorithm with the rest spent on
pose-graph optimisation and other background tasks. Further testing on the
ARM-Cortex A9 of our FPGA board verified the conclusions of the profiling
results, with timing tests measuring the mapping task at an average of 530 ms
per map update.

4 Architecture

The architecture targets an FPGA-SoC that contains an FPGA fabric and a
mobile CPU. The CPU and FPGA can function independently and can operate
on the same memory space and both have direct access to a common physical
DRAM. There are master memory controllers on the custom hardware for Direct
Memory Access (DMA), designed to operate at full-speed bursts for updating
the caches before operation or to provide a constant stream of map points for the
execution of the algorithm. In addition to the high-speed memory connections,
there is a direct slave-to-master connection to the CPU, where the CPU acts as a
master. In this manner, the CPU has the high-level control of the coprocessor on
the FPGA, and can change its operating parameters and coordinate its operation
with the software back end. This part of the system architecture is in a similar
philosophy to our work in [1]. The way both accelerators were implemented on
the FPGA is that they each have exclusive access through an AXI-interconnect
to a pair of high performance DMA ports. They share a dedicated DRAM region
and the software calls the accelerators to replace the functionality of the software
functions. As mentioned in [1], that accelerator has a more fine-grained sharing of
computation with the software threads, owing to the iterative, multi-level nature
of tracking. In this work, all tasks included in a map update are completely
moved to the FPGA and the software only handles the synchronisation of data
and tasks.

In general, the co-processor architecture is designed to perform most of the
heuristic processing of LSD-SLAM in a streaming fashion. This was chosen to
keep compatibility with this state-of-the-art method and maintain the same
accuracy and robustness. Nevertheless, in order to increase the performance
that is attainable by the proposed custom hardware design, the actual hardware
implementation is modified with respect to the original software implementa-
tion. For instance, a number of values, such as the maximum gradient in a
neighbourhood were more efficiently calculated on the fly than pre-computed
as done in software. Additionally, most of the functions in the algorithm are
combined in one streaming pipeline utilizing buffers to overlap computation, as
this avoids redundant memory traffic and significantly improves performance
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Fig. 2. Block diagram of the coprocessor architecture

and power efficiency. Finally, to remain faithful to the algorithm, most of the
computation happens on floating-point as in the original implementation. There
are variables where high-dynamic range or multiple divisions make the floating-
point implementation necessary for accuracy or performance reasons. For the
rest of the units the conversion to fixed-point arithmetic was not straightfor-
ward but requires careful analysis. However the principles behind choosing the
most suitable arithmetic representation are well known in the field of custom
and reconfigurable computing. As such, we chose first to focus on developing
the most suitable architecture, presented in this work, leaving custom-precision
representation as future work after the system and the microarchitecture were
fixed.

4.1 High-Level Functionality and Algorithm Mapping

Figure 2 contains a high level view of this architecture omitting some connections
for clarity. The first step is the update of the caches if necessary. Then as input
the architecture receives all the points of the Keyframe sequentially as described
in Sect. 3, and its output is the final state of the updated Keyframe data struc-
ture, again output sequentially. The first two units ensure a fast and consistent
stream of Keyframe points. The ‘Input Memory Controller’ performs full-speed
burst reads from the off-chip memory, that are then buffered and streamed as
Keypoints from the ‘Unpack Unit’ to the rest of the pipeline.

As the Keypoints stream in, the ‘Keypoint and Gradient Check’ unit is
responsible for calculating on the fly the max gradient in a neighbourhood of
the pixel. Based on the gradient threshold for the area and the pixel’s confidence
rating, the Keypoint’s fitness is calculated as a candidate to try to map. It is
then forwarded to the ‘Epipolar Line and 5-Point Unit’ that is responsible for
calculating the scan range, center and steps. Next, a check of the robustness
of the search is performed, including if it is inside the frame’s limits. If all the
checks are valid, this information is forwarded to the fast-rate pipeline. If it fails,



188 K. Boikos and C.-S. Bouganis

the map point is still forwarded to be used for later processing such as filtering,
followed with flags to mark this decision and the reason for failure.

In the fast-rate pipeline, as shown in Fig. 2, the thinner lines correspond to
the map point together with its metadata being forwarded. The main operation
of these units has to do with the scan and best match selection on the epipolar
line. The information pertaining to this scan is passed between them at a faster
rate as long as the scan is going on for one single point, indicated by the thicker
lines in the center of the units. In this faster rate pipeline, the ‘Generate Scan
Points’ unit supplies a steady stream of pixel locations to be fetched from the
cache unit, according to the calculations in the Epipolar line unit. The ‘Cache
Request Handler’ fetches these pixels from the caches and forwards them to the
‘Subpixel Intensity Calculation’ unit where linear interpolation is performed in
a neighbourhood of 4 pixels around the floating point coordinates.

All these streams are passed on to the ‘Loop Processing Unit’ (LPU) that
performs the core of the scanning algorithm. It reconstructs the pattern of 5
pixels we are looking for and performs the scan steps to find the position with
the minimum sum of squared errors. It keeps the best match and second best
match and additional information regarding the search. This includes the steps
performed, the distance of the search and the match error. After a scan is com-
pleted, this is forwarded to the ‘New depth Calculation’ unit. This calculates a
new depth and depth variance value based on the results of the LPU, which the
next unit ‘Subpixel Stereo’ can further refine if the conditions are right.

Finally, the ‘Depth Integration’ and the Filter units. The first is responsible
for putting all the information together for each map point, and the filter units
perform regularization operations. The first one, if it finds sufficient confidence
in a window around a pixel without an observation, fills it with a weighted
average of its valid neighbours. The second filter calculates a smoothed value
for the depth and variance of valid map points, stored separately to the actual
depth, again operating on a sliding window around a center pixel. Here row
buffers allowed region of interest processing, without breaking the streaming
interface of the filter units. After the processing and filtering finishes, we reverse
the operations at the input in a pack-and-output unit that streams it out to the
off-chip DRAM with burst write transactions.

4.2 Multi-rate Dataflow Operation

Semi-dense SLAM is characterised by a large amount of data that needs to be
processed. For a map of size 640 × 480 there are 7.37 MBytes for the depth
map representation. That is in addition to the actual frame size of 307 kBytes.
To put that into perspective, in order to process 60 frames/sec as they come
from a camera, and extract depth information for all of them the total time
between captured frames would be less than 17 ms, but that amount of data
requires approximately 8–10 ms just to be read from memory with the typical
memory bandwidth available on off-the-shelf FPGA-SoCs. To keep up with that
time it would be necessary to process one map point every 6 cycles on average.
A straightforward implementation trying to perform all necessary epipolar line
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scan steps inside this time would provide a large, underutilized design, with a
high power consumption.

Alternatively certain properties of semi-dense SLAM can be leveraged to
design a much more efficient solution. An epipolar line scan often is not required
when the point does not currently contain a valid observation or is not visible in
the current frame. Moreover, in confident observations, it can be safely reduced
to the region d ± 2σd, as described in the Sect. 3. The designed coprocessor
takes advantage of the pattern and frequency of the aforementioned cases by
utilizing fully pipelined units, each designed to efficiently execute a part of the
computation of the entire algorithm, as discussed in Sect. 4.1.

We found the most efficient design to be self-contained, deeply-pipelined
hardware blocks that perform different types of operations by re-using math
units, clocked at a synchronous rate, while logic changes the operation path. This
way we overlapped different parts of the algorithm in the same hardware units,
and designed everything with the principle of data always moving forward. The
pipelines contain multiple math units for multiplication, addition and division,
and logic and multiplexers shift the structure of the unit as necessary. This way
they can change from an initialization phase, to operating on points, to scanning
across the frame cache, depending on the unit, or skipping a scan and forwarding
metadata to the next unit in the pipeline.

The units were also designed to operate at different rates, with fast-rate
processing units in the middle to perform epipolar scans, find the best match and
perform the depth estimation, and more relaxed processing at most of the input
and output stages. The cache accessing was normalised to one access window
per cycle, with buffering and control allowing a very simple and high efficient
cache controller to serve different kinds of requests from other units. The units
are connected to each other through large streaming FIFO buffers that allow
communication to happen asynchronously, and hide a lot of the latency that
would arise from the variable processing rate design. In this way we offer a
much higher performance level, but use a fraction of the resources of a pipelined
statically allocated for the worst processing load.

As shown in Fig. 2, the units in the fast-rate pipeline operate at a faster rate.
When an epipolar line scan and depth update is necessary, they perform some
initialisation steps at a rate of one step per cycle. Otherwise, if there is a point
that does not require a depth update, they directly forward that point’s metadata
to the next unit in a single cycle. Finally they use most of their resources in a
normal operation to perform one scan step per cycle. Their accesses to cache are
pre-computed and pre-fetched at the ‘generate scan points unit’ so they perform
the necessary operations directly on incoming data.

By reducing the amount of multiplier, divider and accumulation units built
in each block and time sharing them for a larger amount of operations, we can
increase the amount of cycles necessary for a scan but with an almost linear
decrease in resources for that unit. The most efficient designs must have units in
the fast-rate pipeline match with each other, as otherwise the slowest one would
dictate the rate of processing, leaving unused resources in the rest. In a similar
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fashion the rate of processing outside the fast-rate pipeline should be tuned as
one number, and the same or slightly slower processing rate should be targeted
for the units after the fast-rate pipeline. The resulting architecture is tunable in
terms of its performance and resources, allowing it to scale to different FPGA
devices and resource budgets. In Sect. 5 we show different example design points
achieved by changing the target processing rates as described previously.

4.3 Performance Analysis

To explore the optimal hardware rates described in Sect. 4.2, and verify that
our design assumptions hold when running with real-world datasets, monitoring
instrumentation was added in the software version of LSD-SLAM and it was
executed for the entire duration of real datasets. Firstly, we collected statistics
regarding the average processing load that is expected for each iteration of a
map update, and then studied the distribution and extrema of these samples.
The results showed that the frequency that any Keyframe point will contain a
valid map point requiring an epipolar line scan is consistently lower than the 30%
mark. Further testing for peak loads across a dataset revealed that the average
amount of points per line that require scanning peaks around the center of the
image at a frequency averaging 18%. By looking for extrema we discovered some
outlier cases, which however were usually less than 1–2% of the frames processed.
Those have to do with special cases consisting of initialisation steps or very sharp
motions. However, the worst case scenario will always have an upper bound, and
have a linear relationship with the fast-rate pipeline processing rate and the
processing load per frame. Thus, it can be predicted and designed against.

In the implemented accelerator, a processing rate of one scan/interpolation
per cycle was chosen for the fast-rate pipeline and a processing rate of one target
point per 5 cycles for the others. For the datasets tested, this relationship of 5-to-
1 was a good ratio for the processing rates, with the majority of frames not filling
the buffers completely. The average case for one epipolar line scan was calculated
at 11 steps for the presented design. Given the results from the instrumented
code, if 25% of the points in a line require an epipolar scan, and the 75% are
skipped, one per cycle, the total latency per row would be 2240 cycles, or 3.5
cycles per point on average, which leaves a good margin of safety.

In datasets tested, 98% of frames were within one millisecond of the target
processing time and more than 99% were within two. There were some outlier
cases with a performance drop of up to 30%, from 16.3 ms to 21 ms. For example
in the Machine hall dataset, one of the two depicted in the Evaluation Section,
out of 3268 map updates only 19 were around the 20 ms mark, with a maximum
recorded value of 20.9 ms. However that is considered acceptable in this applica-
tion for two reasons. Firstly, the application can dismiss more than 1% dropped
updates and can handle a lower mapping rate than the one we targeted. More-
over, in actual tests the software version had a worse behaviour with outliers,
with an increase of almost 200% in the processing time for some cases.

Secondly, the proposed architecture is tunable and can be changed to adapt to
different application requirements. One can increase the capabilities of the fast-
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rate pipeline to have the system guarantee a very small performance degradation
even in outlier cases at the cost of some underutilized resources. Alternatively, if
the application allows, one can go the other way and under-provision the fast-rate
pipeline to target a more resource-and-power efficient system, by allowing some
degradation of a few percentage points in more cluttered scenes. In Fig. 3, we can
see the scaling to target different performance points. The 32.5 fps and 42.5 fps
are examples of a design point where an extra cost in resources guarantees a
lower maximum latency, and therefore a higher target performance.

5 Implementation and Evaluation

Figure 3 demonstrates scaling from a smaller device (Zynq-7020), to a 60fps
design point, selected to allow a second accelerator to fit in the larger ZC706
board (Zynq-7045). We can see that some resources such as the DSPs, ubiq-
uitous in most math units, scale almost linearly with the target performance,
followed by the LUTs, while Flip-Flops have a relatively stable cost owing to
their extensive use in I/O and memory access units which were not part of the
tuning process. The architecture is designed to be platform agnostic and opti-
mised on resource usage. Nevertheless, the use of Vivado HLS tools drove a
number of implementation decisions in order to develop and test the IP on the
target FPGA-SoC, leading to certain overheads1.

Fig. 3. Resource scaling with architectural tuning targeting 100 MHz

For evaluation, the design was synthesized and placed-and-routed with
Vivado and Vivado HLS (v[2018.2]), targeting a Xilinx Zynq ZC706 board and
1 For example, the tool always rounds up memory size to the next power of two for

BRAM utilization. To reduce that overhead we partitioned memory cyclically by a
factor of 5, saving BRAMs at the cost of increased DSPs and LUTs.
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ran on the same board. For the parameters described in Sect. 4, timing was
met for the coprocessor at 125 MHz. The resource usage for that result, post-
implementation, is described on Table 1. Combined with our design from [1]
executing on the same reconfigurable fabric, the accelerators were successfully
tested working side-by-side, setting the target frequency to 100 MHz, replacing
key functions in the software implementation running on the mobile CPU.

Table 1. Resources post-implementation

Resource This work With [1] Available on Z-7045

LUT 151,674 184,993 218,600

LUTRAM 12,242 15,317 70,400

FF 213,761 256,665 437,200

BRAM 958 1089 1090

DSP 594 718 900

On Fig. 4, we can see the mapping performance (total processing time for
a map update step) on three high-end platforms across two separate datasets2.
The colour corresponds to the platforms, an Intel i7-4770, our accelerator imple-
mented on a Zynq-7045 and the Cortex-A57 on a Tegra TX1. The width of the
shape corresponds to the density of observations around a particular value of mil-
liseconds, similar to a sideways kernel density plot. The white line in the middle
corresponds to the mean value of the observations, while the thinner orange one
to the median. Finally, the lines at the top and bottom are the minimum and
maximum values observed. The figure demonstrates the variability of this pro-
cessing load on general purpose hardware, and how robust this accelerator is to
these delays, appearing almost flat since most observations were very close to
the ideal value of approximately 16.2 ms at 100 MHz.

In addition to performance, power consumption was measured for each plat-
form at the wall, including board and power supply losses. Static and dynamic
power are separated to demonstrate the chip power contribution at full load.
The measurement is accurate to ±0.5 W, an accuracy sufficient to reach some
conclusions for these different platforms. In the case of our accelerator we can
estimate approximately 1–2 W of the static power draw to be due to the FPGA.
Testing power draw with an empty bitstream on the FPGA showed a decrease
in static power of approximately 2 W adding merit to this. We achieve a perfor-
mance on par with the high-end desktop CPU, but for an order of magnitude
less power consumed at the FPGA fabric.

We can see that the FGPA development board is at a similar power level at
full load with the Tegra TX1, but with more than a 4x increase in performance
on average for our accelerator design. We estimate the total power of mobile
2 These were the Room and Machine Hall trajectory from TUM’s website: https://

vision.in.tum.de/research/vslam/lsdslam.

https://vision.in.tum.de/research/vslam/lsdslam
https://vision.in.tum.de/research/vslam/lsdslam
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Fig. 4. Mapping latency in ms - different platforms on two datasets

CPU + FPGA fabric on the Zynq-7045 at 6.5 W, using the estimator on Vivado
post-implementation, combined with the results shown on Fig. 5. Static is high
since it includes several unnecessary peripheral devices on the FPGA board such
as a second DDR memory. On the Tegra, the GPU was set to run at the lowest
clock setting so that the power measurements would reflect mainly the CPU’s
behaviour.

The aim of the accelerator, together with our previous work [1], was to pro-
vide a complete acceleration solution for LSD-SLAM, a state-of-the-art semi-
dense SLAM method. The two designed architectures both achieve real-time
performance, evaluated running LSD-SLAM with a pre-recorded dataset utiliz-
ing the two accelerators, with a board power draw at the wall of 15 W. So far
we have compared the performance of the accelerator to that of the software
implementation executing in an embedded and a desktop-grade CPU. In Table 2
we collect some representative examples of the current state of the art both in
SLAM algorithms as well as typical embedded solutions.

The table is not meant to be exhaustive or rank the works. Instead, it was
compiled to focus on the characteristics of different solutions and provide an
overview of different software and hardware approaches to SLAM and their
power characteristics3. The key takeaway is the gap between fast but sparse

3 The power figures were often not mentioned in works, or measured with varying
methods. Thus, in the interest of providing a qualitative view, we include a typical
expected power for the chip/platform mentioned in the publications (e.g. nVidia
680GTX, Jetson TX1, Intel i7-4700MQ etc.). For our work, we report the estimated
chip power instead of the board power to be in line with other papers.
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Fig. 5. Power consumption of the devices tested.

odometry with no large-scale capabilities or loop-closure on embedded systems
and accurate, complex and dense solutions occupying different positions on the
algorithmic landscape but requiring high-end hardware for real-time operation.

Table 2. State-of-the-art SLAM examples. Compiled with a focus on features and
characteristics of different solutions to demonstrate the breadth of the field

Work Type Hardware plat Density Close-loop Inertial Typical power

[8] SLAM Laptop CPU Sparse � 38–47W

[2] SLAM Laptop CPU Semi-dense � 40–50W

[13] SLAM GPU accelerated Dense � 170–250W

Ours SLAM FPGA SoC Semi-dense � 6–7W

[7] SLAM Laptop CPU Sparse � � 30–50W

[4] Odometry Laptop/Jetson-Tx1 Sparse 40W/15W

[12] Kernel Acc FPGA Sparse 5.3W

[10] Odometry ASIC-65nm CMOS Sparse � 2–24mW

6 Conclusions

Our findings were that the most efficient designs for the target application com-
bine features that include a high-bandwidth streaming interface to common
memory and local caching of the region of interest or if possible the entire image
frame processed. Dealing with the complex control-flow of these algorithms we
found the most efficient choice to be multi-rate, multi-modal units, separated by
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buffers. We also found the most efficient and high performance choice to be a
pipeline design that follows the dataflow paradigm, trying to move every data
point through once. To have the most efficient design we separated the memory
accesses from the actual computation, and carried unit control parameters as
metadata along the processing path leading to more efficient designs.

In conclusion, this work proposes an FPGA-based architecture that achieves
the required performance to run high quality state-of-the-art semi-dense SLAM
with high-end desktop performance at the power level of an embedded device. It
has good scalability and is parametrised to address various SLAM specifications
and target different FPGA-SoC devices, demonstrated by successfully running
alongside the accelerator from [1] to provide cutting-edge performance.

Acknowledgments. The support of the EPSRC Centre for Doctoral Training in
High Performance Embedded and Distributed Systems (HiPEDS, Grant Reference
EP/L016796/1) is gratefully acknowledged.

References

1. Boikos, K., Bouganis, C.S.: A high-performance system-on-chip architecture for
direct tracking for SLAM. In: 27th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE (2017)
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Abstract. FPGAs are becoming promising heterogeneous computing compo-
nents for high-performance computing. In this paper, we evaluate the resource
utilizations, performance, and performance per watt of our implementations of
the LULESH kernels in OpenCL on an Arria10-based FPGA platform. LULESH
is a complex proxy application in the CORAL benchmark suite. We choose two
representative kernels “CalcFBHourglassForceForElems” and “EvalEOSFor-
Elems” from the application in our study. Compared with the baseline imple-
mentations, our optimizations improve the performance by a factor of 1.65X and
2.96X for the two kernels on the FPGA, respectively. Using directives for
accelerator programming, we also evaluate the performance of the kernels on an
Intel Xeon 16-core CPU and an Nvidia K80 GPU. We find that the FPGA,
constrained by the memory bandwidth, can perform 1.05X to 3.4X better than the
CPU and GPU for small problem sizes. For the first kernel, the performance per
watt on the FPGA is 1.59X and 7.1X higher than that on an Intel Xeon 16-core
CPU and an Nvidia K80 GPU, respectively. For the second kernel, the perfor-
mance per watt on the GPU is 1.82X higher than that on the FPGA. However, the
performance per watt on the FPGA is 1.77X higher than that on the CPU.

Keywords: FPGA � OpenCL � LULESH � Kernel optimizations

1 Introduction

Heterogeneous reconfigurable computing systems are becoming competitive hardware
accelerators for scientific applications [1–6]. A standard central processing unit
(CPU) with an attached hardware accelerator such as a field-programmable gate array
(FPGA), allows users to evaluate the benefits of offloading computationally intensive
tasks of an application to the accelerator. With FPGA-based reconfigurable computing
systems, programming standards have facilitated the transformation of algorithms from
standard systems to heterogeneous systems.

Open Computing Language (OpenCL) is an open-source, royalty-free framework
for writing parallel and portable programs on CPUs, graphics processing units (GPUs),
FPGAs, and other hardware accelerators [7]. Several FPGA vendors have been con-
stantly improving the OpenCL conformant compilers [8–11]. The maturing compilers
enable developers and researchers, who have little experience in hardware develop-
ment, to express algorithms in a high-level language, and then instruct the compiler to
realize the hardware implementations on an FPGA.
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In this paper, we use LULESH, a complex proxy application, to evaluate the
potential of using an OpenCL-based FPGA platform for developing high-performance
computing applications. We choose the representative kernels from the application, and
explore the kernel optimizations and their resource and performance implications on a
heterogeneous computing platform that features an Intel Arria 10 FPGA. Taking the
directive-based accelerator programming approach, we also evaluate the performance
of the kernels on an Intel Xeon 16-core CPU with OpenMP and an Nvidia K80 GPU
with OpenACC. This paper makes the following contributions:

• We transform the OpenMP C kernels into the OpenCL kernels for an FPGA
• We evaluate the resource and performance implications of our optimizations of the

OpenCL kernels on the Intel Arria 10 FPGA
• We compare the performance of the kernel implementations on the CPU, GPU and

FPGA platforms.

2 Porting of LULESH Kernels to OpenCL FPGA

2.1 LULESH Kernels

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) has
been widely studied and ported to different programming models, such as OpenMP,
CUDA C/C++, OpenACC [12]. LULESH is also one of the large-scale scientific
applications in the set of benchmarks of the CORAL collaborative exascale effort [13].
Data parallelism in LULESH is exploited through a hexahedral mesh at both vertex
(kinematic values) and element (thermodynamic variables) levels. Generally, each
element can be processed independently of the other. The number of elements in the
cube mesh along each dimension is set at runtime.

There are 45 statically scheduled OpenMP parallel loops over elements and vertices
in the LULESH 2.0 OpenMP implementation and 10 kernels in the CUDA C/C++
implementation [14]. In this paper, we focus on the two kernels “CalcFBHour-
glassForceForElems” and “EvalEOSForElems”. Both kernels are interesting as they are
floating-point intensive with various floating-point operations. The first kernel has no
control flow while the second kernel contains data-dependent control flow and a large
number of intermediate values. There are seven inner loops in the first kernel, and the
trip counts of the inner loops are static, which allows the compiler to perform the
optimization of loop unrolling. The trip count of the inner loop in the second kernel is
determined at runtime from a set of values, which prevents the compiler from per-
forming loop optimizations. Overall, the two kernels are representative of the range of
kernels found in the application.

2.2 OpenCL Implementation of CalcFBHourglassForceForElems

The baseline OpenCL implementation of the kernel is shown in Listing 1. The function
“CalcElemFBHourglassForce()”, which is called in the OpenMP C kernel, is flattened
as the loops from L2 to L7. The “__global” qualifier indicates that the data pointed to
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by a pointer are stored in global memory. The “restrict” keyword is added for each
global address space. Inserting the keyword in pointer argument prevents the compiler
from creating unnecessary memory dependencies between non-conflict memory load
and store operations. The “gamma” array is stored in a constant memory. In each
iteration of loop L1, each work-item, identified by the OpenCL API function “get_-
global_id(0)”, loads eight consecutive elements from the arrays “x8n”, “y8n”, and
“z8n” for the dot product operations with eight consecutive elements in the gamma
array. The results are then used to compute each column in the 2D array “hourgam”.
Due to the space constraints, calculating the coefficient and loading eight elements from
the arrays “xd”, “yd”, and “zd” at the indices specified by the eight consecutive
elements in the array “elemToNode” are omitted. It should be pointed out that the
indices are not necessarily consecutive, so memory access orders to “xd”, “yd”, and
“zd” are random. After the coefficient is computed, an 8�8 dot product is performed on
each column of “hourgam” and “xd”, “yd”, and “zd” in loops L2, L4, and L6,
respectively. The results, stored in the 1D arrays “hxx”, “hyy”, and “hzz”, are then
accessed to compute the values of the 1D arrays “hgfx”, “hgfy”, “hgfz” in loops L3,
L5, and L7. Finally, the values of “hgfx”, “hgfy”, “hgfz” are written back to the global
memory at the locations “fx_elem”, “fy_elem”, and “fz_elem”.

__kernel void fb (
__global const Real_t* restrict dvdx,
__global const Real_t* restrict dvdy,
__global const Real_t* restrict dvdz,
__global const Real_t* restrict x8n,
__global const Real_t* restrict y8n,
__global const Real_t* restrict z8n,
__global const Real_t* restrict determ,
__global const Real_t* restrict xd,
__global const Real_t* restrict yd,
__global const Real_t* restrict zd,
__global const Real_t* restrict ss,
__global const Real_t* restrict elemMass,
__global const Index_t* restrict nodelist,
__constant Real_t* restrict gamma,

const Real_t           hourg,
__global       Real_t* restrict fx_elem,
__global       Real_t* restrict fy_elem,
__global       Real_t* restrict fz_elem ) 

{ 
int i2 = get_global_id(0);  
Index_t i3 = 8 * i2;
__global const Index_t* elemToNode = &nodelist[i3];
__global Real_t *fx_local, *fy_local, *fz_local; 

L1: for(Index_t i1 = 0; i1 < 4; ++i1) {
Real_t hourmodx =  

x8n[i3]*gamma[i1*8] + … + x8n[i3+7]*gamma[i1*8+7]; 
Real_t hourmody = 

y8n[i3]*gamma[i1*8] + … + y8n[i3+7]*gamma[i1*8+7];
Real_t hourmodz =

z8n[i3]*gamma[i1*8] + … + z8n[i3+7]*gamma[i1*8+7];

hourgam[0][i1] = gamma[i1*8+0] - volinv*(
dvdx[i3]*hourmodx + dvdy[i3]*hourmody + dvdz[i3]*hourmodz);

Evaluating LULESH Kernels on OpenCL FPGA 201



2.3 Optimizations of the OpenCL Kernel

Memory Access Optimization. To efficiently utilize the bandwidth of the data bus on
the target FPGA system, we can use the OpenCL vector data types and operators to
access data as a vector for each memory transaction to improve the memory access
efficiency. Listing 2 shows the relevant modifications. The OpenCL function “vload8
()” eliminates the indirect scaled access to “nodelist”. For clarity, the “dot8” function is
defined for the dot product operation of two 8-element vectors. Vector elements are
accessed using a numeric index to refer to the appropriate elements in a vector. For
example, “elelemToNode.s7” refers to the eighth element of the vector “elemToNode”.
We also call the OpenCL function “vstore8()” to write the final results as an 8-element
vector to the global memory at locations “fx_elem”, “fy_elem”, and “fz_elem”. These
optimizations improve not only the readability of the kernel but the efficiency of global
memory accesses.

hourgam[1][i1] = gamma[i1*8+1] - volinv*(
dvdx[i3+1]*hourmodx+dvdy[i3+1]*hourmody+dvdz[i3+1]*hourmodz );

… …
hourgam[7][i1] = gamma[i1*8+7] - volinv*(

dvdx[i3+7]*hourmodx+dvdy[i3+7]*hourmody+dvdz[i3+7]*hourmodz );
 } 

// we omit the retrieval of data from xd, yd, and zd using the indi-
ces

// computed by eight consecutive elements of the array “elemToNode”  
Index_t n0si2 = elemToNode[0];
xd1[0] = xd[n0si2];
yd1[0] = yd[n0si2];
zd1[0] = zd[n0si2];
… …

L2: for (Index_t i = 0; i < 4; i++)
hxx[i] = hourgam[0][i]*xd1[0] + … + hourgam[7][i]*xd1[7];

L3: for (Index_t i = 0; i < 8; i++)
hgfx[i] = coefficient * 

(hourgam[i][0]*hxx[0] + … + hourgam[i][3]*hxx[3]);
L4: for (Index_t i = 0; i < 4; i++)

hyy[i] = hourgam[0][i]*yd1[0] + … + hourgam[7][i]*yd1[7];
L5: for (Index_t i = 0; i < 8; i++)

hgfy[i] = coefficient *
(hourgam[i][0]*hyy[0] + … + hourgam[i][3]*hyy[3]);

L6: for (Index_t i = 0; i < 4; i++)
hzz[i] = hourgam[0][i]*zd1[0] + … + hourgam[7][i]*zd1[7];

L7: for (Index_t i = 0; i < 8; i++)
hgfz[i] = coefficient *

(hourgam[i][0]*hzz[0] + … + hourgam[i][3]*hzz[3]);

fx_local = &fx_elem[i3]; 
fx_local[0] = hgfx[0]; … fx_local[7] = hgfx[7];
fy_local[0] = hgfy[0]; … fy_local[7] = hgfy[7];
fz_local[0] = hgfz[0]; … fz_local[7] = hgfz[7];

} 

Listing. 1. The kernel “CalcFBHourglassForceForElems” in OpenCL
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Loop Unrolling. Loop unrolling can improve the kernel performance by creating a
feed-forward structure to increase the number of operations per clock cycle that a
kernel can perform in hardware. Loop unrolling is most effective when computations
involving the loop control variable can be determined at compile time. For this kernel,
we unroll the inner loops using “#pragma unroll N”, where “N” is the loop unrolling
factor. We will evaluate the impact of loop unrolling on the performance and resource
usage of the kernel implementation on the FPGA.

Kernel Vectorization. Vectorization generates a memory interface that can coalesce
multiple memory loads/stores into a single wide load/store to improve memory access
efficiency. In addition, the datapath of the kernel is duplicated to parallelize the kernel
computation without generating additional memory interfaces for each duplicated
datapath. A kernel can be vectorized by annotating the kernel function with the vendor-
specific attribute “__attribute__((num_simd_work_items(SIMD_LANE_WIDTH)))”.
Besides the attribute-based kernel vectorization supported by the compiler, kernel
vectorization can be realized by the OpenCL vector operations.

Listing 3 shows our vectorized kernel using the OpenCL vector operations. For this
kernel, the number of SIMD lanes is at most two due to the FPGA resource constraints
that will be shown in the next section. Each work-item is assigned the workload for two
work-items in the kernel shown in Listing 2. Hence, the global work size of the
vectorized kernel is reduced by half.

__kernel void fb ( … … ) { 
int i2 = get_global_id(0);  
Index8_t elemToNode = vload8(i2, nodelist);
Real8_t x8n_vec = vload8(i2, x8n);
Real8_t y8n_vec = vload8(i2, y8n);
Real8_t z8n_vec = vload8(i2, z8n);
Real8_t dvdx_vec = vload8(i2, dvdx);
Real8_t dvdy_vec = vload8(i2, dvdy);
Real8_t dvdz_vec = vload8(i2, dvdz);

L1: for(Index_t i1 = 0; i1 < 4; ++i1) {
Real8_t gamma_vec = vload8(i1, gamma);
Real_t hourmodx = dot8(x8n_vec, gamma_vec);
Real_t hourmody = dot8(y8n_vec, gamma_vec);
Real_t hourmodz = dot8(z8n_vec, gamma_vec);
hourgam[0][i1] = gamma_vec.s0 – volinv * (dvdx_vec.s0*hourmodx +  

dvdy_vec.s0*hourmody + dvdz_vec.s0*hourmodz);
… 
hourgam[7][i1] = gamma_vec.s7 – volinv * (dvdx_vec.s7*hourmodx +  

dvdy_vec.s7*hourmody + dvdz_vec.s7*hourmodz);
 } 
… …
Index_t n0si2 = elemToNode.s0;
… …
Index_t n7si2 = elemToNode.s7;
… …
vstore8(hgfx_vec, i2, fx_elem);
vstore8(hgfy_vec, i2, fy_elem);
vstore8(hgfz_vec, i2, fz_elem);

} 

Listing. 2. Memory access optimizations of the kernel “CalcFBHourglassForceForElems”
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__kernel void fb ( … … ) 
{ 

Real_t hgfx[16], hgfy[16], hgfz[16];
Real_t hourgam[16][4];
Real_t xd1[16], yd1[16],zd1[16];
Real2_t coefficient, ss1, mass1, volume13;
Real2_t det = vload2(i2, determ);
Real2_t volinv = c1 / det;

int i2 = get_global_id(0);  
Index16_t elemToNode = vload16 (i2,nodelist);
Real16_t x16n_vec = vload16(i2, x8n);
Real16_t y16n_vec = vload16(i2, y8n);
Real16_t z16n_vec = vload16(i2, z8n);
Real16_t dvdx_vec = vload16(i2, dvdx);
Real16_t dvdy_vec = vload16(i2, dvdy);
Real16_t dvdz_vec = vload16(i2, dvdz);

L1: for (Index_t i1 = 0; i1 < 4; ++i1) {
Real8_t gamma_vec = vload8(i1, gamma);
Real_t hourmodx = dot8(x16n_vec.lo, gamma_vec);
Real_t hourmody = dot8(y16n_vec.lo, gamma_vec);
Real_t hourmodz = dot8(z16n_vec.lo, gamma_vec);
Real_t hourmodx2 = dot8(x16n_vec.hi, gamma_vec);
Real_t hourmody2 = dot8(y16n_vec.hi, gamma_vec);
Real_t hourmodz2 = dot8(z16n_vec.hi, gamma_vec);

hourgam[0][i1] = gamma_vec.s0 – volinv.s0*(dvdx_vec.s0*hourmodx +  
dvdy_vec.s0*hourmody + dvdz_vec.s0*hourmodz);

… …
hourgam[15][i1]= gamma_vec.s7 – volinv.s1*(dvdx_vec.s15*hourmodx2 +  

dvdy_vec.s15*hourmody2 + dvdz_vec.s15*hourmodz2);
}
… …

Index_t n0si2 = elemToNode.s0;
… …
Index_t nfsi2 = elemToNode.s15; 
xd1[0]  = xd[n0si2];
… …
xd1[15] = xd[nfsi2];
… …
L2: for (Index_t i = 0; i < 4; i++)

hxx[i] = hourgam[0][i] * xd1[0] + … + hourgam[7][i] * xd1[7];
L3: for (Index_t i = 0; i < 4; i++)

hxx2[i] = hourgam[0][i] * xd1[8] + … + hourgam[7][i] * xd1[15];
L4: for (Index_t i = 0; i < 8; i++)

hgfx[i] = coefficient.s0 *
(hourgam[i][0]*hxx[0] + … + hourgam[i][3] * hxx[3]);

L5: for (Index_t i = 8; i < 16; i++)
hgfx[i] = coefficient.s1 *

(hourgam[i][0]*hxx2[0] + … + hourgam[i][3] * hxx2[3]);

Real16_t hgfx_vec = to_Real16(hgfx)
… … 
vstore16(hgfx_vec, i2, fx_elem);
vstore16(hgfy_vec, i2, fy_elem);
vstore16(hgfz_vec, i2, fz_elem);

} 

Listing. 3. SIMD2 vectorization of the kernel “CalcFBHourglassForceForElems” 
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2.4 OpenCL Implementations of EvalEOSForElems

The baseline OpenCL implementation of the kernel “EvalEOSForElems” is converted
directly from the OpenMP C kernel. To facilitate the optimization of the kernel which
will be described next, the inner loop of the kernel is wrapped in an “update” function
as shown in Listing 4.

Because the trip count of the loop is computed at runtime, kernel vectorization using
the vendor-specific OpenCL attribute fails to vectorize the kernel. To improve the kernel
performance, we vectorize the kernel using the OpenCL vector operations. Listing 5
shows the kernel vectorized with two SIMD lanes as an example. Each lane performs the
same operations as in the un-vectorized kernel. However, the vectorization can improve
memory access efficiency, and allows both lanes to execute in a parallel fashion to
improve the computing throughput. The number of times the “update” function is called
is equal to the number of SIMD lanes. Each lane performs the inner loop iterations
independently of the other lanes. The “update” function helps improve the readability of
the kernel. In addition, it makes kernel vectorization that involves loops less error-prone
because any variables accessed in the loop body are not modified.

__kernel void eos ( … … ) {
Index_t elem = get_global_id(0);
Index2_t rep      = vload2(elem, elemRep);
Real2_t vnewc_t   = vload2(elem, vnewc);
Real2_t e_temp    = vload2(elem, e);
Real2_t delv_temp = vload2(elem, delv);
Real2_t p_temp    = vload2(elem, p);
Real2_t q_temp    = vload2(elem, q);
Real2_t qq_temp   = vload2(elem, qq);
Real2_t ql_temp   = vload2(elem, ql);
Real2_t vc        = vload2(elem, v);
… …

void update(Real_t e_cut, Real_t p_cut, Real_t q_cut,
Real_t eosvmin, Real_t eosvmax, Real_t pmin,
Real_t emin, Real_t rho0, Index_t rep,
Real_t e_temp, Real_t delv_temp, Real_t p_temp,
Real_t q_temp, Real_t qq_temp, Real_t ql_temp,
Real_t vnewc_t, Real_t *p_new_out, Real_t *e_new_out,
Real_t *q_new_out, Real_t *pbvc_out, Real_t *bvc_out) 

{ 
…
for (Index_t j = 0; j < rep; j++) {

// the content of the loop body is omitted to save space
} 
*p_new_out = p_new;
*e_new_out = e_new;
*q_new_out = q_new;
*bvc_out = bvc;
*pbvc_out = pbvc;

} 

Listing. 4. The function “update” wraps the loop with data-dependent trip count “rep”
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if (eosvmin != ZERO) {
if (vnewc_t.s0 < eosvmin)

vnewc_t.s0 = eosvmin; 
if (vnewc_t.s1 < eosvmin)

vnewc_t.s1 = eosvmin; 
} 
… …
update(e_cut, p_cut, q_cut, eosvmin, eosvmax, pmin, emin, rho0, 

rep.s0,
e_temp.s0, delv_temp.s0, p_temp.s0, q_temp.s0, qq_temp.s0, 
ql_temp.s0, vnewc_t.s0, &p_new_out[0], &e_new_out[0], 
&q_new_out[0], &pbvc_out[0], &bvc_out[0]);

update(e_cut, p_cut, q_cut, eosvmin, eosvmax, pmin, emin, rho0, 
rep.s1,

… …
&q_new_out[1], &pbvc_out[1], &bvc_out[1]);

p_new = (Real2_t)(p_new_out[0], p_new_out[1]);
… …
bvc = (Real2_t)(bvc_out[0], bvc_out[1]);
… …
if ( FABS(vnewc_t.s0 - ONE) < v_cut ) vnewc_t.s0 = ONE; 

  … 
vstore2(p_new, elem, p);
vstore2(e_new, elem, e);
vstore2(q_new, elem, q);
vstore2(ssTmp, elem, ss);
vstore2(vnewc_t, elem, v);

} 

Listing. 5. SIMD2 vectorization of the kernel EvalEOSForElems

3 Evaluation

In this section, we describe our experimental setup and results. We are interested in the
resource utilizations of the kernel implementations, kernel execution time, and per-
formance per watt. In our experiments we focus on the runtime of the kernels. We do
not take into consideration the time spent moving data between the host and the device.

3.1 Experimental Setup

We use Intel FPGA SDK for OpenCL version 16.0.2 Pro Prime, and a heterogeneous
computing system, which consists of a dual-socket Intel Xeon E5-2687W host and a
Nallatech 385A FPGA card, for our experiment. The card features an Intel Arria 10
1150 GX FPGA chip and two channels 4 GB DDR3L-2133 memory (8 GB in total).
The FPGA chip contains 427,200 adaptive logic modules, 67,244 Kb of internal
memory, and 1,518 variable-precision DSP blocks. The card is installed on a host
machine using a PCIe x8 3.0 interface. The theoretical DDR3 memory bandwidth limit
of the card is approximately 34 GB/s. The data width between DDR3 and PHY is
64-bit and the data width between the memory controller and the user FPGA design is
512-bit.
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For the resource overhead of the OpenCL runtime infrastructure on the FPGA, both
the logic utilization and RAM block utilization are 12% of the total FPGA resources,
and DSP is not utilized. The kernel execution time is measured with the OpenCL API
function “clGetEventProfilingInfo()” that returns the time in nano-seconds consumed
by the kernel execution on the FPGA.

A kernel application consists of host and kernel programs. To eliminate the
warnings of unaligned memory accesses at runtime, we allocate the host side buffers to
be at least 64-byte aligned, which enables direct memory access transfers to and from
the FPGA. Previous research shows that current FPGAs are not suitable for a double-
precision floating-point intensive kernel in terms of resource usage, performance, and
power consumption [15]. Hence, each kernel performs single-precision floating-point
operations (i.e., “Real_t” equals “float”) in our experiment. The type of array index
(“Index_t”) is integer. We compile the kernels with the OpenCL floating-point opti-
mizations enabled. The optimizations remove floating-point rounding options and
conversions whenever possible, and may lead to more efficient hardware resource
usage by relaxing the order of arithmetic floating-point operations. The FPGA results
are verified on the host.

3.2 Resource Utilizations of the Kernel Implementations on the FPGA

Table 1 shows the resource utilizations of the kernel “CalcFBHourglassForce
ForElems” on the FPGA. K0 is the baseline OpenCL kernel presented in Listing 1. We
find that the toolchain fails to implement the optimized kernel in Listing 2 due to
routing congestion. The congestion is caused by the overhead of realizing the inner
loops in the kernel on the FPGA. K1 is the optimized kernel with the loops from L2 to
L7 fully unrolled. Compared to K1, K2 fully unrolls all the loops. K3 is the vectorized
kernel shown in Listing 3. K4 is the kernel vectorized with the vendor-specific attri-
bute, and the number of SIMD lanes is two. Both kernels fully unroll the inner loops.
K5 is a single work-item that iterates over the outermost loop as shown in the
OpenMP C kernel. The loops from L2 to L7 are fully unrolled. Compared to K5, K6 is
a single work-item kernel which fully unrolls all the inner loops. The toolchain also
fails to implement a single work-item kernel with two SIMD lanes and inner loops
unrolled due to FPGA routing congestion.

Table 1. Resource utilizations of the kernel implementations on the FPGA

Kernel Logic utilization (%) RAM blocks utilization (%) DSP count

K0 33 60 192
K1 23 61 297
K2 20 56 489
K3 27 95 977
K4 27 95 977
K5 23 58 297
K6 21 55 489

Evaluating LULESH Kernels on OpenCL FPGA 207



While fully unrolling the inner loops increases the number of DSPs from 192 to
489, it eliminates the looping overhead by decreasing the logic utilization from 33% to
20%, and the utilization of RAM blocks from 60% to 56%. The manual and attribute-
based vectorizations (K3 and K4) require the same resource utilizations, but 95%
utilization of RAM blocks indicates that the number of SIMD lanes, constrained by the
memory resources, is at most two on the target FPGA. On the other hand, the differ-
ences in resource utilizations between the NDRange kernels (K1, K2) and single work-
item kernels (K5, K6) are insignificant.

Table 2 shows the resource utilizations of the kernel “EvalEOSForElems” on the
FPGA. K0 is a single work-item kernel which iterates over the set of elements as in the
OpenMP C kernel. K1 is an NDRange kernel whose global work size equals the
number of elements. K2, K3, and K4 represent the vectorized kernels with two, four,
and eight SIMD lanes, respectively. The toolchain fails to implement a kernel with 16
SIMD lanes due to the resource constraint of RAM blocks.

3.3 Performance and Power of the Kernel Implementations on the FPGA

The problem size is given by the number of elements in the mesh. We run our
experiments with the following mesh sizes: 163, 323, 643, 1283, and 2563. There is
insufficient memory for buffer allocation in the OpenCL host application when the
mesh size is 5123. Each kernel is called once for one LULESH timestep. By default, the
number of distinct regions, load balance, and extra cost are 11, 1, and 1, respectively.
When verifying the FPGA results of the kernel “CalcFBHourglassForceForElems” by
comparing them with the CPU results, we initialize the data arrays “dvdx, “dvdy”,
“dvdz”, “x8n”, “y8n”, “z8n”, “ss”, “elemMass”, “xd”, “yd”, “zd” using the C function
“rand()” to generate random values divided by the maximum value (RAND_MAX).
The seed for the random number generation is two. Randomization facilitates the
validation process as the kernel outputs contain non-zero distinct values. The random
data are also used for measuring the kernel performance.

Table 2. Resource utilizations of the kernel implementations on the FPGA

Kernel Logic utilization (%) RAM blocks utilization (%) DSP count

K0 17 18 80
K1 16 21 80
K2 17 23 160
K3 22 27 320
K4 35 45 640
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Table 3 shows the execution time of the implementations of the kernel
“CalcFBHourglassForceForElems” for each problem size. For each kernel imple-
mentation, the execution time increases approximately by a factor of eight when the
problem size increases by a factor of eight. With memory access optimizations and
fully unrolling the loops L2 to L7, K1 reduces the execution time of K0 by approxi-
mately 35%. However, fully unrolling all the loops in K2 reduces the execution time of
K1 by approximately 1%. Kernel vectorizations are not effective in improving the
kernel performance. For example, K4 increases the execution time of K2 by approx-
imately 43%. We consider that the performance hit is caused by the increasing number
of parallel random accesses to the arrays “xd”, “yd”, and “zd” in the global memory for
a vectorized kernel. While the performance differences between K1 and K5 are
insignificant, the single work-item, which fully unrolls all the loops, can achieve
approximately 5% better performance than the NDRange kernel K2.

Table 4 shows the execution time of the kernel “EvalEOSForElems” for the
problem sizes. For each kernel implementation, the execution time increases approx-
imately by a factor of eight when the problem size increases by a factor of eight. The
NDRange kernel K1 reduces the execution time of the single work-item kernel K0 by
13% on average. Compared to K1, vectorization with eight lanes reduces the kernel
time by a factor of 2.6.

For measuring the FPGA board power consumption, the vendor’s board support
package provides memory-mapped device library functions for monitoring the board
power consumption in real time. The idle power of the FPGA board ranges from 27 W
to 28 W. The FPGA power data includes other components, such as fan power and
PCIe bus power, in addition to the FPGA chip and DRAM. The maximum power
consumptions of the two kernel implementations are 35.8 W and 34.5 W, respectively.

Table 3. Execution time (ms) of the kernel “CalcFBHourglassForceForElems” on the FPGA

Kernel Size = 163 Size = 323 Size = 643 Size = 1283 Size = 2563

K0 0.198 1.41 11.114 89.24 713.243
K1 0.132 0.914 7.146 56.898 454.368
K2 0.127 0.903 7.079 56.271 449.384
K3 0.19 1.377 10.796 85.874 685.545
K4 0.179 1.294 10.137 80.639 643.591
K5 0.134 0.92 7.164 57.025 457.691
K6 0.122 0.857 6.682 53.228 426.482

Table 4. Execution time (ms) of the kernel “EvalEOSForElems” on the FPGA

Kernel Size = 163 Size = 323 Size = 643 Size = 1283 Size = 2563

K0 0.178 1.066 6.593 45.658 381.763
K1 0.159 0.952 5.655 38.544 324.214
K2 0.102 0.713 4.499 31.593 261.454
K3 0.08 0.499 3.211 23.311 189.942
K4 0.072 0.293 2.145 16.478 132.048
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3.4 Comparison with the CPU and GPU

The host has two CPU sockets, each with an Intel Xeon E5-2687W v2 processor (16
total cores, each 2-way hyper-threaded), clocking at 3.4 GHz, and a total of 64 GB of
DDR3 RAM. The theoretical memory bandwidth is 119.4 GB/s. The CPU program
using the single-precision floating-point type is compiled with an Intel C++ compiler,
version 2018. The kernel optimization options are “-qopenmp -O3 -ffast-math”. The
outermost loop of both OpenMP C kernels are annotated with the OpenMP directive
“#pragma omp parallel for simd”. The inner loops of the first kernel are unrolled fully.
The kernel execution time is measured using the OpenMP function “omp_get_wtime()”.

We choose an Nvidia Tesla K80 with 2,496 cores as the target GPU. The theo-
retical memory bandwidth is 240 GB/s. The GPU’s power limit is 149 W with per-
sistence mode enabled. The idle power is approximately 26 W. The OpenACC
program, based on the OpenMP C program, is compiled with a PGI compiler, version
18.3. The compiler optimization options are “-acc -ta=tesla:cc35,fastmath -O3 -Min-
line”. The GPU power is measured with the Nvidia Management Library. For the
kernel “CalcFBHourglassForceForElems”, each inner loop is annotated with the
OpenACC directive “#pragma acc loop independent”. We observe that CUDA shared
memory is used for the arrays “hgfy”, “hyy”, “hgfx”, “hxx”, “hzz”, “hgfz”, “hourgam,
“zd1, “yd1, “xd1”.

We evaluate the kernel execution time with respect to the number of OpenMP
threads on the CPU and the number of vector lanes on the GPU. Table 5 shows the
lowest execution time of Kernel1 (CalcFBHourglassForceForElems) and Kernel2
(EvalEOSForElems) for each problem size on the CPU, GPU, and FPGA in our
experiment. The execution time of Kernel1 on the FPGA is 2.5X to 3.1X faster than
that on the GPU for all problem sizes. However, the CPU is faster than the FPGA for
large problem sizes (e.g., 2563). The execution time of Kernel2 on the FPGA is slower
than that on the CPU when the problem sizes are larger than 643. The GPU is slower
than the FPGA for the smallest problem size, but the execution time on the GPU is 2X
to 3.75X faster than that on the FPGA for the large problem sizes. The performance
trends show that the FPGA can perform 1.05X to 3.4X better than the CPU and/or GPU
for small problem sizes. As the problem sizes become larger, the limited memory
bandwidth on the FPGA becomes a performance bottleneck.

Table 5. Lowest execution time (ms) of the two kernels on the CPU, GPU, and FPGA

Kernel1 Size = 163 Size = 323 Size = 643 Size = 1283 Size = 2563

CPU 0.42 1.26 7.14 51 268.1
GPU 0.307 2.365 18.86 151.53 1333.2
FPGA 0.122 0.857 6.68 53.23 426.48
Kernel2 Size = 163 Size = 323 Size = 643 Size = 1283 Size = 2563

CPU 0.11 0.625 2.64 12.96 99.97
GPU 0.076 0.147 0.656 4.42 35.13
FPGA 0.072 0.293 2.145 16.478 132.05
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We define performance per watt as the number of elements processed per second
per watt. We compute the performance per watt using the lowest kernel execution time
and the maximum power consumption for the problem size of 2563. The power con-
sumption of Kernel1 is 91 W and 81.4 W on the CPU and GPU, respectively. The
power consumption of Kernel2 is 81 W and 71 W on the CPU and GPU, respectively.

Table 6 shows the performance per watt for the kernel implementations on the
CPU, GPU, and FPGA. For Kernel1, the performance per watt on the FPGA is 1.59X
and 7.1X higher than that on the CPU and GPU, respectively. For Kernel2, the per-
formance per watt on the GPU is 1.82X higher than that on the FPGA. However, the
performance per watt on the FPGA is 1.77X higher than that on the CPU.

4 Related Work

Previous studies explored the optimizations of LULESH for performance, power, and
energy on the CPUs [16–18] and the GPUs [19–21]. In our experiment, we evaluate the
performance of kernel implementations with a wide range of problem sizes, and the
impacts of thread size and vector length on the kernel performance. As far as we know,
the performance of the LULESH kernels on an OpenCL-based FPGA platform is not
explored. On the other hand, emerging frameworks can convert a C program annotated
with the OpenMP or OpenACC directives to FPGA implementations based on the
vendors’ OpenCL-to-FPGA design flows [22–24]. Our research work will provide
useful feedback to the developers of the frameworks and compilers, enhancing the
capabilities of these toolchains. Previous studies investigated the OpenCL kernel
optimizations on FPGAs [25–29]. Compare to their findings, our work shows that loop
unrolling can not only improve the performance but reduce the utilizations of logics
and memory blocks on an FPGA. In addition, we present in details our optimizations of
the LULESH kernels in OpenCL. Our vectorization method can be applied to a kernel
in which data-dependent backward branching in a loop prevents a compiler from
performing the attribute-based vectorization.

5 Conclusion

For floating-point intensive kernels with deep pipeline depth and many branching
controls, FPGAs can achieve higher performance than the CPU and GPU when the
problem size does not cause memory bandwidth constraint. While we should exploit

Table 6. Performance per watt of the two kernels on the CPU, GPU, and FPGA

CPU GPU FPGA

Kernel1 687,672 154,596 1,098,849
Kernel2 2,071,883 6,726,411 3,682,667
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memory access optimizations to improve memory access efficiency, expanding the
limited memory bandwidth between an FPGA and an external memory will allow more
scientific kernels to benefit from data parallelism and energy efficiency offered by
FPGAs. Due to the resource constraints, current FPGAs are not perfectly suitable for
the acceleration of double-precision floating-point intensive applications. However, the
experimental results show that FPGAs are becoming energy-efficient heterogeneous
computing component for supercomputing applications in research and laboratories
facilities. As future work, we are interested in exploring the performance of the kernel
implementations on Stratix 10 FPGAs.

Acknowledgments. The research was supported by the U.S. Department of Energy, Office of
Science, under contract DE-AC02-06CH11357 and made use of the Argonne Leadership
Computing Facility, a DOE Office of Science User Facility.

References

1. Huang, S., Manikandan, G.J., Ramachandran, A., Rupnow, K., Hwu, W.M.W., Chen, D.:
Hardware acceleration of the pair-HMM algorithm for DNA variant calling. In: Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 275–284. ACM, February 2017

2. Casper, J., Olukotun, K.: Hardware acceleration of database operations. In: Proceedings of
the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 151–160. ACM, February 2014

3. Inggs, G., Thomas, D., Luk, W.: A heterogeneous computing framework for computational
finance. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp. 688–697.
IEEE, October 2013

4. Chen, D., Singh, D.: Fractal video compression in OpenCL: an evaluation of CPUs, GPUs,
and FPGAs as acceleration platforms. In: 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 297–304. IEEE, January 2013

5. Sharma, H., et al.: From high-level deep neural models to FPGAs. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12. IEEE,
October 2016

6. Kirsch, S., Rettig, F., Hutter, D., de Cuveland, J., Angelov, V., Lin-denstruth, V.: An FPGA-
based high-speed, low-latency processing system for high-energy physics. In: 2010
International Conference on Field Programmable Logic and Applications (FPL), pp. 562–
567. IEEE, August 2010

7. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

8. Intel FPGA SDK for OpenCL Cyclone V SoC Getting Started Guide. Intel (2017)
9. Intel FPGA SDK for OpenCL Stratix V Network Reference Platform Porting Guide. Intel

(2017)
10. Intel FPGA SDK for OpenCL Arria 10 GX FPGA Development Kit Reference Platform

Porting Guide. Intel (2017)
11. Loring Wirbel: Xilinx SDAccel Whitepaper. Xilinx (2014)
12. Karlin, I.: LULESH programming model and performance ports over-view (No. LLNL-TR-

608824). Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2012)
13. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/

212 Z. Jin and H. Finkel

https://asc.llnl.gov/CORAL-benchmarks/


14. Bercea, G.T., et al.: Performance analysis of OpenMP on a GPU using a CORAL proxy
application. In: Proceedings of the 6th International Workshop on Performance Modeling,
Benchmarking, and Simulation of High Performance Computing Systems, p. 2. ACM,
November 2015

15. Jin, Z., Finkel, H., Yoshii, K., Cappello, F.: Evaluation of a floating-point intensive kernel on
FPGA. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 664–675.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75178-8_53

16. León, E.A., Karlin, I.: Characterizing the impact of program optimizations on power and
energy for explicit hydrodynamics. In: 2014 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 773–781. IEEE, May 2014

17. León, E.A., Karlin, I., Grant, R.E.: Optimizing explicit hydrodynamics for power, energy,
and performance. In: 2015 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 11–21. IEEE, September 2015

18. Wu, X., Taylor, V., Cook, J. Juedeman, T.: Performance and power characteristics and
optimizations of hybrid MPI/OpenMP LULESH miniapps under various workloads. In:
Proceedings of the 5th International Workshop on Energy Efficient Supercomputing, p. 4.
ACM, November 2017

19. Lim, R., Malony, A., Norris, B., Chaimov, N.: Identifying optimization opportunities within
kernel execution in GPU codes. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523,
pp. 185–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_16

20. Sulyok, A.A., Balogh, G.D., Reguly, I.Z., Mudalige, G.R.: Improving locality of
unstructured mesh algorithms on GPUs. arXiv preprint arXiv:1802.03749 (2018)

21. Karlin, I., McGraw, J., Gallardo, E., Keasler, J., Leon, E.A., Still, B.: Memory and
parallelism exploration using the LULESH proxy application. In: 2012 SC Companion:
High Performance Computing, Networking, Storage and Analysis (SCC), pp. 1427–1428.
IEEE, November 2012

22. Lee, S., Vetter, J.S.: OpenARC: open accelerator research compiler for directive-based,
efficient heterogeneous computing. In: Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, pp. 115–120. ACM, June 2014

23. Lee, S., Kim, J., Vetter, J.S.: OpenACC to FPGA: a framework for directive-based high-
performance reconfigurable computing. In: 2016 IEEE International Parallel and Distributed
Processing Symposium, pp. 544–554. IEEE, May 2016

24. Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accelerators. In:
2017 IEEE 28th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 201–205. IEEE, July 2017

25. Gautier, Q., Althoff, A., Meng, P., Kastner, R.: Spector: an OpenCL FPGA benchmark suite.
In: 2016 International Conference on Field-Programmable Technology (FPT), pp. 141–148.
IEEE, December 2016

26. Wang, Z., He, B., Zhang, W., Jiang, S.: A performance analysis framework for optimizing
OpenCL applications on FPGAs. In: 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 114–125. IEEE, March 2016

27. Wang, Z., Zhang, S., He, B., Zhang, W.: Melia: a map reduce framework on OpenCL-based
FPGAs. IEEE Trans. Parallel Distrib. Syst. 27(12), 3547–3560 (2016)

28. Settle, S.O.: High-performance dynamic programming on FPGAs with OpenCL. In:
Proceedings of the IEEE High Perform Extreme Computing Conference (HPEC), pp. 1–6,
September 2013

29. Chen, D., Singh, D.: Fractal video compression in OpenCL: an evaluation of CPUs, GPUs,
and FPGAs as acceleration platforms. In: 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 297–304. IEEE, January 2013

Evaluating LULESH Kernels on OpenCL FPGA 213

http://dx.doi.org/10.1007/978-3-319-75178-8_53
http://dx.doi.org/10.1007/978-3-319-27308-2_16
http://arxiv.org/abs/1802.03749


The TaPaSCo Open-Source Toolflow
for the Automated Composition

of Task-Based Parallel Reconfigurable
Computing Systems

Jens Korinth , Jaco Hofmann , Carsten Heinz , and Andreas Koch(B)

Technical University of Darmstadt, Darmstadt, Germany
{korinth,hofmann,heinz,koch}@esa.tu-darmstadt.de

Abstract. In this paper we present TaPaSCo – the Task Parallel Sys-
tems Composer, an open-source, toolflow and software framework for
automated construction of System-on-Chip FPGA designs for task par-
allel computation. TaPaSCo aims to increase the scalability and porta-
bility of FPGA designs by performing the construction of heterogeneous
many-core architectures from custom processing elements, and providing
a simple, uniform programming interface to utilize spatially parallel com-
putation on FPGAs. A key feature of TaPaSCo’s is automated design
space exploration, which can be performed in parallel on a computing
cluster. This greatly simplifies scaling hardware designs, facilitating iter-
ative growth and portability across FPGA devices and families.

Keywords: FPGA · Reconfigurable computing ·
Design space exploration · System-on-Chip design ·
Design automation · High-level synthesis · Scalability · Portability ·
TaPaSCo · Heterogeneous computing · Parallel computing

1 Introduction

Compared to modern software development methods it has been and still is very
hard to achieve scalability and portability for FPGA-based solutions.

In this paper we present TaPaSCo, the Task Parallel Systems Composer,
an open source toolchain addressing these challenges. TaPaSCo consists of a
scriptable toolflow for the automated construction of heterogeneous, many-core
System-on-Chip hardware architectures, and a set of APIs to facilitate task par-
allel computing on TaPaSCo FPGA accelerator designs. TaPaSCo aims to har-
ness and exponentiate the power of existing tools and approaches by providing
the missing glue between state of the art HLS tools and modern parallel com-
puting paradigms and languages: It allows the designer of FPGA accelerators to
raise their level of abstraction and disregard many specific features of the tar-
get FPGA by delegation of optimizing these choices to TaPaSCo’s automated
design space exploration. Using TaPaSCo, existing designs can be more easily
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re-targeted to new FPGAs and boards without requiring changes to the acceler-
ators themselves. Furthermore, this allows to postpone the decision for the target
technology until much later in the design process. TaPaSCo’s APIs complete the
picture by providing the necessary foundations to implement higher-level run-
times (e.g., OpenCL, OpenMP) for platform-agnostic application software.

The rest of this paper is organized as follows: Sect. 2 contains a brief survey
of related work, in Sect. 3 we give a general overview of TaPaSCo and its pri-
mary design abstractions. Specifically, we aim to show how TaPaSCo addresses
portability, scalability and extensibility of FPGA hardware designs for systems-
on-chip. A practical usage example, including the actual commands for using
the tool, is discussed in Sect. 4. The simple use-case is the creation of a many-
core design using MicroBlaze CPUs as processing elements, demonstrating the
usage and advantages of TaPaSCo. However, the tool easily allows intermixing
of arbitrary kinds of PEs (software-programmable processors, IP blocks, HLS-
generated functions etc.) to create truly heterogeneous systems, as well.

2 Related Work

The work presented here is not focused on actual high level synthesis tools
such as Vivado HLS [20], Nymble [9], or LegUp [3]. Instead, it was initiated
to address common problems occurring when employing these tools: When try-
ing to assess the performance of HLS tools, one can either stop in simulation
at the cycle count level (using far from realistic assumptions about the behav-
ior of memory in a real system), or perform the experiments on real hardware.
The latter, however, requires one to implement the entire hardware and soft-
ware design required to run the experiments. Not only is this approach tedious
and error-prone, but most importantly the impact of the system design on over-
all performance and characteristics greatly reduces the comparability of different
implementations. This problem is precisely what motivated the work on Thread-
PoolComposer [12], our prior research effort in this area. TaPaSCo is based on
ThreadPoolComposer, which is in turn is closely related to previous work on
ReconOS [14], hthreads [15], or FUSE [11]. ThreadPoolComposer aimed to pro-
vide both programming and hardware abstractions to increase FPGA developer
productivity. But unlike the other approaches, ThreadPoolComposer focused on
typical high-performance computing systems using a mainstream, non-modified
Linux kernel, and catering for commercial (OpenCL, OpenMP) and academic
(X10 [4,5], FastFlow [2]) parallel programming frameworks. Redsharc [17] is an
academic hardware/software system design framework with a similar approach
as TaPaSCo; it shares concepts such as the grouping of heterogeneous PEs into
clusters, and uniform, scriptable construction of cluster groups into architectures.
However, the Redsharc source is not publicly available, is not portable and does
not support current hardware. Furthermore, Redsharc is focused on hardware
architectures processing regular data streams, whereas TaPaSCo explicitly sup-
ports more general hardware that also allows random-memory accesses. Similar
commercial tools, such as Xilinx SDSoC and SDAccel became publicly available
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later in late 2015/2016; the former works only on select boards of the Zynq
family of FPGAs, the latter only on select PCIe-based boards for OpenCL com-
puting and does not provide support for job dispatches or custom infrastructure
cores. In contrast, TaPaSCo allows much deeper customization, e.g., black-box
extension of existing cores with caches, using infrastructure cores to change the
interconnection (e.g., by buses, networks-on-chip) of processing elements and
interface adapters. TaPaSCo’s customizability is key to enable performance for
very different computing approaches by not imposing too many restrictions on
the design. In [7], ThreadPoolComposer was extended with automated design
space exploration capabilities to increase scalability of the designs even further.
TaPaSCo extends this significantly by providing a fully asynchronous job launch
interface, support for a memory hierarchy of device-local and PE-local memories,
a unified kernel module interface, and offering support for a wide range of FPGA
families from small embedded to high performance segments with PCIe Gen3/4-
based data transfers (currently supported boards: Digilent ZedBoard, Digilent
PyNQ, Xilinx ZC706, Xilinx ZCU102 UltraScale+ MPSoC, Xilinx VC709, Xilinx
VCU118 and NetFPGA SUME).

3 TaPaSCo

TaPaSCo consists of two main parts: An automated toolflow to generate System-
on-Chip (SoC) designs based on custom processing elements (PEs, e.g., as Ver-
ilog/VHDL, Bluespec, Chisel, or generated using HLS), and a general application
programming interface (API) and accompanying libraries to facilitate platform-
agnostic software development. In the following, Sect. 3.1 will focus on the for-
mer, Sect. 3.2 on the latter. In Sects. 3.3, 3.4 and 3.5, we will argue how TaPaSCo
addresses the central issues of portability, scalability and extensibility for future
proofing FPGA designs.

3.1 Hardware Design Abstractions

TaPaSCo hardware designs as shown in Fig. 2 consist of a configurable num-
ber of processing elements (PEs); PEs of the same kind are grouped into PE
clusters, which are in turn grouped into the Architecture of the design. Finally,
the Platform instantiates board- or FPGA-specific resources to implement data
and control accesses, and signaling, leading to the complete system shown in
Fig. 3. TaPaSCo hardware designs are based on three fundamental abstractions
(ordered by scope): A1: T-model of processing elements, A2: Architecture, and
A3: Platform. Each of the abstractions is implemented as a set of scripts in
TaPaSCo: A1 consists of scripts to configure the interface generation of sup-
ported HLS compilers. A2 is implemented in a modular Tcl script to perform
the wiring of PEs into clusters, and clusters into an Architecture, using suitable
bus topologies. The fundamental idea is to keep the Architecture independent
of the target FPGA, making it reusable across targets. A3 finally connects the
Architecture to the hardware components of the target FPGA board. The scripts
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Fig. 1. Basic T-shape of processing elements: each processing element has a control
channel, a data channel and a signaling channel, all of which can be implemented by
arbitrary means, e.g., AXI4, or Avalon.

currently utilize the Vivado Tcl APIs to automate the wiring of high pin count
interfaces (e.g., AXI4). The T-model, named for its T-shape shown in Fig. 1,
defines the interface requirements for a TaPaSCo PE module and abstracts from
implementation details. Each PE in the T-model requires three basic channels:
1. a control channel to communicate with the host, 2. a signaling channel to
indicate completion, and 3. a data channel to access data. The exact nature of
the channels (e.g., AXI4, Avalon, Wishbone, NoC, . . . ) is determined by A2, the
Architecture: TaPaSCo supports heterogeneous PE architectures, i.e., groups of
different PE kinds scaling linearly. To achieve this, PEs are grouped into PE
clusters, each cluster containing all PEs of a kind and abstracting away the con-
crete number of contained individual PEs. The T-shape is repeated here: Each
cluster itself is T-shaped and can be wired like the PEs themselves (see Fig. 2).

Fig. 2. Processing elements of same kind are grouped into clusters using channel aggre-
gators for the three basic channels, e.g., AXI4 Interconnects and interrupt controllers.

On the outermost platform-independent level, this process is repeated across
clusters. The collective term we use to describe the automated wiring of all three
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Fig. 3. Using the T-model to hierarchically repeat the automated wiring process to
connect the individual clusters into a heterogeneous pool architecture. The availability
and presence of components in the Platform layer depends on the target FPGA and
board; the Architecture does not depend on their presence or availability, making the
essential design portable.

levels is Architecture, i.e., the organization and wiring of PEs into a heteroge-
neous pool as shown in Fig. 3. In TaPaSCo, Architectures are designed to be
platform-agnostic: Whatever protocol or technique is used to actually perform
the wiring, this part of the design should remain portable. TaPaSCo currently
uses an Architecture based on AMBA AXI4: All control interfaces are AXI4Lite
slaves, all memory interfaces are AXI4 masters, signaling is done via a sin-
gle wire interrupt line. AXI4 Interconnects are used for both slave and master
interfaces at the cluster and Architecture levels to wire the connections. Note
that TaPaSCo’s blackbox approach regarding the PE internals is suitable to sup-
port many different compute architectures: The AXI-based architecture has been
used both in the random-access architecture discussed in Sect. 4 for near-data
processing, as well as for a complex high-performance Stereovision accelerator
based on a systolic array [7]. It would also be entirely possible to use TaPaSCo
to connect only a single PE (containing a full architecture inside). TaPaSCo
does not impose a model on the PE, it only facilitates easy spatial replication.
The last abstraction is called the Platform: All parts of the hardware design
which are specific to the target board (e.g., the FPGA, pin constraints, periph-
erals, memory) are generated by the Platform abstraction. Minimally, a Platform
must connect the control interfaces to the host, provide some memory shared
between PEs and the host, and an interface toward the host for PE signals.
Furthermore, all peripherals and other infrastructure are instantiated here (e.g.,
memory controllers, interrupt controllers). Platform scripts can be seen as smart
base designs: They instantiate target-specific infrastructure, but retain a signif-
icant amount of configurability without requiring manual intervention by the
user. Originally, both ThreadPoolComposer and TaPaSCo used a fixed address
map scheme to facilitate communication between host and PEs. Now TaPaSCo
solves this more elegantly by storing the on-chip address map in a custom
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hardware module generated on the fly during composition. This address map
is then queried at runtime by the software layers. This approach yields great
flexibility: E.g., every kind of PE may have a different number and/or differ-
ently sized control interfaces. It is also possible to integrate custom, user-defined
infrastructure modules and use the TaPaSCo software layers to communicate
with them: The TaPaSCo scripts for Architecture and Platform are skeletons
with numerous injection points for extensions, where plug-ins can be inserted to
modify the design in flight.

Example 1. If a PE does not have a TaPaSCo-compatible register interface (see
[16] for a more detailed description of the register conventions used by TaPaSCo),
a plug-in can automatically instantiate a suitable wrapper and TaPaSCo con-
tinue with the automated wiring. A different example can be found in the
zedboard Platform: The Digilent ZedBoard [6] has an on-board OLED display
that can be used to show the number of completion signals at each slot; this is
achieved by a plug-in that instantiates the corresponding display controller and
wires it to the design. Such modifications are common, especially when exploring
different variations of a design, e.g., using different DMA engines. To simplify
the use of such plug-ins, TaPaSCo provides support for so called features: Fea-
tures can be defined using a simple, but consistent key-value syntax and can
be queried by plug-ins during composition. This allows the user to easily pass
configuration values, and enable or disable specific plug-ins.

3.2 Software Design Abstractions

Key to providing a productive environment for FPGA developers is to eliminate
as many manual tasks as possible that are not directly related to the problem
at hand. This specifically includes handling low-level communications with the
hardware. Using an automated process as described in Sect. 3.1 to construct
hardware designs has the benefit of yielding very regular designs, which can
be used in software without requiring repetitive manual protocol implementa-
tions. The core abstraction for the application programming interface (API) of
TaPaSCo is the task-parallel model : Every computation is broken into tasks,
which can execute in parallel. Each work item of a task is split into a number
of individual jobs, each of which can be computed independently. This model
is widely used in heterogeneous computing, because it accommodates different
computing architectures by abstracting computation from concrete algorithm:
The user submits jobs to the abstract machine, which are then processed by
any of its available PEs, regardless of their internals. Even the original interface
defined by TaPaSCo s predecessor ThreadPoolComposer was already sufficiently
portable to also support execution on digital signal processors, without having
to change the host code (cf. [16]). In TaPaSCo’s software framework, a task
corresponds to a cluster and job corresponds to one execution of a single PE.
At this granularity, a domain expert can develop the core application by defin-
ing tasks and splitting work items into jobs; this is the top-most, user-facing
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Fig. 4. Software layer hierarchy in TaPaSCo: the top-level API provides task-parallel
abstraction, the Platform API provides a thin user-space layer above either (a) the
operating system primitives implemented in the TaPaSCo Loadable Kernel Module
(TLKM), which in turn interacts directly with the device(s), or, alternatively, (b)
interfaces with a RTL simulator of the hardware design.

API that TaPaSCo defines (for a concrete usage example see Sect. 4). To imple-
ment this rather abstract API, TaPaSCo internally mirrors the abstractions of
the hardware design (see Fig. 4): The TaPaSCo library is concerned with the
Architecture. It manages PEs and the address map, performs the communica-
tion required to transfer data and arguments, launch a job, and wait for the
result(s). In order to implement the interactions in a platform-agnostic man-
ner, the TaPaSCo library is implemented on top of the platform library, which
encodes primitive operations, such as accessing a PE’s registers, or allocate/free
and read/write device-accessible memory. This allows any Architecture to be
used on any Platform with the same user application code. The platform library
operations are themselves realized using an operating system layer implemented
in the TaPaSCo loadable kernel module (TLKM): Without going into unneces-
sary details, TaPaSCo uses a fixed set of ioctl commands, which need only be
implemented at most once for each Platform (often code can even be shared
among families of devices). They are sufficiently generic to accommodate a wide
variety of transport mechanisms, from shared memory (e.g., Zynq, MPSoC) to
PCIe Gen3 (e.g., VC709). Please see our documentation [13] for more details on
the internal APIs.

3.3 Portability

The overall approach outlined in Sects. 3.1 and 3.2 has proven to be very useful
to isolate the domain expert (i.e., the application developer) from the details of
the chosen target platform: A TaPaSCo application’s code does not need to be
changed when executing on a different TaPaSCo platform.

This also applies to the hardware level: If a hardware module conforms to
the TaPaSCo interface requirements, it can be used on any supported platform.
Furthermore, TaPaSCo was designed to be easily extensible to new platforms: At
the time of writing, TaPaSCo supports seven different platforms, ranging from
small embedded boards using Zynq devices, up to high-performance PCIe-based
expansion cards with large FPGA devices.
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3.4 Scalability

Scaling a TaPaSCo design, e.g., from using five PEs of a certain kind to 30 PEs,
requires only automated rebuilding of the hardware design via TaPaSCo. Every-
thing else, including the application code, does not need to be changed and
will adapt automatically to the new design. Furthermore, additional support for
design space exploration in TaPaSCo simplifies a crucial task in optimization:
When designing an SoC with a large number of PEs, there will always be a trade-
off between the number of PEs in the design and its operating frequency. More
PEs means more potential for spatial parallelism and better area utilization;
however, with increasing area, path lengths in the design also increase, making
timing closure increasingly more difficult to achieve. Finding a good trade-off
for any given application can be a very tedious and slow trial-and-error process.
TaPaSCo supports the user by providing an automated design space exploration
(DSE) along three axes of operating frequency, area utilization, and use of design
variants. Each axis can be separately activated or deactivated in a DSE run, e.g.,
to determine only the highest operating frequency for a fixed number of PEs,
or find the maximal number of PEs that will fit on a given device at a fixed
operating frequency. The algorithm first computes upper and lower bounds for
each activated axis. For the operating frequency, TaPaSCo uses an out-of-context
synthesis run (abbreviated as OOC here) to perform a full place-and-route on
an otherwise empty target FPGA. Since this design is almost unconstrained,
this yields an overly optimistic approximation of the achievable operating fre-
quency. The lower bound is usually determined by the target FPGA; by default,
TaPaSCo cuts off at 50 MHz, discarding compositions with a lower operating fre-
quency. The remaining interval is then divided evenly in 5 MHz steps by default,
each step being the frequency component of a coordinate in the design space.
Bounds for area utilization are also based on out-of-context synthesis: OOC
yields an estimate of the area used by each kind of PE. The area utilization
for the entire design is then estimated using a linear extrapolation based on the
number of PEs of each kind and an estimation for the architectural overhead.
By default, TaPaSCo assumes zero overhead, making a very optimistic approx-
imation. This is justified, as modern place-and-route tools perform very exten-
sive optimizations and can compact similar circuits very aggressively, sometimes
yielding lower values for area utilization than the linear extrapolation would
suggest. Since these optimization efforts are very hard to estimate a-priori for
any given design, TaPaSCo compensates by using an optimistic approximation
of the design overhead instead, to avoid cutting off viable designs. To increase
or decrease the area utilization, the initial composition is scaled linearly in the
number of PEs. This yields the area component of the design space coordinates.
Design variants represent different implementations of the same PE kind, e.g.,
using more Block RAM, or more pipeline stages, or different sizes of FIFOs. For
each cluster , a single variant is chosen; the design variants are then generated
combinatorially by combining with every variant of every other PE kind in the
composition. This yields the choice of a design variant as the third coordinate
component within the design space. Due to combinatorial explosion, the size of
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the design space quickly exceeds the limits for brute force exploration. There-
fore TaPaSCo supports different heuristic functions to score each element in the
design space and then explore batches of elements ordered by their score; at each
step, the design space is pruned, e.g., of the elements which have a lesser score
than the best element found so far. Since such explorations still require a lot of
computing power, TaPaSCo supports the use of the Slurm Workload Manager [1]
to parallelize the DSE across entire high-performance computing clusters.

Example 2. Assume the user specifies an initial composition consisting of three
different PE kinds, called A, B and C, with two PEs in the A cluster , four PEs
in the B cluster , and six PEs in the C cluster . In TaPaSCo syntax this would be
expressed as [A×2, B×4, C×6]; in the following, we will call such a configuration
a composition. When scaling linearly, the smallest composition with the same
ratios containing all PEs is thus [A×1, B×2, C×3]. Also assume that TaPaSCo has
determined via OOC that the largest composition fitting on the target FPGA is
[A×3, B×6, C×9]. This would yield three viable compositions in the design space.
Furthermore assume that the OOC for A has given us an fmax of 100 MHz, 75
MHz for B and 150 MHz for C. Since all PEs are clocked at the same frequency, B
provides the upper bound on frequency at 75 MHz. Leaving the lower cut-off at
the 50 MHz default yields six frequency coordinates: 50 MHz, 55 MHz, 60 MHz,
65 MHz, 70 MHz and 75 MHz. Finally, assume that only A has variants, called A0

and A1. Thus, the design space TaPaSCo will explore will contain a total of 36
elements (listed in Table 1). Details of the actual DSE algorithm, including the
heuristics used for pruning the search space, have been presented in [8].

Table 1. Initial design space for TaPaSCo DSE run. F = Target design frequency, R
= Replication factor.

F

R
321

50[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

55[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

60[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

65[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

70[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

75[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

3.5 Extensibility

Given the vast variety of scenarios in which FPGAs are often used, it is impos-
sible for a generic toolchain like TaPaSCo to anticipate and support every use
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case out of the box. Instead of a one-size-fits-all approach we opted for a high
degree of modularity and extensibility in all parts and aspects of TaPaSCo. Using
plug-ins and features to modify the hardware design generated by TaPaSCo has
already been discussed in Sect. 3.1. Adding new Platforms or Architectures is
very easy, too. But one of the core goals of TaPaSCo is to provide a re-usable
foundation for further work and to eliminate some of the tedious work for every
prototyping engineer or scientist. We therefore also aimed at making most parts
of TaPaSCo modular and allow for their standalone usage.

Example 3. Some people may not be interested in using the task-parallel abstrac-
tions provided by the TaPaSCo API, but would still like to use the rest of the
toolchain to iterate their designs more quickly; in this case, the Platform API
can be used on its own to directly interact with the hardware. For others, the
TaPaSCo API may not be sufficiently abstract yet; in this case, TaPaSCo can be
used as a foundation for implementing more complex environments and frame-
works, such as OpenMP (cf. [18]), or OpenCL.

4 Case Study: MicroBlaze-Based Many-Core
Architecture

TaPaSCo was recently used in a study of near data processing (NDP), where
an FPGA is inserted in between storage elements and the host, and simple
data processing tasks (which require no inter-task synchronization facilities) are
offloaded to be performed by the FPGA instead of the host. This approach can
free the main CPU from trivial, but data-intensive tasks, such as summing or
calculating averages, and avoid expensive data transfers. To simplify the pro-
gramming of the system, the first prototype of the NDP system, called Shishito,
consists of MicroBlaze soft-core processors [19] with small local BRAM storage
and direct access to the memory controller. Each core runs independently of
and asynchronously to the others without synchronization across tasks. The fol-
lowing sections will discuss the design of the Shishito processing elements and
the overall architecture, then proceed to illustrate how TaPaSCo accelerated
the whole design and implementation process, showing the actual commands
required to assemble the SoC. The NDP use-case also employs capabilities just
recently added to TaPaSCo to describe and manage more complex memory sys-
tems (e.g., distinguishing between PE-global and PE-local memories).

4.1 Shishito Processing Elements

To allow TaPaSCo to automatically construct the SoC design for us, the first
step was to design a TaPaSCo-compatible MicroBlaze PE. The MicroBlaze pro-
cessor has a multitude of configuration options, from minor changes such as
enabled/disabled exception support, over support for optional instructions, up to
different instruction pipeline architectures. In the NDP scenario, the programs
running in the MicroBlazes are relatively simple. We thus deactivated most
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instruction set extensions in favor of larger data caches. A common headache
in this scenario is to find a good size for the caches, so we decided to explore
different sizes, where both data and instruction cache share the same BRAM-
backed storage. To make this design work well with TaPaSCo, we needed to wrap
it into the T-shape, previously discussed in Sect. 3.1, as follows:

While the AXI4 memory interface can simply be turned on using a configu-
ration parameter for the MicroBlaze, the signaling and control interfaces require
additional modules. The control interface is implemented as an AXI4Lite regis-
ter file module written in Chisel, called MBCtrl. This module uses the direct wire
interface of the MicroBlaze to hold the processor in reset until the start register
is written. The processor will then start to execute its program, which should
end with triggering an interrupt at a local interrupt controller (see Fig. 5). MBCtrl
receives and acknowledges the interrupt immediately, then puts the MicroBlaze
back in reset. Finally, it raises the interrupt on the external line to signal com-
pletion to the host.

Fig. 5. Shishito processing element: MBCtrl provides an AXI4Lite slave interface for
TaPaSCo; BRAM is accessible via LMB from the MicroBlaze, as well as via an
AXI4 controller. An optional DMA engine can transfer data between local and device
memory.

In order to be able to communicate with the host via BRAM, we attached
an AXI4 controller to the local BRAM. This allows us to directly transfer the
MicroBlaze programs using the standard mechanisms of TaPaSCo (see Sect. 4.3).
The diagram in Fig. 5 shows the final PE design for the prototype; this design is
assembled by a Tcl script for Vivado Design Suite. It could have been generated
by BlueSpec, or Chisel, or directly from Verilog/VHDL, just as well, but since
we are using several components from the Xilinx IP catalog, this approach was
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the fastest. Note, however, that any of these approaches to define the PE would
have worked with TaPaSCo.

TaPaSCo only requires an IP-XACT [10] description of the module and the
T-shape of interfaces to perform the wiring of any PE automatically. In our case,
we used the Vivado Design Suite to generate an IP-XACT description of the PE
and packaged it into a .zip file, which can be directly imported into TaPaSCo:

tapasco import shishito.zip as 1337

The import command performs several actions: In general, it makes the PE con-
tained in shishito.zip available to TaPaSCo using the kind ID 1337. This kind
ID will later be used in the application to identify the kind of PE a job requires.
Note that this only identifies the abstract algorithm; different implementations
or algorithms performing the same computation will usually share the same kind
ID, since this knowledge should be hidden from the user. Unless given with the
--skipEvaluation command argument, the import command will perform OOC
synthesis and place-and-route for all targeted Platforms, in this case all known
Platforms (this could be restricted, e.g., to the ZedBoard Platform using -p

zedboard). OOC will yield estimations for both area utilization A per instance
and maximal operating frequency Fmax.

4.2 Shishito Architecture

The core goal of TaPaSCo is to free the engineer from having to focus on anything
not directly related to the acceleration problem at hand. In our case this means
that we will let TaPaSCo construct the entire on-chip architecture for us, leaving
us free to concentrate on the MicroBlaze PEs and their application code. To get
the software engineers up and running, we can generate a fully working bitstream
with two MicroBlazes for them with a single command:

tapasco -v compose [shishito x 2] @ 100 MHz -p zedboard

The compose command can be used to construct a specific composition, without
using any design space exploration; in this case, the composition will include
two instances of our MicroBlaze PE running at 100 MHz and a bitstream will be
generated for the ZedBoard. The low operating frequency and number of PEs
ensures that the synthesis time will be reasonably short, so we can use frequent
iterations while working in tandem with the software engineers on the application
side. For the final evaluation of the prototype, we will use the design space explo-
ration feature of TaPaSCo to find a good trade-off between number of instances
and operating frequency. By default, TaPaSCo will optimize job throughput, i.e.,
the number of computation jobs per second. However, to estimate job through-
put, we need a good approximation of the average computation time required
for each job. Luckily, this is very simple: Once the MicroBlaze program is assem-
bled, the number of clock cycles for any given input can be determined by offline
simulation. A number of ways can be used to provide this data to TaPaSCo’s
DSE, the simplest being re-importing the PE with the additional data:
tapasco import shishito.zip as 1337 --averageClockCycles 1250000
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Now we’re ready to harness the power of TaPaSCo’s automated design space
exploration:

tapasco explore [shishito x 2] in area , freq -p zedboard

The explore command will take an initial composition and a list of design space
dimensions; the initial composition determines the ratio of PE kinds to each
other, e.g., for an initial composition [A × 1, B × 2], TaPaSCo will only use
compositions where there are twice as many instances of B as of A when vary-
ing the area utilization. The design space dimensions area and freq activate
the exploration along the area utilization and operating frequency axes, respec-
tively. Note that we used a -p zedboard Platform filter this time, to restrict the
exploration to a single Platform. By default, explore will spawn one thread for
each active CPU core on the executing machine performing a single composition
run in parallel, taking the top elements of the ordered design space (in this case
ordered by their estimated job throughput). The DSE will repeat this until it
finds a design that achieves timing closure automatically (see [7] for a more thor-
ough discussion of the algorithm itself). This will usually take a lot of time and
computing resources, but does not require any interaction. After a few hours,
or days, depending on the complexity of the design, TaPaSCo will generate a
working bitstream with close to ideal operating frequency and number of PEs.

4.3 Application Development with TaPaSCo

The last missing piece for our prototype is the application software: To be precise,
we need the MicroBlaze programs to execute on our PEs and a host program that
offloads the computations to the FPGA. Discussing the former is out-of-scope
for this paper, but the latter will be examined briefly to give an idea of software
development with TaPaSCo. Listing 1 contains excerpts from the host program
focusing on the main offloading loop. Assume that the executable binary code
of the target MicroBlaze program has been inserted as the array prog into the
source code, and the actual input data has already been split into a number of
JobData segments suitable for parallel processing, stored as data. Note that this
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assumption is not unrealistic. In many simple cases, such as summing up an array
of numbers, an array view data structure can be used on a raw data block to
perform a useful split very easily and at practically no runtime cost. In Line 14,
we launch a TaPaSCo job for each data element. This line looks intentionally,
but deceptively, simple. In fact, there is an enormous amount of work being
performed under the hood, which we can only briefly gloss over: In the launch

call, the kind ID 1337 is used to identify the target PE kind, as expected; the
program prog is wrapped in class constructors called Local and InOnly, which
simply serve as a type annotation for C++ template expansion in tapasco.hpp.
Seeing a Local argument, TaPaSCo will allocate PE-local memory for the data
block (as opposed to device-global memory) at the PE where the execution will
take place. It will then copy the executable code prog to the PE memory and
pass the handle returned by the allocation to the MicroBlaze program. For jd,
TaPaSCo performs much the same procedure, only that allocation takes place on
the device-global memory shared by all PEs. launch then proceeds to perform
the setup for the launch, starts the PE and returns a closure to the bottom
half of the launch to be executed asynchronously. The bottom half consists of
1. waiting for the corresponding completion signal, then 2. copying back data
from the device-global memory for jd to the CPU’s memory location for jd, 3.
releasing of the allocated memory for prog and jd, and 4. finally releasing the
PE. Note that the bottom half does not launch a separate thread, but is instead
executed only at the call to its wait method in the loop below; each bottom
half thus executes on the main thread of the application. This approach allows
us to hide the fact, that a PE for the kind 1337 may not be available when
calling launch; in this case the job will be queued and executed as soon as a PE
is available. Since prog is marked InOnly, it will only be copied to the device,
but not back after execution. On the other hand, since jd is not marked InOnly,
it will both be copied to the device prior to the execution, as well as back to
main memory afterwards. There exists another type annotation called OutOnly,
which allows to specify the third case of elements, which need to be allocated on
the device, but not copied to the device before execution, only from the device
afterwards (e.g., data generated on the device).

4.4 Scaling Out with TaPaSCo

Assuming our initial prototype on the ZedBoard was satisfactory, we can now
easily scale up to larger boards using TaPaSCo: E.g., we can simply target a much
larger ZC706 by running our DSE again with -p zc706, which will generate a
new bitstream, likely with significantly more PEs than on the ZedBoard, likely
even running at a higher frequency. The application code shown in Listing 1
does not need to be changed at all to make use of the new PEs. In fact, since the
CPU architecture on ZC706 and ZedBoard is the same, it does not even need to
be recompiled!
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5 Conclusion

We have shown how TaPaSCo can reduce the development effort required to
implement scalable, portable FPGA-based computing architectures by providing
both hardware and software abstractions for embedding custom accelerators in
FPGA designs. Furthermore, we argue that TaPaSCo’s design space exploration
facilities can remove guesswork and manual design iterations, while improving
upon the final result (cf. [8]). Last but not least, TaPaSCo is freely available as
open-source. It provides a reproducible baseline and is easy to extend, simplifying
benchmarking and performance evaluation for the academic FPGA community.
TaPaSCo is licensed under the GNU LGPLv3 and available on our public GitLab
website [13].
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Abstract. High-level synthesis (HLS) is of paramount importance to
enable software developers to map critical computations to FPGA-based
hardware accelerators. However, in order to generate efficient hardware
accelerators one needs to apply significant code transformations and ade-
quately use the directive-driven approach, part of most HLS tools. The
code restructuring and directives needed are dependent not only of the
characteristics of the input code but also of the HLS tools and target
FPGAs. These aspects require a deep knowledge about the subjects
involved and tend to exclude software developers. This paper presents our
recent approach for automatic code restructuring targeting HLS tools.
Our approach uses an unfolded graph representation, which can be gener-
ated from program execution traces, and graph-based optimizations, such
as folding, to generate suitable HLS C code. In this paper, we describe
the approach and the new optimizations proposed. We evaluate the app-
roach with a number of representative kernels and the results show its
capability to generating efficient hardware implementations only achiev-
able using manual restructuring of the input software code and manual
insertion of adequate HLS directives.

Keywords: Software code restructuring · HLS ·
Graph transformations · FPGA · Hardware accelerators

1 Introduction

Field-programmable gate arrays (FPGAs) can provide efficient hardware accel-
erators. Their use can contribute to the performance improvements and energy
efficiency needed in many computing systems (see e.g., [1]), from embedded to
high-performance computing systems. Custom hardware implementations pro-
vide concurrent execution of many independent operations, thereby improving
the execution of algorithms with high operation-, data- and task-level paral-
lelism. In order to design efficient hardware accelerators, one must have specific

This work was partially supported by the TEC4Growth project.

c© Springer Nature Switzerland AG 2019
C. Hochberger et al. (Eds.): ARC 2019, LNCS 11444, pp. 230–244, 2019.
https://doi.org/10.1007/978-3-030-17227-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17227-5_17&domain=pdf
http://orcid.org/0000-0001-6452-2586
http://orcid.org/0000-0002-7353-1799
https://doi.org/10.1007/978-3-030-17227-5_17


Graph-Based Code Restructuring Targeting HLS for FPGAs 231

skills and understand very distinct programming languages and tools than a
typical software developer. Additionally, hardware design is still a very error-
prone and time-consuming task. As these aspects impose substantial barriers
to use FPGAs as accelerators, many efforts in high-level synthesis (HLS) focus
on improvements in terms of the use of FPGAs by developers (including soft-
ware programmers) by providing higher abstraction levels and the use of typical
software programming languages.

The high-level of abstraction provided by HLS tools thus intends to allow
developers to program FPGAs more easily and be able to handle more complex
applications, without the long time efforts needed by typical hardware design.
Even thought most HLS tools start from software programming languages, they
still require hardware expertise to generate efficient hardware. For example, the C
programming language is a common input for many HLS tools [1]. However, the
C programming model is tailored to CPUs and does not consider the concurrent
nature of hardware and the possible customization. HLS tools circumvent these
limitations by allowing programmers to guide the synthesis through directives.
Nonetheless, the structure of the code has a large impact on the performance
of the generated hardware via HLS [2]. Complex code restructuring is usually
required and HLS tools and compilers may neither provide such optimizations
nor ensure their automatic application. As it is well known that current HLS
tools still have a barrier of entry for software programmers, by lowering this
barrier more developers will be able to use the computing power of FPGAs, e.g.,
to accelerate applications. In order to make C-based HLS more accessible, we
need a way to easily restructure the input software code.

This paper presents an approach to automatically restructure C code tar-
geting HLS for FPGAs. Our approach is based on a dataflow graph (DFG),
currently generated from execution traces of the input critical function, and on
graph transformations, such as folding and unfolding, before generating C code
added with HLS directives. Although a DFG could be generated by compilers,
the current trace-based approach is taken, so that in future work we can also
specialize the hardware generation with the use of runtime information. The
global approach was firstly introduced in [3] and here we describe in more detail
important aspects of the approach and provide useful extensions with significant
impact in the results achieved. The main contributions of this paper are:

– an automatic code restructuring approach based on dataflow graph transfor-
mations and on a framework, partially implementing the approach, tuned to
code restructuring and insertion of HLS directives for FPGA-based accelera-
tors;

– graph-based optimizations allowing the generation of C code and consider-
ing different aspects such as folding/unfolding, loop pipelining, arithmetic
optimizations and array partitioning;

– an evaluation of the approach using a number of kernels and results that
show some advantages of the approach. This includes a comparison to the
optimized code for an SVM implementation provided in [4] and evidence
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of the capability of the approach and current framework to automatically
achieve comparable code restructuring.

This paper is organized as follows. Section 2 presents a motivating example
regarding code restructuring and HLS directives. Section 3 presents our approach
and describes the framework developed to implement and evaluate the approach
and the main optimizations already implemented. In Sect. 4, we show the results
obtained by applying our framework to a number of benchmarks. We present in
Sect. 5 some of the most relevant related work, and we finalize in Sect. 6 with
some concluding remarks and planned future work.

2 Motivating Example

In order to show the possible code restructuring and HLS directives needed to
achieve an efficient hardware accelerator, we show here the C code of the filter
subband function (see Fig. 1), a function present in an MPEG audio encoder [5].
This function consists of a nested loop that calculates y values that are then
used in a second nested loop to calculate the output array s.

void f i l t e r s ubband (double z [Nz ] ,
double s [ Ns ] , double m[Nm] ){
double y [Ny ] ;
int i , j ;
for ( i =0; i<Ny; i++){

y [ i ] = 0 . 0 ;
for ( j =0; j <( int )Nz/Ny ; j++)

y [ i ] += z [ i+Ny j ] ;
}
for ( i =0; i<Ns ; i++){

s [ i ]=0 . 0 ;
for ( j =0; j<Ny; j++)

s [ i ] += m[Ns i+j ] y [ j ] ;
}

}

(a) Original Filter subband source
code

void f i l t e r s ubband p i p e (double z [ 5 1 2 ] ,
double s [ 3 2 ] , double m[1024 ] ){
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=s c y c l i c f a c t o r=16 dim= 1
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=z c y c l i c f a c t o r=16 dim= 1
#pragma HLS a r r a y pa r t i t i o n
va r i ab l e=m cy c l i c f a c t o r=64 dim= 1
s [ 0 ]=0 ;

. . .
s [ 31 ]=0 ;

for ( int i =0; i < 64 ; i=i +4){
#pragma HLS p i p e l i n e

part11=z [ i +320] + z [ i +256] ;
part12=z [ i +321] + z [ i +257] ;
part13=z [ i +322] + z [ i +258] ;
part14=z [ i +323] + z [ i +259] ;
. . .
y0=f i n a l p a r t 1 ;
y0 a10=f i n a l p a r t 2 ;
y0 a20=f i n a l p a r t 3 ;
y0 a30=f i n a l p a r t 4 ;
for ( int j =0; j < 32 ; j=j +1){

temp1=m[ ( 32 ) j+i ] y0 ;
temp2=m[ ( 32 ) j+i ] y0 a10 ;
temp3=m[ ( 32 ) j+i ] y0 a20 ;
temp4=m[ ( 32 ) j+i ] y0 a30 ;
p a r t i a l i n 1=temp1+temp2 ;

. . .
f i n a l p a r t i n=par t i n3 + par t i n4 ;
s [ j ]= s [ j ] + f i n a l p a r t i n ;

}
}

}

(b) Filter subband restructured source
code, added with Vivado HLS direc-
tives

*

*
*
*
*

*
*
*
*

*

*

Fig. 1. Filter subband source code considering Nz, Ns, Nm and Ny equal to 512, 32,
1024 and 64, respectively
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Figure 1b shows the C code after code restructuring and insertion of Vivado
HLS directives. This new C code of the filter subband provides an efficient FPGA
implementation. Although this code implements the same algorithm, it has been
restructured substantially and to the best of our knowledge none HLS tool is
able to automatically apply the code restructuring stages needed to achieve the
code presented. The code in Fig. 1b consists of a single nested loop instead of
two nested loop structures. In each iteration of the new outermost loop, four y
values are calculated and then used to calculate values for the output array s. The
array y is promoted to scalar variables. The outermost loop is then pipelined in
hardware due the use of the Vivado HLS pipeline directive. This representation of
the algorithm leads to more efficient implementation than the original (Fig. 1a).
When using the original code, the hardware resultant implementation calculates
all the y values in the first nested loop, stores them in BRAMs, and use them
in the next nested loop.

In the restructured code version, presented in Fig. 1b, the calculated y values
are being used for the calculation of the output array. They can also be concur-
rently calculated in the pipeline, which would not be possible with the previous
representation. Additionally, the calculated y values are used immediately to
calculate the outputs, so they do not need to be stored in memory. Furthermore,
the accumulations are implemented using partial sums that allow for more con-
current summations. Also, array partitioning directives are used to increase the
memory throughput, so that the resultant loop pipelining has a lower initiation
interval (II).

Although both codes implement the same algorithm, the restructured version
generates a more efficient FPGA hardware. In the following section we show how
our framework can automatically generate the C code in Fig. 1b from the C code
in Fig. 1a.

3 Our Approach

Our approach to automatically restructure C code targeting HLS tools is based
on graph transformations. The current implementation of our approach (see
Fig. 2a) consists of two main components: a frontend and a backend. The fron-
tend transforms a given execution trace in a dataflow graph (DFG). Each DFG
is then processed and optimized in a backend that, as final step, generates C
code for a HLS tool.

We chose DFGs for our graph-based approach, as DFGs are tailored to rep-
resent the flow of data and naturally express parallelism, both essential for hard-
ware implementations. Additionally, we focused on a flexible frontend to make
possible the generation of DFGs from multiple input languages as this may allow
programmers of different languages to use C-based HLS tools.

3.1 Frontend

As already mentioned, the frontend of our framework generates a DFG from an
execution trace of the input code. Figure 3 shows a simplified DFG for the Filter
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Fig. 2. Compilation flow of our framework

subband function in Fig. 1. The DFG represents in nodes the operations from
the original execution and in edges the data dependencies between operations.
We kept the frontend as simple and generic as possible in order to address
different input languages. Although our initial frontend was implemented for C
code input, it can be easily ported to other software programming languages.

Our current approach to generate the DFG representing the execution of a
kernel is to write the dot (GraphViz) description to a file at runtime. By injecting
instrumentation code into the original C code (before each statement), compiling
and executing, the input DFG is generated.

3.2 Backend

Currently, the backend consists of seven stages (see Fig. 2b) focused on analysis
and optimizations of the DFG. It implements all the code restructuring, opti-
mizations and insertion of directives for the target HLS tool. The exact opti-
mizations applied depend on the input DFG and on the configurations provided
by users. In a configuration file, users can define the number of simultaneous
load/stores supported by the hardware - important for the tool to explicitly
generate code with a number of load/store statements -, inputs and outputs of
the kernel and optimization options.
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Fig. 3. DFG for the filter subband considering an execution with Nz, Ns, Nm and Ny
equal to 4, 2, 1024, and 2, respectively

The first stage of the backend compacts the graph by pruning unnecessary
nodes and prepares it for the following stages. Afterwards, the tool tries to
obtain improved dataflow representations. Since currently the input DFG is fully
unfolded, it is important to identify repeating patterns that can be folded. As
these patterns may occur multiple times, the tool can optimize a large part of
some applications by improving these patterns. Stage 2 separates the dataflows
that generate each individual output and Stage 3 tries to find matches among
these dataflows. If a repeating pattern is identified, this stage folds them into
a loop that is represented by a dataflow of a single iteration. Stage 4 attempts
to optimize the dataflow by identifying loop pipelining opportunities. Stage 5
applies various optimizations to the DFG and Stage 6 unrolls some of the gen-
erated loops based on the users’ configurations. Finally, Stage 7 generates the C
output code plus the appropriate HLS directives.

3.3 Backend Optimizations

In this subsection we describe in more detail the main backend stages (see
Fig. 2b) that optimize the DFG. We describe Stage 6 before Stage 5 as graph
unfolding has an impact on the graph optimizations.

Sequential Matching (Stage 4). Although the first three stages compact the
DFG, it can still be very large and contain properties to be further explored. In
Stage 4, the tool identifies a potential variable and pipelines the graph along this
variable. This variable is selected by traversing the DFG and identifying which
variable is written more often (an heuristic that attempts to build the longest
pipeline).
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The backend then proceeds to match all the dataflows that generate all the
separate writes of the selected variable. After the tool has obtained the pipelining
structure, it handles dataflows without matches. The tool moves the subgraphs
that represent the dataflow of the pipelining into a “hyper” node (represents a
loop) and all the nodes that do not fit in the pipelining are maintained outside
of this “hyper” node.

Fig. 4. DFG for filter subband after Stage 4 of the tool and considering an execution
with Nz, Ns, Nm and Ny equal to 8, 4, 1024, and 4, respectively

By applying the Stage 4 pipelining to filter subband, the tool obtains the
DFG shown in Fig. 4. The graph is pipelined along the array s. The subgraphs
in Figs. 4b and c represent single iterations of the outer and inner loops of the
pipelining. In each iteration, the outer loop calculates a y value, which is then
used in the inner loop. In the inner loop, each y is used to calculate all the
outputs of the s array. The subgraph in Fig. 4a shows the dataflows that do not
match the pipelining. In this case, they represent the initialization of the s array.

It is through Stage 4 that the tool obtains the improved code structure
depicted in the example in Fig. 1b. By transforming the DFG according to
pipelining, the tool identifies a better structure for the algorithm. By comparing
this DFG to the input DFG seen in Fig. 3, and although the input sizes are dif-
ferent, we can still recognize the patterns that are compacted into the pipelining
in the smaller version of the input DFG.
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Graph Unfolding (Stage 6). Stage 6 is dedicated to unfolding loops that were
generated in stages 3 and 4. Unfolding loops opens new avenues for optimiza-
tions in Stage 5. As mentioned before, compacting the DFG is very efficient for
optimizations, but to take further advantage of Instruction Level Parallelism the
tool needs to unfold some of the loops. Due to the DFG-based approach, the tool
can unfold a loop simply by copying the dataflow multiple times and updating
the indexes of array accesses and appending a label to the new variables.

Fig. 5. Unrolled dataflow of the
inner loop of the pipelined filter
subband of Fig. 4c by a factor of four

The unfolding process starts at the inner-
most loops. After a loop is unrolled the result-
ing dataflow is checked for Stage 5 opti-
mizations, and after these the resulting DFG
returns to Stage 6. The unfolding process
needs to be ordered from innermost to outer-
most loops, because unfolding an inner loop
does not affect the outer loop, but unfolding
an outer loop affects its nested loops. In case
the outer loop is pipelined, the inner loop
is not unrolled as Vivado HLS automatically
unrolls it.

When dealing with inner loops, it is essen-
tial to distinguish which loop to unfold.
Therefore, the tool starts the unrolling trans-
formation with the name, unfolding factor
and loop type of the initial loop. If that loop
has a nested loop, the tool unrolls it and
propagates the name of the outer loop, the
unfolding factor and type. The inner loop is

unrolled based on that inherited information. Thus, if a memory access depends
on the iteration of the inner and outer loop, the tool can correctly identify how
to calculate the index of the new access.

Figure 5 shows the result of unfolding the inner loop of filter subband pipeline
loop shown in Fig. 4. The backend replicates the dataflow, in this case a sum
and a multiplication, and then connects them to maintain the correct dependen-
cies between iterations, resulting in the accumulation chain. It is through this
unfolding the tool obtains the unfolded iterations seen in the code in Fig. 1b.

Dataflow Optimizations (Stage 5). Stage 5 is dedicated to various dataflow
optimizations. Currently, it involves two types of optimizations. One focuses on
arithmetic optimization, such as the accumulation optimization, which restruc-
tures an accumulation as partial sums. The backend substitutes accumulation
chains with the same calculations through balanced trees. The result of the bal-
anced tree is then summed with the starting value of the accumulation. In case
the optimized chain consists of floats or doubles the user would need to verify if
the result is within acceptable accuracy.
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As illustrated in Fig. 5, the first addition depends on the result of the last
sum. Therefore, the next stage of the pipelining can only initiate after the clock
cycles necessary to execute that chain. However, by balancing the chain, the
value calculated in the previous iteration is used only once at the final sum.
Therefore, the pipeline only needs to be delayed for the duration of a single
sum instead of an entire accumulation chain. It is through balancing that we
obtain the partial sums in the motivating example (see Fig. 1b). Vivado HLS
is able to automatically balance operations, but it does not balance floats or
doubles without changing the settings, which would require the knowledge of an
experienced user.

Another arithmetic optimization is applied to divisions. In this case, if at
least one operand is unique to multiple divisions, the tool extends the DFG with
the calculation of its inverse, and substitutes the divisions by multiplications
with the inverse.

The user can also choose to optimize memory accesses. One of the optimiza-
tions is data reuse. The tool analyzes the current loops to identify if there are
redundant memory accesses between two consecutive iterations of a loop. If the
same memory location is also accessed in the next iteration of a loop, the tool
uses buffers to store values between iterations, reducing the number of memory
reads. This can greatly minimize the memory bottlenecks of certain applications.

Another optimization the user can choose to diminish memory bottlenecks is
the full partitioning of arrays. This optimization can be applied through array
partitioning directives provided by HLS tools. If the user chooses to fully parti-
tioning the arrays, the tool makes a final pass through the whole DFG. Based on
the number of separate concurrent accesses, the tool sets the appropriate array
partitioning factor so that the maximum number of concurrent accesses detected
can be scheduled in a single cycle. This optimization can significantly increase
the resource usage. First by using more BRAMs. Second by lowering the mem-
ory bottleneck more operations can be executed in parallel. This optimization
does not change the structure of the graph, it only leads to different directives.
When applied to the filter subband function, this optimization injects the array
partitioning directives included in the motivating example (see Fig. 1b).

4 Experimental Results

This section presents some experimental results achieved by our framework. The
benchmarks used represent DSP algorithms and are either from the DSPLIB
from Texas Instruments [5], the UTDSP Benchmark Suite [6] or from an MPEG
audio encoder [7]. dotproduct and Autocorrelation are from DSPLIB. 1D fir is
a typical code implementing a FIR filter with N taps. filter subband is from
an MPEG audio encoder. 2D Convolution is the largest benchmark and is a
kernel that performs a 2D convolution, which is part of the Sobel edge detection
benchmark provided in UTDSP. The source code used for the SVM kernel is
from [4].
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Table 1. Framework optimization levels

Optimization
level

Brief description

01 None of the optimizations

02 DFG is folded as much as possible, and unfolded according to
user configurations

03 Adds array partitioning to level 02 to complement the
unfolded DFG

04 Adds data reuse to level 03

05 Adds arithmetic optimizations to level 03

06 Adds arithmetic optimizations to level 04

07 Adds full array partitioning optimization from Stage 5 to level
05

08 Adds full array partitioning optimization from Stage 5 to level
06

Table 2. Versions of input code used for comparisons

Comparison code Brief description

C Original code without any modifications

C-inter Input code optimized with basic directives such as the pipeline
directive

C-high Improve the C-inter implementation with unroll and memory
partitioning directives

We analyze the effectiveness of our tool for multiple optimization levels as
depicted in Table 1. The C code baselines are briefly summarized in Table 2. It
is a fair assumption that a typical software programmer could use a number
of very basic directives, but is not proficient with all types of directives. This
approach to the evaluation allows us to study the effectiveness of our tool when
comparing to different levels of hardware design knowledge.

Table 3. Resource usage for fastest optimization levels up to level 04 and Level 08

Benchmark LUT FF DSP BRAM LUT FF DSP BRAM

filter subband 12605 18849 59 0 47537 42589 118 0

Autocorrelation 9083 7277 160 0 8025 7114 160 0

dotproduct 294 581 8 0 294 581 8 0

1D fir 4587 6579 192 0 4297 5641 192 0

2D Convulution 5354 6575 54 0 6376 3408 57 0

SVM 9228 9068 56 68 14203 12506 91 76
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Table 4. Speedups for fastest optimization levels up to level 04 and Level 08

Benchmark Latency Period

(ns)

Speedup

C

Speedup

C-inter

Speedup

C-high

Latency Period

(ns)

Speedup

C

Speedup

C-inter

Speedup

C-high

filter subband 563 18.34 39.60 2.81 2.81 293 17.09 81.66 5.79 5.79

Autocorrelation 96 8.6 49.6 16.4 7.91 16 8.6 297.7 98.6 47.5

dotproduct 255 8.93 16.81 5.61 1.00 255 8.93 16.81 5.61 1.00

1D fir 135 8.74 211 26.7 14.4 120 8.74 237.3 30 16.2

2D Convulution 8563 8.74 34.5 2.25 1.36 3886 8.74 76.1 5 3

SVM 11365 9.38 31 0.9 0.9 3208 8.4 123.4 3.5 3.5

Speedups and FPGA resource values are obtained through synthesizing
the C code with Vivado HLS 2017.4 [8], in a PC with an Intel Core i7-7700
with 32 GB RAM, and targeting a Xilinx Artix™-7 FPGA (xc7z020clg484-1).
All of the benchmarks had a time constraint of 10 ns except filter subband, which
has a constraint of 20 ns. The total time of each hardware implementation is cal-
culated by multiplying the minimum clock period reported and the latency. The
speedups are the result of dividing the total time of the implementations from
Table 2 by the total time of the implementations from code generated with dif-
ferent framework optimizations levels.

Tables 3 and 4 show the results presented in [3], which considered 04 as the
highest level. Level 03 achieves the fastest implementations for the filter subband
and dotproduct. The remaining benchmarks achieve the fastest implementations
at Level 04. The results showed that it was essential to reduce the memory
bottleneck to increase the throughput of the implementations. Those results
also show that just through folding and unfolding the input DFG, the result-
ing implementation was already faster for Autocorrelation and filter subband.
Overall, the results show the benefits of our approach in terms of speedups and
the enhancements when adding the optimizations (arithmetic optimizations and
array partitioning) proposed in this paper.

Tables 3 and 4 also present the results from the synthesis reports of Vivado
HLS for the benchmarks, considering the manually improved C versions and
the C code automatically generated using our tool, with optimization levels
between 05 and 08. With more optimizations it is possible to achieve higher
speedups for every benchmark with the exception of dotprod. For filter subband,
the highest speedup was achieved at Level 07 with 5.8× and 81.7× compared
with C-high and C, respectively. This is due to improving the Level 03 pipeline
with arithmetic optimizations and array partitioning, thereby improving the
Latency and II of the pipelining. Level 08 would possibly achieve an even higher
speedup, but would require a larger FPGA.

The Autocorrelation achieves the best speedup at Level 08, which is consid-
erably higher than the previous best result. This is due to the fact that through
data reuse the main loop of the kernel is highly optimized to the point that
considerable clock cycles are dedicated to filling the buffers, thus partitioning
the memory has a large impact. The same applies to the 1D fir, but the increase
is not as large due to less buffers being used. There is also a large improvement
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for the 2D Convolution benchmark whose best speedup went from 1.4× to 3×
compared to C-high at Level 07. Compared to C and C-inter, the best speedups
for this benchmark are 76× and 5×, respectively. As with the previous cases,
the arithmetic and memory optimizations lead to a pipelined loop with both
lower latency and an initiation interval value. Initially, Level 08 was expected to
achieve the fastest implementation and it in fact achieves a lower latency than
Level 07. However, the way Vivado HLS schedules the code, Level 08 results
in a higher minimum clock period leading to a slower implementation when
considering executions operating at the maximum clock frequencies.

In addition to the above benchmarks, we also applied our framework to the
machine-learning SVM (Support Vector Machine) kernel presented in [4]. The
results achieved by the framework are presented in Tables 3 and 4. Compared
with previous benchmarks, Levels 02 to 06 have lower performances than C-
high. The loop generated by the backend contains 36 accesses to the matrix
that contains the support vectors. There is no redundancy between memory
accesses and thus Level 04 has little impact. Level 05 shows that the arithmetic
optimizations alone have little impact, merely an insignificant reduction of the
latency compared to Level 03. In order to lower the bottleneck caused by the
memory accesses, it is necessary to use array partitioning. By partitioning the
support vectors, the speedup compared to C-high is only 1.22×. However, when
array partitioning is combined with arithmetic optimizations as in levels 07 and
08 the speedups are 123× and 3.47× relative to C and C-high, respectively.

In [4] the authors optimize an FPGA implementation of the SVM kernel by
manually restructuring the code, and then use design space exploration (DSE) for
selecting parameter values and HLS directives. When comparing the code pro-
posed by them with the one generated using our tool, there are many similarities.
The main difference is that our tool does not partition the SVM kernel itself
to increase concurrency. Our tool attempts to obtain a similar result through
unfolding the outer loop and applying array partitioning directives. The rest of
the optimizations proposed in [4] are very similar, such as balancing the accu-
mulations in a tree, unrolling loops and applying pipeline and array partitioning
directives. Thus, our tool automatically obtains a similar code compared to the
optimized one shown in [4], depending on the users given configurations. These
results show once again the capability of our framework to achieve efficient code
restructuring plus HLS directives.

4.1 Limitations

The current version of the framework imposes restrictions on the input code to
handle. Some limitations are due to the framework being at an initial stage,
others are due to inherent characteristics of the approach. One limitation is
related to the information loss through the execution tracing. As described,
our approach simply represents the dataflow and executed operations and does
explicitly represent constructs such as for, while or conditional statements at the
frontend. The DFG at the frontend only represents the execution for the given
inputs. Conditional statements or loops branching into different dataflow paths
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depending on the inputs will conduct to different DFGs for the same input code.
Currently, the existence of control-flow that may make a certain DFG invalid
would require exit points or a decision about the execution on the accelerator.
Our future plans consider the merging of DFGs representing different execution
traces and the representation in the DFG of ternary conditional operators.

One of the major bottlenecks of the current implementation of our approach
is related to scalability. The DFGs generated by the frontend are fully unfolded
and represent each operation executed with a distinct DFG node. This results in
large DFGs, even when input datasets and/or loop iterations are not so big. One
possibility is to generate condensed DFGs by using expressions and parameters
that represent the repetition of certain patterns. We recognize the importance
to solve this problem and our future work plans include R&D of techniques to
improve the scalability of our approach.

5 Related Work

Source to source transformations have been the subject of study in the field
of HLS. For example, Cong et al. [9] presents a framework to facilitate code
restructuring for software developers. Cardoso et al. [10] present an approach to
allow users to program strategies to apply code transformations and insertion of
directives. The LegUP HLS tool [11] also accepts C as an input and implements
code restructuring through a modified LLVM compiler [12] to implement HLS
optimizations.

Although the previous work efforts on code restructuring for HLS, it is well
known that the problem is complex and difficult to make automatic as in many
cases to achieve the required code a sequence of specific optimizations is needed
[10]. Furthermore, in this sequence of optimizations there might be needed com-
piler optimizations that per se do not justify their inclusion in a typical compiler,
and the selection of the optimizations (and associated parameter values) and the
way to devise their sequence of application require exploration of a large design
space.

Also relevant are the approaches dealing specifically with data streaming
based computations. For example, Mencer et al. [13] present an approach that
uses a C-based language called ASC to implement data-streaming based com-
putations in hardware. With some similarities, the Max-Compiler [14] is a HLS
tool to implement streaming computations described as dataflow graphs in a
programming language based on Java and named as MaxJ. In [15] the authors
discuss DFG optimizations for generating better FPGA implementations in the
context of the MaxJ compiler. Most of these optimizations are also suitable for
our approach.

A pertinent approach to source to source code optimizations is the inclusion
of loop transformations based on polyhedral models [16] as presented, e.g., by
Cong et al. [9]. For example, the polyhedral models focused on nested loops
transformations can be used to optimize code, so that HLS tools can implement
improved pipelines in hardware [17,18]. Although polyhedral models can only be
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successfully applied to nested loops with specific structure, memory accesses and
predetermined upper and lower bounded loops, a future analysis and comparison
with the approach presented in this paper is required.

Our approach addresses code restructuring as a graph transformation prob-
lem and can automatically achieve more aggressive code restructuring. Although
in the current work we consider C code as input, our approach has the potential
to address different input programming languages via the inclusion of adequate
instrumentation code. We also believe that our approach can target program-
ming models such as the one used by MaxJ and in this case our approach could
possibly act as an optimizer for the MaxCompiler.

6 Conclusion

This paper presented an automatic code restructuring approach to output soft-
ware code more suitable to high-level synthesis (HLS) tools. Our approach starts
with a dataflow graph (DFG) representation of the computations, currently
obtained by executing the critical functions of the application previously added
with instrumentation code, followed by graph optimizations and folding/unfold-
ing graph operations. The proposed approach has been implemented in a frame-
work able to automatically optimize DFGs to fully generate HLS-friendly C
code added with HLS directives. The experimental results show that the C code
automatically generated by our tool outperforms the original code (including the
insertion of HLS directives) by achieving significant speedups. The restructured
C code is even comparable to, and in most cases better than, manually optimized
C code added with directives. Although the C code plus directives generated by
the tool can be always replicated by manual code transformations applied by
experts, our approach can enable software developers to target efficient hard-
ware accelerators using HLS tools as backend and without requiring support of
HLS experts.

We note however that our framework is at the moment a proof of concept for
our approach and further work needs to be done to improve it. Ongoing work
is focused on the generation of DFGs and on additional DFG optimizations.
Future work will focus on more complex memory optimizations through analyses
of the DFG, and on parameterized schemes to make possible to represent large
execution traces in a more compact DFG.
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Abstract. Coarse Grained Reconfigurable Arrays (CGRAs) can exploit
parallelism of compute-intense applications by distributing their work-
load across a set of Processing Elements (PEs). They are highly efficient
in computation and flexible due to their reconfigurability. While these
attributes make CGRAs highly interesting as general purpose hardware
accelerators, their incorporation into a complete computing system raises
severe challenges at the hardware and software level. To overcome the
stage of a simulated concept, CGRAs need to be applied to the real-
world in order to demonstrate the practicability of the overall system.
This paper presents the integration of a CGRA into a control engineering
environment targeting a Xilinx Zynq System on Chip (SoC). It focuses on
the fully automated tool-chain mapping abstract engineering models to
CGRA configurations, and on the SoC-internal runtime communication
on hardware level.

1 Introduction

There are many requirements to a computing system in the field of control
engineering. Hard real time, low jitter, computational power and the ability to
incorporate sensors and actuators are the major demands. When control cycles
below 10µs are required, Field Programmable Gate Arrays (FPGAs) are often
suggested. However, engineers would like to test and evaluate different choices of
parametrization or varying control algorithms with virtually no delay and prefer-
ably with a real test rig. For a continuous engineering work flow, the compilation
or synthesis of an application should ideally not take longer than several seconds.
Thus, custom designs or High-Level Synthesis (HLS) on FPGA are impractical
due to their long synthesis runtime. In contrast, CGRAs promise efficiency and
high performance without long reconfiguration delays. While most CGRA pub-
lications focus on runtime performance, only a few consider the important step
of integrating the CGRA into a test rig and its development environment.

Within the research project UltraSynth, a CGRA-based hardware accelera-
tor was integrated into a Realtime (RT) target for control engineering purposes.
c© Springer Nature Switzerland AG 2019
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All targeted applications are modeled with CAMeL-View, which is a design envi-
ronment for mechatronic systems [6]. This paper describes the integration of a
CGRA architecture and its toolflow into the hardware and software system of
CAMeL-View. Therefore, the requirements of the engineering environment to a
hardware accelerator are described in Sect. 3. The communication between the
CGRA and its surroundings is detailed in Sect. 4. The integration of the con-
figuration toolflow into CAMeL-View is presented in Sect. 5. Afterwards, Sect. 6
evaluates the run- and compile-time performance of the CGRA and its toolflow.

2 Related Work

There are a few commercial solutions integrating a hardware-accelerator in a
general purpose design or an environment for engineering control applications.
For example, the Mathworks MATLAB and National Instruments Labview envi-
ronments can be extended by FPGA-based front-ends like the dSpace DS5203
[2]. However, those accelerators either come along with a fixed set of predefined
functionality (e.g. for signal conditioning), or they are limited to a small synthe-
sizable block-set. In the latter case, changing the accelerated kernel requires a
significant amount of time and the licenses for the FPGA vendor tools.

Aside commercial products, numerous CGRA architectures have been pro-
posed in literature. Most of them are evaluated in a stand-alone fashion or based
on simulation.

In [5], an array of functional units (DySER) is integrated in the execution
stage of an OpenSPARC processor. A compiler detects compute-intense code
regions and maps those onto the array. Except for simple control flow structures,
most of the control flow is handled by the OpenSPARC processor. Memory access
has to be handled by the processor as well, and in every loop iteration each local
variable has to be written to and read from the computation slices. The CGRA
is completely integrated, but not suitable for real-time applications.

[4] presents an automated toolflow that utilizes a CGRA as an overlay archi-
tecture on an FPGA. The project is in a promising stage of development, but
misses a verified realization on a chip. It appears that the architecture does not
support control flow.

A CGRA that is primarily constructed for mobile phones with the capabil-
ity to process floating-point operands is contributed in [7]. The design is imple-
mented with 130 nm CMOS technology and tested with JPEG and physics engine
kernels. While achieving a significant higher performance than an ARM9 for the
given benchmark, the architecture is neither coupled with an actual host pro-
cessor nor an automated tool for software integration is provided.

[1] presents a fully pipelined CGRA. It is capable of high performance and
shows that incorporating pipelined operations can lead to significant increase
in performance. However, the system lacks of applicability as a general purpose
accelerator, since only innermost loops can be executed and control flow heavy
applications cannot be mapped.
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3 Requirements and System Outline

In CAMeL-View, mechatronic systems are modeled as a hierarchy of intercon-
nected subsystems with inputs, outputs, parameters, and internal states. Instead
of explicitly resolving differential equations describing complex physical behav-
ior, the engineers formulate how the outputs and the first derivative of internal
states are computed from the inputs, parameters, and the internal states. When
generating code for executing these models either as simulation or on an embed-
ded processor as part of the test rig, numerical integrators are required to derive
the values of internal states after a certain time step from their current value and
derivative, e.g. x(t + Δt) = x(t) + ẋ(t) · Δt. Those integrators are not explicitely
represented in the CAMeL-View models.

When executing control models on a test rig, CAMeL-View runs on a con-
trol terminal (e.g. an industrial PC), which is connected to a RT target over
a wired network link as shown in Fig. 1. An embedded system is used as RT
target to fulfill the system requirements on jitter and fast peripheral I/O in the
microsecond range. It consists of a host processor for the network communication
stack and other basic computations, as well as an accelerator for compute-intense
application kernels and communication with peripheral devices (i.e. sensors and
actuators). In this scenario, CAMeL-View is also the user interface of the test rig
capturing change requests for runtime parameters and visualizing data received
from the RT target as charts or animations.

CAMeL-View control algorithms are processed in a loop with a fixed fre-
quency. In each period, sensor inputs and/or data from the host processor is
loaded, processed according to the control algorithm and the resulting values
are sent to the actuators or back to the host processor. The accelerator can
either execute the whole CAMeL-View model, such that the host processor is
just used as a communication gateway. Alternatively, a control algorithm can
also be distributed over the CGRA and the host processor, where the control
cycle of the host processor can be an integer-multiple of the accelerator control
cycle. This requires an efficient and well synchronized exchange of runtime data.
More specifically, the accelerator has to distinguish between high priority inputs
produced by the host in every control cycle and low priority parameter updates
sporadically generated by the control terminal. In the reverse direction, accel-
erator results directly processed by the host have a high priority but typically

Fig. 1. Application scenario
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a low volume, while computed results to be displayed at the control terminal
have a lower priority but require a higher bandwidth, when lots of intermediate
signals are to be observed.

During the development of a test rig, structural modifications of the control
models require the regeneration and redeployment of the configuration for the
host processor and the accelerator. Besides the runtime data, the host processor
thus has to be able to send application-specific configurations to the accelerator.
The round trip time of such modification and reconfiguration cycles has to be in
the orders of seconds to ensure an acceptable and efficient workflow for the con-
trol engineers. Thus, instead of using a HLS toolflow to translate and synthesize
CAMeL-View models into bitstreams for FPGA-based hardware accelerators,
a CGRA-based accelerator is exploited. Besides its fast mapping from abstract
application descriptions to corresponding CGRA configurations, this approach is
independent from any FPGA or ASIC synthesis tools and their required licenses,
which was another main requirement within the UltraSynth project.

Finally, a CGRA Application Programming Interface (API) is required for
the host processor to encapsulate all data and configuration transfers as well as
the execution synchronization. Besides improving the portability to other target
devices, this API hides CGRA-specific optimizations such as the rearrangement
or duplication of data transfers (see Sect. 4.2) from the CAMeL-View backend
developer.

4 Hardware Integration

The micro-architecture of the proposed CGRA decouples the core computation
(i.e. interconnected PEs and control flow modules) from the hardware interface
to the host processor. As this paper focuses on the CGRA integration into the
RT target, the core architecture is described only briefly. More details can be
found in [8].

4.1 Core Architecture

A PE consists of an Arithmetic Logic Unit (ALU), a Register File (RegFile),
and a Context Memory (CMem), as shown in Fig. 2. The context indexed by the

Fig. 2. PE with access to external memory
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Fig. 3. CGRA core overview

current context counter (i.e. ccnt) is loaded from the CMem. Besides multiplexer
settings and ALU operand selections, a context defines the addresses for the read
and write ports of the RegFile.

The ALU has a modular structure. Operands are selected by multiplexers in
front of the ALU. They select either data from the RegFile or from inputs (i.e.
in) driven by the out-port of neighboring PEs. The multiplexer in front of the
RegFiles selects either results from the ALU, data from an external memory or
setup parameters (i.e. live in). The setup mechanism is detailed in Sect. 4.2.

The CGRA is able to process kernels with heavy control flow and nested loops
by using speculative computing and predicated stores in the PEs. The Condition
Box (C-Box) combines status signals from comparison operations and drives
the store predication signals, as shown in Fig. 3. Furthermore, branch selec-
tion signals drive the Context Control Unit (CCU), which performs branching.
Consequently, all CMems of the PEs are controlled by the CCU with a common
ccnt signal.

4.2 Peripheral Communication

To utilize the CGRA core as a hardware accelerator, it has to be properly inte-
grated into a processing system. In this section, the integration of the CGRA
core into a Xilinx Zynq SoC is described. An alternative system integration of
the same CGRA core can be found in [10].

As described in Sect. 3, the accelerator has to pull sensor samples, push actu-
ator samples, receive configurations and runtime data from the host processor,
and push back different kinds of computed results to the host processor. To
support these data transfers within the Zynq SoC, additional hardware modules
have to be arranged around the CGRA core, as shown in Fig. 4. Just like the
PEs inside the CGRA, those modules include CMems to be configurable for a
specific application. An Advanced eXtensible Interface Bus (AXI) interconnect
is used to transfer configuration and runtime data from the host processor to the
CGRA. Therefore, all CMems are memory mapped into the AXI address space
by an appropriate AXI slave module.

To ensure the accurate timing of the periodic control loops, a configurable
hardware cycle counter provides a heart beat for the overall system in terms
of periodic sync in pulses. Upon this trigger, the sensor controller captures
new values from its attached peripherals and writes those samples into the
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Fig. 4. Communication between the CGRA and its peripherals (sensors, actuators,
and host processor) on the Zynq SoC

BRAM-based sensor buffer. The sensor controller then signals the CGRA to
start executing a control cycle. During this execution, the CGRA can read val-
ues from the sensor buffer. The required read address is provided by the CMem
within the sensor buffer. The sensor data is transferred into the RegFile of one
(or more) PEs via the live in path (see Fig. 2). The sensor sampling cannot be
interleaved with a control cycle, as the scheduler has no information about the
time required to capture specific samples. This sensor sample delay may even
vary between successive control cycles.

Besides the sensor samples, runtime parameters sent from the host proces-
sor via AXI are used as inputs for the CGRA processing. Those parameters
can be categorized into constants (loaded once for each application), initial val-
ues of internal states (loaded after each application reset), runtime parameters
(updated sporadically upon user interaction at the control terminal), and inputs
from the host processor (updated before every control cycle). In any case, those
parameters must not be updated while a control cycle is executed, as the com-
puted results would depend on the scheduled operator ordering and the exact
time of the parameter update. The latter cannot be predicted accurately enough
due to latency variations on the host processor and the AXI interconnect. Thus,
a BRAM-based parameter buffer is memory mapped into the AXI address space
to delay all parameter updates until the end of the current control cycle. Besides
this delay mechanism, the parameter buffer also contains a configurable table to
map parameter indices (derived from the AXI write address) to the targeted PE
index and the targeted address within the corresponding RegFile. As soon as the
current control cycle is done, the buffered parameters are written to the RegFiles
via the live in path (see Fig. 2). If a certain parameter has to be written to
multiple RegFiles within the CGRA to reduce data copy operations at runtime,
multiple AXI writes to the parameter buffer are generated by the host processor,
as detailed in Sect. 5.3.
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Fig. 5. Actuator buffer

The parameter buffer can be configured such that the execution of the next
control cycle is delayed until the expected number of inputs from the host pro-
cessor have been received and transferred into the RegFiles. This mechanism is
exploited to synchronize the execution of CGRA and the host processor when a
control algorithm is distributed over both of them. However, the dynamic delay
until all required inputs are received adds up to the possible uncertainty from
the sensor sampling stage, which might cause the overall application period to
be exceeded. To detect such timing violations at runtime, an error is signaled
to the host processor if the CGRA receives another sync in pulse while still
executing the current control cycle.

The out signal of the PEs (see Fig. 2) are not only used to drive the in signals
of their neighboring PEs, but also to push calculated results to the actuator
controller and the host processor, as shown in Fig. 4. Within the actuator buffer,
the buffer context loaded for the current ccnt selects the correct PE output
to be buffered (see Fig. 5). For the last actuator sample generated within a
control cycle, a sync out pulse is derived from the actuator buffer context to let
the actuator controller transfer the buffered values to the attached peripheral
devices.

To transfer CGRA outputs to the host processor, two different kinds of out-
puts are distinguished, as described in Sect. 3. Result outputs have to be available
at the host processor before the next control cycle is started. Those results are
typically intermediate values of a control loop distributed over CGRA and the
host processor. As shown in Fig. 6, one PE output per clock cycle can be pushed
into the result buffer. To reduce the scheduling constraints, the results can be
buffered out of order. The output context then forwards the results in order to the
On-Chip Memory (OCM) within the Zynq processing system via a high priority
AXI master, from where they can be accessed by the host processor. The output

Fig. 6. Result buffer
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Fig. 7. Log buffer

context cannot be indexed by the continuously incremented ccnt, as the AXI
master must be able to stall the transfer as long as the AXI slave is not ready to
receive more data. Thus, a burst controller drives the output context such that
an AXI burst is generated, as soon as the slave is ready and all burst data is
available in the result buffer.

The other type of PE outputs to be transferred to the host processor is
referred to as log data. These are typically values to be monitored by the user
at the control terminal or to be captured over a long run to retrace the overall
calculation. Compared to the result data discussed before, the log data transfer
is not time critical, as the host processor does not have to respond immediately.
On the other hand, the amount of log data is typically much larger than the
amount of result data. Using the same approach of the result buffer for the log
data would result in a bottleneck, as only one log datum could be buffered in
every cycle. As most log data is generated near the end of a control cycle, this
output generation could not be interleaved completely with other computations,
and thus would increase the overall schedule length. To overcome this bottleneck,
the input stage of the log buffer consists of a double buffer for each PE, as shown
in Fig. 7. The buffers for write (PE to buffer) and read (buffer to AXI) access
are switched after each control cycle. This allows to buffer more log data at once
and furthermore, an entire control cycle can be used to transfer the log buffer
content to the host processor. This is actually done by writing the log data and
the index of the current control cycle into a circular buffer in the SoC-external
Double Data Rate (DDR) memory via a low priority AXI master to not interfere
with the transmission of the result data. The host processor is thus relieved from
immediately processing the received log data.

5 Toolflow Integration

The CGRA-specific toolflow partially integrated into CAMeL-View is shown in
Fig. 8. The main toolflow is implemented in Java, as portability and reusability
are considered more important than the tool runtime at the moment. It is divided
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Fig. 8. Toolflow for generating a Verilog bitstream from a CGRA composition (1 to
3) and CGRA contexts for a specific CAMeL-View application (4 to 10). Third-party
tools (red) are interconnected by the CGRA-specific tools (blue) implemented in Java.
(Color figure online)

into two interconnected tool-chains for generating the CGRA composition bit-
stream (i.e. Steps 1 to 3, described in Sect. 5.1) and the application-specific
CGRA configuration (i.e. Steps 4 to 10, described in Sect. 5.2). The latter one
can be executed on the control terminal from within CAMeL-View. The final
download of the configuration is part of the API used by the host processor and
described in Sect. 5.3.

5.1 CGRA Composition and Bitstream Generation

At some point the question arises, how a CGRA should be composed. This com-
position defines the number of PEs, their interconnection topology, the selection
of operations in each PE, and the size of the IO buffers. Each application has
its own configuration (i.e. CMem entries), but many applications can use the
same composition. The actual mapping between application and composition is
done by a scheduler. To research and exploit heterogeneous CGRA compositions,
a static Verilog description is impractical. Instead, a generator framework was
implemented.

Arbitrary CGRA instances can be modeled either manually by providing a
corresponding JavaScript Object Notation (JSON) description, or automatically
optimized for a set of applications, which is however beyond the scope of this
paper. After parsing the composition into a Java object model by the attribute
loader (Step 1), corresponding Verilog code is generated (Step 2). The resulting
hardware description and constraints also include all required modules for inter-
facing the CGRA to the host processor and to peripheral sensors and actuators,
as described in Sect. 4.2. Finally, the bitstream is generated and downloaded to
the Zynq device using the Xilinx Vivado tool-chain (Step 3).

5.2 CGRA Configuration

The second tool-chain starts with the application modeled in CAMeL-View
(Step 4). Within this environment, the submodules of the control algorithm
to be accelerated by the CGRA can be selected. These computational kernels
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are then exported as Control and Data Flow Graph (CDFG), which is repre-
sented in JSON along with other settings like the numerical integrator details.
All remaining parts of the application are exported as C-functions to be exe-
cuted on the host processor. Furthermore, the user selects a specific RT target
(i.e. Zynq device), which is already programmed with the synthesis result from
the bitstream tool-chain. The corresponding CGRA composition associated with
the selected RT target is then loaded, again as Java object model (Step 5).

Afterwards, the application CDFG is parsed and optimized into a Java object
model (Step 6). Those optimizations comprise typical compiler passes (e.g. com-
mon subexpression elimination, constant propagation, dead code elimination,
and bitwidth optimization) and other steps required to adjust the CAMeL-View
execution model to the CGRA execution model. For instance, selection opera-
tions (e.g. a = b ? c : d) have to be transformed into predicated store oper-
ations (e.g. if (b) a = c; if (!b) a = d). Furthermore, update operations
for the CDFG state variables have to be inserted depending on the user-selected
integration type. Currently, first and second order integrators (i.e. Euler and
Heun [3]) are supported. All integrator steps rely on the calculation of the time
derivative for the internal states, which is already part of the CDFG generated
by CAMeL-View.

The optimized CDFG and the CGRA model are then fed into the scheduler
(Step 7), which is based on list scheduling with additional constraints to cope
with routing resources and inter-PE data transfers [9]. This approach produces
very good results in short time [8]. Since the CAMeL-View models are based on
reading and writing physical inputs and outputs, additional input and output
operations need to be scheduled. The input operation allows a PE to read a
value from the sensor buffer, as shown in Fig. 4. Output operations write the
actuator, result, or log buffer, or even to multiple of them at once. As the result
and actuator buffer may only be written by one PE at a time, the scheduler has
to avoid write conflicts on these buffers. Furthermore, data structures required
to map the buffered values to their respective CDFG nodes are generated.

Based on the scheduled input, output and arithmetic operations as well as
the targeted CGRA model, the context information required to let the CGRA
execute the current application is generated (Step 8). The CMem content for
PEs, C-Box, CCU, and the peripheral buffers described in Sect. 4.2 is generated
as Java object model at this stage. In Step 9, this context information is exported
into C structures as part of the CGRA API for the host processor (see Sect. 5.3).
Besides the context data, the C-API generator exports more scheduling details
about the RegFile allocation to hide the mapping of inputs, parameters, and
constants to certain PEs from the host application. Steps 7 to 9 allow to use any
CGRA composition feasible with the generic model.

Finally, the C-API is combined with the software part of the CAMeL-View
application and fed into the ARM compiler (Step 10). The resulting binary is
downloaded to the host processor and executed on one ARM Cortex-A9 core.
The other core is interfacing the control terminal and does not need to be repro-
grammed when modifying the target application.
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Listing 1.1. Minimal usage example for the CGRA API

1 u i n t 8 t nextCycle = 0 ;
2 void handler (void ∗data ) {nextCycle = 1 ;}
3 void main ( ) {
4 cgra setupData . logLowerAddr = 0x14000000 ;
5 cgra setupData . logUpperAddr = 0x147FFFFF ;
6 cgra setupData . logIncrement = 0x1000 ;
7 cgra setupData . mainPeriod = 100000;
8 cg ra s e tup ( ) ;
9 cgra onSyncIn ( handler )

10 cgra changeStateRun ( ) ;
11 while (1 ) i f ( nextCycle ) {
12 nextCycle = 0 ;
13 cgra updateRuntimeParameters ( ) ;
14 for ( int i =0; i<CGRA LOG RESULT COUNT; i++)
15 p r i n t f ( ”%f \n” , ( f loat ∗) cgra readLogData ( i ) ) ;
16 cgra stepLogWindow ( ) ;
17 }
18 }

5.3 CGRA API

The software API for the host processor provides methods to configure the
CGRA, to register interrupt handlers, to start and stop the periodic execution of
the accelerated application kernel, to transfer runtime data to the CGRA, and
to read result and log data from the OCM and DDR memory. All transfers from
the host processor to the CGRA exploit the Cortex-A9 Direct Memory Access
controller. They are combined to AXI burst transfers as far as possible. Both
mechanisms are transparent to the API user.

A minimal usage example is shown in Listing 1.1. After defining the bound-
aries of the circular log buffer in the DDR memory region (Lines 4 to 6) and
the number of clock cycles per control cycle (Line 7), all configurations (i.e. con-
text data and initial RegFile values) are transferred to the CGRA in Line 8. In
Line 9, the interrupt handler for the sync in pulse is registered and the control
cycle is started in Line 10. After each sync in pulse, all runtime parameters
modified by the control terminal (i.e. on the second ARM core, not shown in
Listing 1.1) are transferred to the CGRA in Line 13. A dirty flag mechanism
is used to avoid superfluous parameter transfers. Furthermore, one parameter
update might result in multiple AXI transfers, if this parameter is scheduled to
multiple PEs inside the CGRA. The mapping of parameters to (multiple) AXI
addresses is based on the tables exported by the C-API generator. Finally, after
reading the log data received from the CGRA during the last application cycle
(Line 15), the API-internal pointer to the current window in the circular log
buffer has to be forwarded (Line 16).

5.4 CGRA Verification

The integration of the CGRA into an SoC, the parallel execution of the PEs,
the parallel execution of host processor and CGRA, and the communication
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between both units over three independent AXI ports provide a large number of
possible errors calling for verification support. Based on the generator framework
described above, two helpful features were integrated into the CGRA toolflow.

First, a testbench generator was implemented to simplify RTL verifica-
tion using Modelsim. This generator combines the outputs of the both CGRA
toolchains, i.e. the Verilog code for the CGRA composition and the C Code
including the CGRA API implementation and the configuration for a certain
application model. Using the Modelsim Direct Programming Interface to mimic
the AXI transfers, the whole configuration and runtime data exchange of the
CGRA can be simulated without modifying any other detail on the hardware or
software level. Thus, only a simple C-like test file has to be generated manually
to verify the CGRA execution on RTL.

Second, the Verilog generator of the composition toolchain was extended to
add all code necessary for propagating any nested signal to the CGRA toplevel,
where it can be connected to the Xilinx Logic Analyzer for runtime observation.
This debug signal propagation can handle regular expressions within its path
specifications, which is very helpful when analyzing similar structures such as
the ALU output of all PEs or the CMem outputs within different modules.

6 Evaluation

In this section, the proposed CGRA-based hardware accelerator is evaluated
in terms of resource utilization, clock frequency, tool runtime and application
execution time. Therefore, the CGRA is integrated into a Xilinx XC7Z045-2
SoC, as detailed in Sect. 4.2.

6.1 Synthesis Results

To analyze the scalability of the accelerator, CGRAs with different numbers
of PEs are generated and synthesized. Table 1 details the composition settings
common for all of these CGRAs. They are chosen such that all example appli-
cations used for the performance evaluation in Sect. 6.3 can be mapped to those
CGRAs. The CGRAs were configured to operate on single precision floating-
point numbers. As shown in Fig. 9, each PE is connected with its eight neigh-
bors in a matrix structure with horizontal and vertical wrap-around. This matrix
star toroidal interconnect was chosen as the best performing solution among the
regular interconnects that do not lead to significant drops in clock frequency
[10]. Heterogeneous interconnects and PE operator selections could improve the
CGRA performance, but this is beyond the scope of this paper.

Figure 10 details the LUT, DSP, and BRAM utilization (left axis) and the
minimum clock cycle period (right axis) for different CGRA configurations using
Vivado 2017.3. As expected, the resource usage increases significantly when
increasing the number of PEs. The LUTs are the limiting resource and allow
for a 5 × 5 PE configuration. The clock frequency is relatively stable and never
falls significantly below 100 MHz.
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Table 1. Common CGRAs settings. Operators are
annotated with their single precision floating-point
latency (cycles).

Operators ADD(8), SUB(8), MUL(8),
DIV(38), OR(1), NEG(1),
ABS(1), SGN(1), SQRT(54),
IFLT(4), IFGT(4), SIN(36),
COS(36), ASIN(37)

PE Interconnect Matrix Star Toroidal

RegFile 256 entries (32 bit each)

C-Box Size 64 entries

CMem Size 8192 entries

I/O Buffer Size 32 entries

Fig. 9. Interconnect topology:
4 × 3 matrix star toroidal

Fig. 10. Vivado 2017.3 performance results for XC7Z045-2 target. The value above
each bar refers to the absolute of either LUTs, DSPs, or BRAMs

6.2 Tool Execution Time

As described in Sect. 3, one goal of this project is to minimize the time required to
map control algorithms to the accelerator. To evaluate the tool runtime, several
CAMeL-View applications have been mapped to the 4 × 3 CGRA discussed in
Sect. 6.1. As shown in Fig. 11, the CDFGs to be handled by the scheduler range
from several dozen nodes for a simple mechanical pendulum to more than 10
000 nodes for the model of a vehicle suspension system (i.e. half axle). The Java
Tools described in Sect. 5.2 were executed on an AMD Ryzen 5 1600X processor
running at 3.7 GHz. Figure 11 details the measured runtime averaged over 100
executions. For the smaller CDFGs, the file I/O dominates, but the overall run-
time is negligible. The runtime of the scheduler and context generator increases
significantly with the CDFG size. However, providing a complete configuration
within 35 s for the largest example is still two orders of magnitude faster than
generating a corresponding FPGA bitstream.
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Fig. 11. Tool runtime: The specified node value indicate the size of the CDFG

6.3 Application Execution Time

The time required to execute a single control cycle is limiting the integration step
size and is thus considered the main performance metric. The average execution
time of one cycle on the ARM Cortex-A9 processor (running at 800 MHz) after
cache initialization is taken as the performance baseline. The control algorithms
already used in Sect. 6.2 are run out of CAMeL-View, which uses the GCC
compiler with an O2 optimization. Those applications are not using sensors or
actuators, as this comparison should focus on the computational performance of
the architecture itself. Figure 12 lists the execution time of these applications on
the ARM processor in the labels below the application names.

Those applications were mapped to the 5 × 5 CGRA, since it is the largest
possible composition identified in Sect. 6.1. As shown in Fig. 12, the CGRA out-
performs the ARM processor for all investigated applications by up to 2.23×.

Fig. 12. CGRA speedup of application execution time compared to ARM Cortex-A9.
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7 Conclusion

This contribution presented a CGRA-based hardware accelerator for control
engineering applications and its integration into a Xilinx Zynq SoC. It executes
a complex mechatronic model more than twice as fast as an ARM Cortex-A9.
The overall CGRA configuration toolflow is fully integrated into the CAMeL-
View development environment and maps even larger models to a given CGRA
composition within a few seconds.

Future work will optimize the CGRA core and scheduler (e.g. interleaved
operations, pipelining and resource sharing for similar operations). Heteroge-
neous PE operator sets and irregular interconnects will be exploited and alter-
native CGRA architectures and scheduling strategies will be investigated.
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Abstract. Although Processing-in-Memory (PIM) architectures have
helped to reduce the effect of the memory wall, the logic placed inside
3D-memories still faces the large disparity between DRAM and CMOS
logic operations. Thereby, for a broad range of emerging data-intensive
applications, the Functional Units (FUs) are usually underutilized, espe-
cially when the application presents poor temporal-locality. As applica-
tions demand irregular processing requirements on the different parts of
their execution, this behavior can be used to reconfigure energy-reduction
techniques, either by scaling frequency or by power-gating functional
units. In this paper, we present the application-dependable characteris-
tics that enable dynamic usage of energy-reduction techniques without
performance degradation for highly constrained PIM designs. The exper-
imental results show that the exploration of a reconfiguration mechanism
can improve PIM system energy efficiency by 5× and also can effectively
benefit both memory-intensive and compute-intensive applications.

Keywords: Processing in Memory ·
Reconfigurable vector architectures · Energy-efficiency

1 Introduction

The 3D-stacking process has emerged as a solution for mitigating the memory-
wall problem. In recent years, the emergence and feasibility of 3D-stacking tech-
nology have opened up opportunities in both architectural and chip design
fields. Supported by these new trends, Processing-in-Memory (PIM) concept
has emerged as a prominent approach to improve performance and reduce the
energy of modern systems. This approach keeps closer processing and data by
taking advantage of logic layer available on 3D-stacked memories to compute
data directly in the memory device. Nevertheless, the design of 3D-stacked PIM
devices still faces challenges related to costs, retention characteristics, and busi-
ness decisions. The main issue resides on the thermal dissipation challenges that
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happen when stacking Dynamic Random Access Memory (DRAM) layers on top
of processor layers. [1]. A second issue involves customizing the DRAM dies for
each processor chip, which introduces design and supply-chain complexity that
would increase the overall manufacturing cost [2].

Although PIM architectures have reduced the effects of the memory wall, the
processing logic placed inside 3D-memories still faces the disparity of latencies
between DRAM and CMOS logic operation. The average latency for DRAM
access is typically tens of times higher than the time of a Functional Unit (FU)
operation under the same constraints, and even worse for the most recent tech-
nology nodes. This fact implies that the processing unit can potentially spend
more time in idle mode and increase power density depending on the arithmetic
intensity. The degree of utilization of FUs relies on data reuse and the compu-
tational intensity inherent from the workload.

Furthermore, the majority of the applications can present a mix of compute-
bound and memory-bound behavior [3]. Thus, the variability of application’s
demand for processing power and the latency disparity between operations on
DRAM and FUs can be used to reduce energy consumption, and also help with
the inherited thermal dissipation problems of the 3D-stacked PIM architectures.
To do so, a special mechanism must detect the fluctuations in the application
needs for FU resources. Further, this mechanism must reconfigure the PIM archi-
tecture to dynamically match the current demand for processing power and keep
the maximum memory bandwidth achievable by each application part based on
some decision heuristic. A reconfiguration process should dynamically adapt the
number of FUs or perform a frequency scaling operation ideally without per-
formance penalties. Adjusting the number of working FUs implies that highly
parallel and bigger operations can be split into smaller and sequential ones.
Thus, both the idle time and the energy consumption of unused FUs could be
minimized.

This paper opens up a discussion on the use of reconfigurability in vectorial
PIM architectures to provide energy-efficiency and overcome technical issues,
rather than limiting the effects of reconfiguration to performance-oriented goals.
The main contributions of this paper are:

1. The use of reconfigurability to minimize thermal power dissipation challenges
in 3D-stacked PIM architectures.

2. The identification of application characteristics to match processing power to
the maximum bandwidth achievable by each application.

3. A reconfigurable mechanism for dynamically reducing the number of active
FUs as the application demands, which varies the processing power of PIM
logic and finds a near-optimal point to the energy consumption.

The rest of this paper is organized as follows: in Sect. 2 a general overview of
3D-stacked PIM is presented, as well as its constraints and feasibility challenges
are discussed. In Sect. 3, hardware and software aspects of reconfiguration on
vector processors are discussed, and some examples are shown to highlight the
benefits of reconfiguration. The experimental setup and methods used to validate
the proposed method are described in Sect. 4 and the results are presented in
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Sect. 4.3. Finally, some related works are listed in Sect. 5 and final considerations
are made in Sect. 6.

2 Background

In this section, a general overview of fundamental concepts related to 3D-stacked
memories and Processing-in-Memory (PIM) architectures are presented. Next,
a brief discussion about 3D-PIM architectures design feasibility and constraints
is promoted to situate the proposed approach realm.

2.1 3D-Stacked Processing-in-Memory

By connecting Dynamic Random Access Memory (DRAM) memory dies stacked
on top of a logic layer using dense Through-Silicon Via (TSV), high-density 3D
memories can provide higher capacity, bandwidth, and lower access latencies
compared to traditional DRAM modules. The most diffused and recent examples
of 3D-memory usage in the industry are the Micron’s Hybrid Memory Cube
(HMC) [4], and AMD/Hynix’s High Bandwidth Memory (HBM) [5]. Figure 1
illustrates the internal organization of a generic 3D-stacked memory. For HMC
and HBM, the 3D memory layout is composed of several DRAM layers, each
one containing multiple banks.

The stacked arrangement of DRAM layers is split vertically into vaults. Each
vault comprises a region of DRAM layers and a logic layer connected by an inde-
pendent group of TSV and controlled by a vault controller. Each vault controller
manages its own DRAM banks independently. Thus, it is possible to operate on
a 3D-memory with both vault-level and bank-level parallelism. Following the
last HMC specification [4], it can be seen that the memory module can have
either four or eight DRAM dies and one logic layer all stacked within a memory
cube. The cube has 32 vaults with their respective vault controllers. Each vault
controller can manage independently 16 memory banks. The HMC can achieve
up to 320 GB/s of bandwidth distributed along four serial link interfaces.

In addition to the emerging of 3D-stacked memories, the increasing demand
for computational resources by data-intensive applications leveraged and reintro-
duced the PIM research field. As the usage of PIM devices alleviates the memory
bottleneck, the natural application domain covers current big-data processing.
Also, PIM reduces energy consumption and accelerates applications execution
time avoiding the data movements back and forth along the memory hierarchy.
Moreover, PIM can exploit both the high memory bandwidth, more massive
Data Level Parallelism (DLP) and vault-level parallelism when coupled with
3D-stacked memories.

There are several architectural PIM design approaches in the literature. For
commodity, and according to [1], they can be classified into two main categories
based on the central processing element type present in the logic layer: General
Purpose Processor (GPP)-like cores and dedicated logic circuits. The former
group adopts the replication of conventional GPPs into the logic layer. This PIM
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Fig. 1. 3D-stacked memory layout comprising of eight DRAM layers and a base logic
layer connected by TSVs and vertically organized in vaults.

processing element type takes advantage in programmability since it inherits
the commodity software development tools such as MPI and CUDA. On the
other hand, processing elements built based on dedicated circuitry often rely on
replication of Functional Unit (FU) elements, which, in turn, achieves high DLP,
memory bandwidth, and computational power [6].

2.2 Constraints and Feasibility of 3D-Stacked PIM

Although 3D-stacked PIM is feasible for a broad range of application domains,
some design challenges must be faced when considering a 3D memory PIM
project. The designers have to deal with power, area and energy constraints
for the logic layer to effectively implement the PIM architecture.

According to [1], the power budget related to the logical layer available in
the last generation of HMC comprises 11W. However, this constraint can be
even smaller if thermal aspects are taken into consideration, reducing it to mere
8.5 W. Regarding area, for an HMC design with a capacity of 8 GB distributed
along eight DRAM layers, 16 memory banks and 32 vaults, the area available
in the logic layer corresponds to 144mm2. Thus, taking into consideration all
the physical and technological aspects involved in the logic layer project design,
the most suitable PIM processing element type for 3D-stacked memories is that
one based on FUs replication [1]. Moreover, FU-centered PIM design with vec-
tor operations capabilities can exploit both the entire bandwidth available and
provide high DLP, while fitting in the logic layer constraints.

3 Reconfigurable Execution

There are several possibilities to be explored in a PIM architecture design when
concerning about energy consumption. Even following the power and area con-
straints related to 3D logic layer, some aspects intrinsic from DRAM technology
cannot be changed. Although PIM reduced the memory walls, the time spent to
perform a memory access to a DRAM is still tens of times higher than the time
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required to process the data in the FUs. So, exploring such inherent character-
istics in PIM designs can lead to an energy consumption reduction.

Recent proposals of PIM architectures rely on multiple homogeneous pro-
cessing units, and most of them have in common a high number of FUs. For
example, we will examine groups of Single Instruction Multiple Data (SIMD)
units organized into several Vector Processing Units (VPUs). Thus, sizing the
number of FUs to exploit the high internal bandwidth requires an analysis of the
area and power costs. Floating point units, for instance, are generally required
in basic applications and have a high cost regarding area and power [7]. Energy
savings can be achieved by (a) selecting how many units will execute a code por-
tion on compile time (b) dynamically scaling frequency or by (c) reconfiguring
the data path to turn on/off FUs when they are not used for a long time.

3.1 Application Classification

The SIMD units with fixed width and frequency cannot satisfy different process-
ing utilization requirements of various applications. Even a single application can
have a variable processing power pattern during execution time [8]. PIM based
on SIMD units are a natural choice for many data-intensive workloads [9–11],
as this combination can benefit both memory-intensive and compute-intensive
applications. Some known metrics can identify the compute intensity and cost
of memory access, such as:

1. Memory access distance: indicates a fraction of cycles where pipeline could
be stalled due to demand for load or store instructions. As kernel code por-
tions with poor-temporal locality may cause a miss throughout the cache
hierarchies, the major part of such cycles may be spent due to DRAM latency
accesses [12].

2. Arithmetic intensity and cost of instruction: indicates how many SIMD
operations are made in sequence, and the cost in cycles of each instruction.
For instance, floating point division takes 20 cycles, while typical bit-wise
operations are made in 1 cycle.

3. Memory parallelism: the predominance of regular memory access patterns,
either by vault-level and bank-level parallelism, reduces the average memory
access latency. Thus, the reduced and stable latency can be used to create a
pipeline for data stream workloads [13,14].

Either a compiler or a HW mechanism can identify such metrics. As past
studies already extracted these characteristics on compile time, a compiler-based
tool with hardware information should be suitable for that task. This compiler
tool can analyze basic blocks based on the costs of instructions and memory
accesses to foresee the arithmetic intensity. To better illustrate this analysis,
two basic blocks of common kernels with irregular processing power demands
are presented in Listing 1.1. The first basic block (BB0 ) performs a data copy
operation from one region of the memory to another, and the second basic block
(BB1 ) executes the dot product of two vectors.
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In the BB0, the whole basic block consists of PIM load and store instructions,
which implies that no processing power of SIMD units is needed and all FUs can
be turned off. In contrast to the BB0, the BB1 has 14 PIM instructions between
the second load instruction and the next memory access in the loop. For instance,
the 14 instructions take 52 cycles, or 41.6 ns using the default period (0.8 ns) of
the HMC’s logic layer, to be completed. As 14 SIMD instructions take 41.6 ns
considering 256-byte SIMD units, this represents about 20 GFlops. In order to
not hurt the total execution time, the maximum processing power must be kept
the same. However, the number of FU per SIMD unit can be significantly reduced
without performance degradation, while improving the energy of computation.

In this paper, we rely on a compiler that identifies and offloads instructions to
a PIM device as presented in [15]. Then, we test this heuristic to find the optimal
point regarding energy-efficiency in a case study architecture. Some alternatives,
such as vector size and Dynamic Voltage Frequency Scaling (DVFS) are consid-
ered. However, the need for a fine-grain reconfigurability leads to changes in the
execution mechanism that will be presented in Sect. 3.3.

Listing 1.1. Example of an assembly code snippet with two different basic blocks.
.BB0 :

PIM 256B LOAD VPU 0 Reg 0 , pimword ptr [ rax ]
PIM 256B LOAD VPU 0 Reg 1 , pimword ptr [ rax + 256]
PIM 256B STORE pimword ptr [ rbx ] , VPU 0 Reg 0
PIM 256B STORE pimword ptr [ rbx + 256 ] , VPU 0 Reg 1
add rbx , 256
add rax , 256
inc rcx
cmp rcx , 16384
jne BB0

.BB1 :
PIM 256B LOAD VPU 0 Reg 1 , pimword ptr [ rax ]
PIM 256B LOAD VPU 0 Reg 2 , pimword ptr [ rbx + 4∗ rcx ]
PIM 256B VFMUL VPU 0 Reg 1 , VPU 0 Reg 2 , VPU 0 Reg 1
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0 x3 f eec
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0 x1f4
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0xe
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0x1
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B PSHUFFLE VPU 0 Reg 1 , VPU 0 Reg 0 , 0 x f f f f f f f f f e e f f e e c
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B PSHUFFLE VPU 0 Reg 1 , VPU 0 Reg 0 , 0 x f f f f f f f f f e e d f 4 e 5
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B STORE pimword ptr [ rcx ] , VPU 0 Reg 0
add rax , 256
add rbx , 256
add rcx , 256
inc r12
cmp r12 , 16384
jne BB1

3.2 Vector Size Identification on Compiling Time

Regarding vectorization, traditional open-source compilers like GCC and com-
mercial compilers such as ICC have different approaches to identify vectorization
possibilities. Considering the most aggressive compiler flags which enable vec-
torization, different schedulings for vectorial instructions are related for GCC
and ICC assembly codes. The ICC tends to use only vectorial instructions for
a given set of elements if their operations can be converted into vectorial ver-
sions. When the number of elements is not an exact multiple of the available



268 J. P. C. de Lima et al.

vector sizes, ICC issues masked vectorial instructions for those that do not fit
entirely in a vector unit. On the other hand, GCC issues as many vector instruc-
tions as possible for a specified vector width and scalar instructions for the
remaining vector operands. However, none of the state-of-the-art compilers per-
form an efficient analysis regarding energy consumption in vector operations.
Memory-intensive applications could have their processing power reduced with-
out performance degradation by selecting fewer VPUs and turning off the idle
ones. Moreover, the number of Load/Store Units impacts the maximum mem-
ory bandwidth achievable by an application, which reflects applications where
the memory bounds the execution time, rather than the number of processing
elements.

3.3 Dynamic Reconfiguration of Execution Mechanism

In a typical vector processor, as the degree of compute-boundness of an applica-
tion decreases, a significant amount of static energy is lost to keep a great number
of FUs in active mode. In applications that are mostly memory-bounded, the
full width of a large SIMD unit is used for a few cycles. This fact causes low uti-
lization rate and ineffective energy spendings to keep them in idle mode, mainly
when the architecture supports large SIMD units. As the number of active FUs
is reduced, the spatial operations of a SIMD instruction can be pipelined in a
few number of FUs, and they can be completed with a small penalty of a few
more cycles per instruction. As basic blocks may admit a variable increase of the
latency of modifying instructions, no performance degradation can be perceived,
since the processing latency is masked by the memory access latency in a loop.

A straightforward change in the control unit and data-path of an usual SIMD
unit is needed to provide variable width of this unit on the execute stage. Figure 2
presents a possible implementation of a VPU to have a single SIMD instruction
pipelined using different factors of two. In this mechanism, the original VPU has
32 active FUs, and Fig. 2A presents 16-FUs setup for compute-bounded basic
blocks. For memory-bounded application the SIMD unit can be reconfigured
to 2-FUs setup. These different setups provide a fine-grain reconfigurability of
SIMD instructions with low cost of reconfiguration. Thus, the PIM device can
change this configuration at each basic block or even at each instruction. Further,
energy savings are achieved, since static power is avoided by turning off some
FUs that would spend more if they were on. The analysis to find the near-optimal
setup has also to take into consideration the trade-off between cumulative static
energy and execution time.

4 Experimental Setup

In this section, we present the methodology and tools used to evaluate our mech-
anism.
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Fig. 2. Example of two reconfiguration setups. Figure A presents half of the total
functional units in active mode, thus being able to compute 128B per cycle. Figure B
represent a more constrained processing power capable of executing 8Bytes per cycle

4.1 The PIM Architecture for a Case Study

The micro-architecture Recon gurable Vector Unit (RVU) [11] was chosen as case
study architecture to support our experiments. Accordingly to [1], within a range
of recent proposal 3D-stacked PIM architectures, RVU not only fits in the power
and area constraints related to HMC logic layer but also is capable of exploring
higher memory bandwidth and DLP when compared to others state-of-art PIM
architectures. A RVU module comprises a set of 32 × 8-byte multi-precision
FUs, a Finit State Machine (FSM) to control the flow of RVU instructions and a
8×256-byte register file. For the HMC, each vault has one RVU module that can
operate independently in a parallel fashion. Thus, RVU provides up to 8192-byte
FU capacity of vectorial processing and can reach a peak compute power of 2.5
TFLOPS.

The RVU Instruction Set Architecture (ISA) extends the original Intel
Advanced Vector Extensions (AVX) keeping compatibility with legacy x86 host
instructions allowing a hybrid PIM code style. When the host processor fetches a
RVU instruction, it is treated as a store operation and sent to the PIM device to
be executed. RVU instructions can deal with operand sizes varying from 4 Bytes
to 256 Bytes at once. Additionally, RVU instances can aggregate their execution
to deal with bigger instructions ranging from 256 Bytes to 8192 Bytes at once.

4.2 Simulation Method

To experiment and evaluate the proposed techniques, the RVU architecture was
implemented for simulation and tests on GEM5 Simulator [16] as presented
in [17]. Since RVU extends AVX, and the Intel x86 host processor offloads
RVU instructions to HMC, GEM5 was adapted to support both AVX and RVU
instructions. For compiling the source code application tests and generating the
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binaries, Processing-In-Memory cOmpiler (PRIMO) [15] was used as a support
compiler tool. Table 1 summarizes the setup simulated, it comprises an Intel Sky-
lake micro-architecture as the host processor and an HMC RVU capable module
as main memory.

The energy and power models were obtained by synthesizing the VPU design
provided by [1]. This vector unit contains 32×32 bits and 32×64 bits, integer and
float-pointing FUs (adders and multipliers), an 8×32×64 bits register file, and a
FSM able to represent a single RVU instance. Supported by Cadence RTL Com-
piler tool, we extracted area, dynamic and static power for this implementation
using 32 nm process technology.

Further, we use a subset of BLAS routines, STREAM benchmark and other
miscellaneous kernel applications to represent different kernels behaviors, rang-
ing from mostly memory-bounded to mostly compute-bounded kernels. We var-
ied the number of active FUs from 32 to a single FU, which is given by the
#FUn labels in the following charts. Regardless of the data operands present in
the benchmarks, a single FU can operate on either 2× 32-bit operands or 64-bit
operand at a time.

Table 1. Baseline system configuration.

Intel Skylake Microarchitecture
4GHz; AVX-512 Instruction Set Capable; L3 Cache 16MB;
8GB HMC; 4 Memory Channels;
HMC
HMC version 2.0 specification;
Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer;
32 Vaults - 16 Banks per Vault; 4 high speed Serial Links;
RVU
1.25GHz; 32 Independent Functional Units; Integer and Floating-Point Capable;
Instructions from 4Bytes to 4096Bytes;
32 Independent Register Bank of 8x256Bytes each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units;
Interconnection between vaults: 5 cycles latency;

4.3 Results and Discussion

Figure 3 presents normalized memory bandwidth and processing power achieved
by PIM logic to process kernels with different behaviors. Figure 3a depicts a
pure streaming behavior where the number of FUs does not impact on the total
processing power, neither the average memory bandwidth. As this kernel appli-
cation is not compute-intensive, the memory bandwidth stands out when the
application makes use of the largest load/store instructions available. In contrast
to Stream Scale, the Polynomial Solver Equation shows an opposite behavior to
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streaming applications, as shown in Fig. 3c. The largest vector widths reach both
the highest values of memory bandwidth and processing power. In this case, not
only memory bandwidth is required by the application, but also the process-
ing power, which is achieved by the two reconfiguration setups (#FU32 and
#FU16). It is possible to notice that the combination of memory- and compute-
bound characteristics are found in the Bilinear Interpolation kernel. As shown
in Fig. 3b, the discrepancy of bandwidth and FLOPS is only observed on the
setups #FU1. One can notice that increasing the vector width also increases the
memory bandwidth, thus allowing the use of few FUs to reach the maximum
FLOPS.

Figure 4 shows speedup and energy results for the same kernels presented
in Fig. 3. To ease the comparison with other designs, the absolute values for
each baseline are given in the chart area (Fig. 4). The streaming-like applica-
tion in Fig. 4a shows that bandwidth limits the speedup. The reconfiguration
setup with fewer FUs is enough to consume data and obtain the same per-
formance of the setups with more FUs. To reach a higher performance, more
VPUs are required to allow larger load operations. However, this implies that
more hardware resources (register file, FSM, and FUs) will be kept in idle mode
wasting static power, thus reducing the energy efficiency of those configurations.
Similarly, Fig. 4c can reach the highest performance for different reconfiguration

Fig. 3. Total memory bandwidth and processing power for applications with different
processing requirements. (a) Stream Scale, (b) Bilinear Interpolation and (a) Polyno-
mial Solver



272 J. P. C. de Lima et al.

setups, except for the #FU1. In Fig. 4d, different points can reach the low energy
consumption of computation. However, as aforementioned, this application com-
bines memory and compute-bound behavior, which means that the most efficient
points will occur when a better compromise between memory bandwidth and
processing power. Compute-intensive kernels are profoundly impacted by the
number of FUs available in SIMD units, as presented in Fig. 4e. Although the
highest performance is reached by using the RVU4096 with setups #FU32 or
#FU16, the most energy efficient configuration is achieved by using the setups
#FU16 and #FU8.

Despite Fig. 4 has presented different energy consumption and performance
points separately, a better metric to show the efficiency of the reconfiguration is
the Energy Delay Product (EDP). Figure 5 presents the EDP results of several
kernel applications. All columns were obtained by running the largest vector
width (RVU4096) and varying the reconfiguration setups. One can notice that
memory-bound applications must use fewer FUs to obtain significant energy effi-
ciency. On the other hand, compute-bound applications require higher FLOPS,
which is ruled by the number of FUs selected in the reconfiguration.

5 Related Work

There are several works related to exploring energy reduction techniques. The
studies mostly associated with PIM architectures, reconfigurable processors and
reconfigurable vectorial machines are presented in this section.

Processing-in-Memory: In [18], it is proposed an offload candidate mech-
anism which can be implemented as a compiler technique. The basic idea is
to statically estimate the memory bandwidth savings by whether moving or not
blocks of code to be processed near the memory based on dynamic system condi-
tions such as current bandwidth utilization. DRAMA (DRAM-Accelerator) [19]
proposes a PIM architecture where the host processor can offload computation
and data-intensive operations to Coarse-Grain Recon gurable Arrays (CGRAs)
stacked on top of DRAM devices. Similarly, [20] presents Heterogeneous Recon-
figurable Logic (HRL), a reconfigurable array for Near-Data Processing (NDP)
systems. HRL combines both coarse-grained and fine-grained logic blocks and
uses specialized units to support irregular data layouts in analytics workloads
effectively. The study represented in [21] reports huge performance speed-up
on basic operators of data analytic processing. This PIM architecture achieves
significant energy-efficiency by placing SIMD-enabled ARM cores on each HMC
vault, although it does not support floating point operations and neither presents
a technique or optimization to make better use of SIMD units. The work of [10]
presents an in-memory resistive design of a general-purpose SIMD co-processor.
They claim to allow better scalability and performance compared to a CMOS
SIMD processor. However, the main drawback resides on the significantly high
power density and low endurance inherent of Resistive Random Access Memories
(ReRAM).

Reconfiguration for Energy Reduction: In [22], the authors present a fine
grain power-gating technique to cope with future leakage power problem. This



Exploiting Reconfigurable Vector Processing 273

1070 µs

(a)

13.4 mJ

(b)

3055 µs

(c)

38.3 mJ

(d)

71.5 ms

(e)

896 mJ

(f)

Fig. 4. Speed-up and energy consumption in three applications. (a) and (b) Stream
Scale, (c) and (d) Bilinear Interpolation, and (e) and (f) Polynomial Solver Equation

technique can be applied to a CGRA and can reduce up to 48% in real appli-
cations. In a different manner, the study of [23] describes a dynamic voltage
switching technique to reduce energy dissipation of dynamically reconfigurable
processors. This technique dynamically changes the supply voltage of each pro-
cessing element at the context-by-context basis. However, the energy overhead
due to voltage switching hinders the energy reduction, and a mapping optimiza-
tion was necessary to enable up to 12.5% of total energy savings.
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Fig. 5. Energy Delay Product (EDP) results for several application kernels

Reconfigurable Vectors: In [24], the authors propose Softbrain, a reconfig-
urable vectorial machine for accelerating stream-dataflow applications. Softbrain
comprises a control core to generate stream commands, a set of stream-engines
to transfer data with memories, and a deeply-pipelined reconfigurable dataflow
composed of CGRAs for parallel computation. Regarding regular architectures,
[25] proposes an integrated vector scalar mechanism coupled into an ARM micro-
architecture core. Their proposed design reuses scalar FUs to provide the exe-
cution for vectorial instructions. The main component is a block-based model
of implementation that groups vectorial computational operations to execute
them in a coordinated manner. ARM Scalable Vector Extension (SVE) defines
a SIMD unit able to operate on up to 2048-bit registers, and the SIMD unit
defined by the Vector Extension of RISC-V up to 1024-bit registers. However,
no physical implementation using the largest size is available yet, and no infor-
mation regarding power-gating techniques driven by the application’s demands
on these large registers was found.

6 Conclusions and Future Work

This paper presented a discussion introducing the necessity for the adoption
of reconfiguration techniques in vectorial Processing-in-Memory (PIM) architec-
tures to improve energy efficiency. We demonstrated that identifying and taking
advantage of the deviations in the compute-intensity to reconfigurable the cur-
rent PIM architecture can lead to energy savings. To do so, the reconfigurable
mechanism must be able to estimate intrinsic applications characteristics. Our
simulation results show that, for a set of memory-bounded applications, the num-
ber of Functional Units (FUs) on does not interfere in the system performance
so that energy savings can be achieved. On the other hand, compute-bounded
applications have their memory bandwidth as FLOPS dictated by the biggest
number of FUs active. As future works, compiler and hardware techniques for
application profiling and PIM reconfiguration will be studied.
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Abstract. The work, presented in this paper has been carried out
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1 Introduction

Coarse-Grained-Reconfigurable-Arrays (CGRA) are application-specific acceler-
ators and can be based on ASICs or FPGAs. In general, these consist of Process-
ing Element (PE) nodes and an infrastructure for communication between these
nodes. CGRAs can provide huge advantages, when implemented on FPGAs and
combined with General-Purpose-Processors (GPP), which are needed, because
CGRAs can exploit parallelism very well, but lack some flexibility when control-
flow has to be processed. For CGRAs, in comparison to fine-grained FPGA-
fabrics, the granularity of both, the Processing Elements’ operations, and the
communication infrastructure cannot be controlled on bit-level, like in tradi-
tional FPGA architectures. This reduces the level of flexibility, but also lowers
the effort for creating configurations (CAD-process) and for reconfiguring the
functionality at run-time, due to the reduced size of the bitstreams and the lower
complexity of the system’s state. Many different approaches for coarse-grained
compute architectures have been proposed, e.g. in [5,9,12], most of them suited
for specific tasks and providing significant speedups, nevertheless most architec-
tures did not have commercial success. The reason for the commercial failure
can be due to different reasons: First of all, these specific architectures have
great advantages, but only for a limited number of applications, so the addi-
tional effort required cannot always be justified. Furthermore, both the creation
and the configuration are in many cases much less supported by well-engineered
tools than this is the case with less efficient but more widespread architectures
(e.g. DSPs or GPGPUs). For this reason, a toolchain covering both, the gen-
eration of the CGRA as an overlay architecture on top of commercial FPGA
architectures, as well as the tools for deriving configurations for the overlay
architectures from algorithm-descriptions in high-level programming languages
have been developed.

Throughout the last decades, various overlay architectures with different
granularity regarding to specific application’s requirements have been proposed
by the academic community.

In general, FPGA-based architectures, that can parameterized to implement
a certain type of application, is called an FPGA overlay. Compared to the low
level FPGA realizations, these architectures make it easier to implement a cer-
tain type of application, without the need to engage with complicated and time
consuming FPGA design process. In 2012, ZUMA [1] has been introduced as
an “FPGA-on-an-FPGA” overlay. The architecture has been published as open
source, and therefore provides the general benefits of overlays, such as bitstream
compatibility, independent of different vendor tools and physical FPGA hard-
ware. Besides this approach, overlays for coarse grained architectures have been
developed and presented within the last decade. QUKU [10] for instance, consists
of a grid of cycle-by-cycle reconfigurable PEs and interconnects. The authors of
[2] described the design of an architecture for the pipelined execution of data
flow graphs (DFG). It consists of a mesh of overlay cells with functional units
and nearest-neighbour-connections as routing logic. Intermediate Fabrics (IF)
[3,11] enable near-instant placement and routing of applications. The authors of
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IF showed a 700x improvement in compilation time compared to vendor tools at
the cost of approximately 40% extra resources in [11]. In [7], the authors consid-
ered the properties of the underlaying architecture to increase the throughput of
the overlay. They achieve a reduction of almost 70% in the overlay tile require-
ment compared to there considered overlay architectures and kernel throughputs
of almost 60 GOPS.

In analogy to the architectures presented, our architecture is called “Virtual
Coarse-Grained Reconfigurable Array” (VCGRA). Like the other overlay archi-
tectures mentioned, it exists as an intermediate level between the accelerated
algorithm and the FPGA-hardware. A first draft of the architecture’s structure
has been presented in [4]. It still consists of alternating levels of Processing Ele-
ments and so-called Virtual Channels (VCH), which control the dataflow. In
contrast to the other presented CGRA architectures, many aspects are config-
urable during design time and built automatically by the toolchain depicted
in Fig. 1: The size and the shape of the array which includes the number of
inputs and outputs, the widths of inputs and outputs, the number of array lay-
ers and the number and functionality of Processing Elements for each layer. The
bitwidth of the arithmetic units and the connections as well as the operations,
which are provided by the PEs, can also be adjusted at design time whereas
the connections within the layers and the operations carried out by the PEs are
run-time-(re)configurable. The toolflow, which is depicted in Fig. 1 also covers
the generation of the configuration bitstreams for an VCGRA instance to enable
fast dynamic reconfiguration during run-time. To ease the usage of the overlay,
the hardware generation part of the toolflow generates the FPGA-configuration-
bitstream of this architecture, including a wrapper, providing the interface to
e.g. an embedded CPU within a System-on-Chip (SoC) as well as the required
HW/SW interface. The software part of the toolchain takes the parameters of
the VCGRA-architecture and the description of the algorithm as input and cre-
ates the configuration for the overlay architecture. Furthermore, a template for a
Linux application is provided and adapted for running the hardware-accelerated
application on the target system.

Taken together, for accelerating compute intensive applications on huge data-
streams coarse-grained arrays can be a valuable addition to a GPP or a GPGPU.
The fact, that the structure as well as the compute units can be tailored to the
application’s demands, enables the adaption of a generic CPU to a specific appli-
cation domain by using CGRA-based accelerators. The next section covers the
motivation to create the above mentioned kind of architecture and the toolchain.

2 Motivation

Our first motivation to create a CGRA architecture is based on the idea to
evaluate the concept of Dynamic Circuit Specialization (DCS, [6]) on a power-
ful architecture, that is capable to host accelerators for applications from the
High-Performance Computing (HPC) domain. The concept behind DCS is the
rapid adaption of hardware accelerators to the values of specific inputs, which
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act more like parameters of the module than rapidly changing input data. The
concept can be compared to the constant propagation technique, which is used
in modern Just-In-Time compilers. Basically, a specialized implementation of
a hardware function is created by treating specific inputs as constant for a
period of time and optimizing the implementation for these specific values. As
soon as the specific inputs change, a new implementation has to be created.
Applying this technique to real hardware designs is supported by the so called
TLUT/TCON toolflow, proposed by researchers from Ghent University [8,13].
The TLUT/TCON toolflow has some requirements for the code to be processed:
The code must be available in VHDL without vendor-specific constructs, further-
more the inputs to be used must be identified in the code by special comments.
Secondly, while developing the architecture, the goal was to enable the usage
of FPGA-based accelerators to a wider community without deep knowledge in
hardware development, e.g. software developers for HPC applications. This needs
to ensure, that the overlay architecture is synthesizable using an arbitrary ven-
dor toolchain. Furthermore, the generation of the overlay and its configuration
has to be fast and user friendly for a high acceptance in the scientific community.

Having in mind, that the overlay had to fulfil the demands of the
TLUT/TCON toolchain and that it is to be used by non-hardware-experts,
the decision to develop a highly automated toolflow has been taken. This paper
presents the improvements in the hardware-generation part of the toolchain, that
have been introduced since our last publication [4] and also the evaluation of the
improved architecture and tools. The part responsible for the generation of con-
figuration bitstreams for the overlay architecture in this toolchain (depicted in
the right branch of Fig. 1) is not in the scope of this paper.

3 VCGRA Toolflow

The VCGRA toolflow aims to provide a fully automatic development and evalu-
ation platform for a Virtual Coarse Grained Reconfigurable Array architecture.
It includes synthesis and execution of the hardware architecture with its cor-
responding hardware configuration, and the required interfaces on a suitable
target platform. Furthermore it provides the necessary software modules for
data transmission between the processing system and the VCGRA instance.
The majority of the toolchain has been written in Python3, some modules use
TCL or C++. It primarily consists of four sub modules, which can be executed
in parallel or sequentially. As an open source project, hardware specialists shall
provide extensions for functions of the Processing Elements or interconnects of
Processing Elements as well as target platform integration while software devel-
opers may provide and integrate algorithms for application mapping for instance.
The parameters for the toolflow are the application itself, currently limited to
a directed acyclic graph representation, parameters of the target platform, cur-
rently limited to Xilinx Zynq devices as well as parameters for the virtual coarse
grained architecture. The description of an application is performed at a higher
level of abstraction by using a directed acyclic graph representation, because this
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Fig. 1. Complete toolflow from pre-definitions to an executable application

will enable a wide usage of the approach, and also acceptance by non-specialists
in hardware development. Moreover, it enables the community, with the first
publicly available tool-chain, which provides the feature of dynamic and partial
reconfiguration of a CGRA on several layers and hardware overlay together, a
platform for further research in the domain of dynamic and partial reconfigu-
ration. For the target devices, there is no restriction to a specific vendor target
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platform, since the backend tools for the physical FPGA can be substituted,
while the VCGRA tool chain remains on top.

As one can see in Fig. 1, the toolflow is separated into a “Software Branch”
mainly used to generate the configuration bitstream for a VCGRA instance
for a special application and the “Hardware Branch” mainly used to generate
and synthesize a VCGRA instance defined by the input parameters of the tool
chain. The “Software Branch” is outside the scope of this paper. The “Hardware
Branch” consists of a VCGRA generator tool to build the VCGRA instance
concerning the given input parameters, a VCGRA wrapper tool to create the
AXI4 -interface as well as a parameterizable Tcl-script library to automatically
build and synthesize the VCGRA instance for the chosen target platform. Before
the start of the description of the “Hardware Branch” in details, the paper
outlines a VCGRA’s components in the following section.

4 VCGRA Architecture

The VCGRA introduced in this article is a multi-layer architecture, in which
each layer of re-configurable Processing Elements is connected to the next layer
using a re-configurable Virtual Channel. To use this VCGRA core, in order to
execute a desired application or algorithm, the functionality of each PE in each
layer has to be configured and the VCHs has to be set to connect the outputs of
each PE to the appropriate PE in the next layer. By using these configurations,
the functionality of the VCGRA can be changed during run-time after each
batch of data is processed by it. The VCGRA consists of four main types of sub-
modules, namely, the Processing Elements, the Virtual Channels, the Pipeline
Stages, and the Synchronization Module. These modules are described in the
following subsections.

Fig. 2. Overview processing element



Toolflow for VCGRA Generation 283

4.1 Processing Elements

A Processing Element takes two operands as inputs and produces an output. The
functionality of each Processing Element is set, using its input configuration bits.
In the example shown in Fig. 2, it uses two configuration bits per Processing
Element to select between three different operations: addition, multiplication,
and simply buffering the first input. The number of operation is not limited to
these three types. The current version of the tool chain supports five arithmetic
operations: Addition, subtraction, multiplication, division, greater, and equal.
A Processing Element also takes an enable bit for each input and produces a
valid signal indicating that the data processing is completed. This valid signal
is passed to the next VCH, from there to the enable inputs of the next layer
of Processing Elements and ultimately to an output synchronization module,
to be used as an indicator when the VCGRA’s work is done and the ultimate
outputs are valid. The bitwidth of a Processing Elements’ data-path can be set
by the VCGRA generation tool before implementation. As also shown in Fig. 2,
the input and output values are buffered. The input values are processed only if
both enable bits indicate a valid input on each data input port. The output is
buffered, because the calculation time for implemented task may differ and the
following layer of a Virtual Channel only works as combination logic without
any data buffering.

4.2 Virtual Channels

The Virtual Channels, illustrated in Fig. 3, are layers of re-configurable switches,
controlling how the VCGRA inputs or the outputs of the current layer of the
Processing Elements are connected to the next layer of Processing Elements. The
goal is to realize a certain functionality using the VCGRA core via configuring
each Processing Element’s operation and how they are connected using Vir-
tual Channels. The design of Virtual Channels in this work allows any possible
pattern of connecting two layers of Processing Elements together. The Virtual
Channels are composed entirely from combinational logic and do not increase
the overall latency.

4.3 Pipeline Stages

The Pipeline Stages, also shown in Fig. 3, are integrated in the input and output
of each Virtual Channel to buffer all the incoming and outgoing data of each
layer of Processing Elements. The Pipeline Stages are configurable in a sense
that they can be turned on or bypassed using the pipeline configuration bits.
Thus, the user can individually turn each stage of pipelines on or off, to control
the throughput and latency of the VCGRA core at run-time. Separating these
pipeline stages from VCHs also makes it possible for the generator, to completely
neglect putting a whole pipeline stage when it is not needed or due to trade-off
preferences and conserve the FPGA resources consumed by the overall design.
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Fig. 3. Overview virtual channel with pipeline stages

4.4 Output Synchronization

This sub-module receives all the valid signals generated in different paths, for
different outputs, and generates the signal showing when all the outputs of the
VCGRA core are valid. Using configurable mask bits, one can neglect the state
or validity of individual outputs, in the generation of the final valid signal for
the whole core to synchronize data transmission with a PS.

5 VCGRA Interface Wrapper

After the generation of the VCGRA core, an interface wrapper is generated to
feed the data and configurations in, and deliver the results out of the core. In
this work, AXI4-Lite and AXI4-Stream interfaces were developed and tested for
communicating with the VCGRA core.

5.1 AXI4-Lite Wrapper

The AXI4-Lite interface consists of four different ports: data, PE-configuration,
VCH-configuration and a configuration for the synchronization sub-module
(mask-configuration). As the names of the interfaces already outline, one port is
used to process data input and data output while the other three ports handle the
configuration process. Thus, the data interface is configured as an input/output
port, while the other three ports handle only input functions. We define an input
or output from the VCGRA point of view.



Toolflow for VCGRA Generation 285

Fig. 4. AXI4-Lite wrapper for a Vivado block design

The base for the interface is the AXI4-Lite template generated from Xilinx
Vivado tool chain. Further details on the creation of the wrapper are described in
Sect. 6.1. For the data interface, a user programmable slave register (slv-register)
handles exactly one port for a datum input or output. As an example: Consider
a VCGRA instance, which consists of five data inputs, five parameter inputs
and three data outputs. The first ten slv-registers configured as inputs – the
five data registers followed by the five parameter registers respectively – while
the last three registers are configured for data output. Therefore, the AXI4-Lite
port for data is configured for thirteen 32 bit wide slv-registers. The number of
slv-registers for the configuration crucially depends on an VCGRA instance’s
features. One register is 32 bits wide. Thus, the number of necessary registers is

#SlvReg = roundup
(

sum of configuration bits
32

)
(1)

The sum of configuration bits includes all bits for a VCGRA instance’s PEs,
VCHs and its mask configuration. The advantage of using AXI4-Lite ports, is the
usability from a processing system, because by creating the templates by Vivado,
also the necessary accessing functions and addressing offsets are generated. At
the negative side, the AXI4-Lite protocol does not support bursts or streaming
capabilities. Thus, frequent data transfers or reconfigurations are inefficient via
this interface. In [4] the results showed that almost 50% of the execution time for
a small VCGRA including twelve PEs and three VCH is used for data transfer for
both, configuration and processing data. Moreover, the bitwidth of a slv-register
is always set to 32 bit. The design wastes a lot of area, if the data bitwidth
differs from 32 bits. As a result, an AXI4-Stream interface is developed which
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Fig. 5. AXI4-Stream wrapper for a Vivado block design

is presented in the next section. Figure 4 illustrates the described design as a
schematic overview.

5.2 AXI4-Stream

As mentioned in the previous section, AXI4-Lite interface has drawbacks in this
project, leading to the throughput of the whole VCGRA being bottle-necked by
how fast the data can be written and read back to and from inputs and outputs
respectively. As mentioned AXI4-Lite has no burst mode, so for the VCGRA
to be able to start working, the configurations and input data registers should
be written one by one, using many single transactions. The same can be said
for reading back the results from the VCGRA. To overcome these restrictions,
another interface wrapper with AXI4-Stream protocol was developed. One of
the reasons for choosing the AXI4-Stream interface is the speed it can deliver
the data and configurations to and from the VCGRA core. With its stream-
ing based mechanism, AXI4-Stream can deliver data chunks as big as the data
bus width, every clock cycle till the end of a full data package. This widens
the data transmission bottleneck and increases the overall processing speed and
wastes less time for transmission of data to and from the VCGRA compared
to the AXI4-Lite interface. Another thing about AXI4-Stream is, it essentially
gives the same data transmission speed as the AXI4-Full burst mode, but with
lower complexity, less number of signals and less resource utilization. The only
downside is unlike AXI4-Lite and AXI4-Full it is not easy to interact from a
processing system. However it will be shown how the interaction between the
ARM processor on Zynq, and the VCGRA AXI4-Stream can be carried out. As
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shown in Fig. 5 There are three instances of AXI4-Stream port, two slave ones for
data input and configurations and one master port for data output. The input
and output data buffers are fed and feeding the AXI4-Stream input and output
ports. The AXI4-Stream configuration port, streams the data into the config-
uration buffer. When the full configuration packet is loaded into the buffer, it
gets divided into VCH configurations, PE configurations, pipeline configurations
and the output mask configurations. The way each part of the VCGRA can be
configured using these configuration information was mentioned in Subsects. 4.1,
4.2, 4.3 and 4.4. What should be noted is that a new configuration packet should
only be transmitted (or rather its transmission be finished) after the VCGRA
is done processing the input data, because reconfiguration of the VCGRA will
be done instantly as soon the last word in the configuration packet is received
via the AXI4-Stream port and if the VCGRA is still processing the data at that
time, this reconfiguration will disrupt the results for the current batch of input
data. It should also be noted that the VCGRA will start processing the input
data as soon as the last word of input packet is received via AXI4-Stream data
port.

6 Toolflow Submodules for Hardware Generation

6.1 VCGRA Creator

The VCGRA creator consists of two main parts: the VCGRA generator and
the wrapper designer. The generator is introduced in [4]. Therefore, only the
improvements will be described here. Many parts of the VCGRA generation
tools have been improved and made more flexible, but most of the changes are
internally. Worth to mention is the adaption to a newly created AXI4-Stream
interface and the introduction of a more flexible Virtual Channel design. Within
the process of integrating the AXI4-Stream Wrapper into the generator, many
parameters of the hardware were moved into an external VHDL module, which
also eases the adaption of existing or the creation of further interfaces. The gen-
erator now allows the generation of the optimized Virtual Channels, which splits
the monolithic design from the old version into a pure combinational module,
which just handles the signal routing and separates modules for the buffers. This
design decision makes modifications to the channels more targeted and further-
more allows the buffers to be bypassed for special application scenarios. One
big improvement is the new interface, which allows the CLI-based control of all
functions of the tool. Additionally, the tool can now read the VCGRA specifi-
cations and write it to JSON-files. Overall it can be said that many aspects of
the tool have been adapted and improved to the new possibilities, especially the
improvements in the new interface, but most of the changes concern details.

6.2 AXI4-Wrapper Designer

AXI4-Lite Wrapper Designer. The wrapper designer currently supports
VCGRA designs with AXI4-Lite interface. It consists of two main parts: A
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Tcl-script generator for Vivado to create the AXI4-Lite template files for an
Intellectual Property (IP) block, which are then additionally adapted by the
second part regarding the properties of the ports of the VCGRA entity. Four
files are created by the Tcl-script and copied into the a target directory, which
can be specified by a second parameter: An AXI4-Lite root file, a data port file
as well as a configuration port file for each configuration port of the VCGRA
entity respectively (refer Sect. 5.1 and Fig. 4 for interface details). The major
parameter for the Python-based tool is the VCGRA entity. Therefore, the VHDL
file is parsed for the number of data inputs and outputs, parameters, and the
configuration signals for PEs, VCH and the synchronization function. With these
information, the AXI4-Lite template file for the data port is adapted as follows:

(a) For the number of input ports the VCGRA contains, output ports with the
same bitwidth are added to the entity of the AXI4-Lite interface. The same
is processed as inputs for the number of VCGRA data outputs.

(b) The slv-registers for inputs and outputs are configured to perform only one
of these functionalities.

(c) The slv-registers are mapped to its corresponding AXI4-Lite entity ports
while also adapting the 32 bit fixed bitwidth of the slv-registers to the
bitwidth of the VCGRA data ports.

For the three AXI4-Lite configuration ports left, the slv-registers are concate-
nated until the number of required configuration bits is reached for each configu-
ration port. The entities of the interfaces also get an additional output port with
the bitwidth of the corresponding configuration port from a VCGRA instance.
The entity of a VCGRA instance is added as a component to the AXI4-Lite
root file and afterwards all ports are connected. The last step is an update of
the generated IP-block by adding the VCGRA files of the instance to the IP-
block repository. Besides the mentioned AXI4-Lite ports, the IP-block consists
of a clock port and two additional control ports to start the VCGRA and to
recognize a finished calculation (Ready signal).

AXI4-Stream Wrapper Designer. The big difference of the AXI4-Stream
Wrapper Designer in comparison to its counterpart is its simplicity due to the
independence of the AXI4-Stream wrapper from the target platform, since it has
been written in pure VHDL. Furthermore, all the parameters for configuring the
wrapper and the VCGRA have been moved to one single VHDL file. In addition,
TCL scripts are also provided which combine the generated VHDL files from the
VCGRA Designer and the AXI4-Stream Wrapper Designer to a Vivado project.
The script can be used to generate a bitstream for a desired FPGA platform in
the Vivado IDE, using the generated VHDL modules. To ensure both, the correct
transmission of data between the PS and the VCGRA, and the correctness of the
VCGRA functionality another TCL script is provided. This script exports the
bitstream into a Xilinx SDK project, builds a demo application for testing the
VCGRA with the AXI4-Stream Wrapper and executes it on the target platform.
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Fig. 6. Generation time for VCGRA hardware depending on the number of inputs

Fig. 7. Resource utilization by cate-
gory

Fig. 8. Utilization dependence on
number of inputs and their bitwidth

7 Toolflow Benchmarking

In this section the evaluation results of the hardware-generation branch of the
toolchain are presented and the empirical execution times for different toolflow
runs are shown. The generation of the configuration and the VCGRA bitstream is
the main goal of this work. An important aspect of evaluation is the relationship
between the size of the algorithms to be implemented and the resulting time
required to build the VCGRA architecture. Figure 6 shows the relation between
VCGRA hardware generation time and the number of inputs. The width of the
VCGRA is given by the number of inputs (Ninputs) whereas the number of layers
is given by ceil(log2(Ninputs)). By using a quadratic data fitting, it is shown that
the time is related to Ninputs × log2(Ninputs), which is the number of PE’s in
the architecture.

Also the FPGA utilization can be shown depending on the number of inputs
and the width of inputs, which are among the most important factors impacting
the utilization. The platform for testing the resource utilization is the Xilinx
ZC706 board. Figure 8 shows the overall utilization depending on the number
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Fig. 9. Performance test

of inputs and for different input bitwidths. Figure 7 shows the amount of each
FPGA resource used depending on the number of inputs, when all the inputs
have 32 bit bitwidth. Regarding the performance of the VCGRA, a test was done
with a convolution filter, as the application. The kernel size is 5×5 and a VCGRA
with 25×6 PEs and the input image size is 400×400. As expected the one with
AXI4-Stream have better performance compared with to the AXI4-Lite version,
however this difference is not as much as one may expect and the reason is that
the bottleneck here is the ARM core on the Zynq that needs to prepare the data
to be sent on these interfaces to the VCGRA. It can be said that a large portion
of the time, the VCGRA core remains idle simply because the processor can not
keep up to send the data to it. The results of this performance test can be seen
in Fig. 9.

8 Conclusion and Outlook

The improvements to a tool-chain for generating an application-specific CGRA
architecture are introduced in this article. Since the last version, all the tools
have been updated and improved for modularity and also to be as automated
as possible. The main contribution of these improvements is the AXI4-Stream
wrapper, which has been developed in pure VHDL, to improve the throughput
and to reduce the latency of the data transmission to and from the VCGRA core.
For full control, the interface has been completely developed using VHDL and
can be tailored based on the requirements of the wrapped VCGRA. As can be
seen from the benchmark, the overall performance improvements are lower than
expected. A deeper analysis showed, that the low transfer rate was only partially
caused by the AXI4-Lite interface of the last version, and another bottleneck
remains in the communication on the processing system side. For this reason,
this problem is processed and alternatives for optimizing the data exchange
between a software application on the PS and the VCGRA are evaluated and are
considered as possible future works in this project. This evaluation is eased due to
the improved tool-chain and the VCGRA-specific handwritten interface, which
makes it possible to completely monitor the functionality correctness of internal
signaling. In future work we plan to improve the hardware of the VCGRA,
especially the external interfaces to the processing system. Furthermore the inner
functionality of the Processing Elements is also a point which we work on, as
improvements directly effect the resource utilization, throughput and the latency
of the whole architecture.
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Abstract. Recently, the usage of the reconfigurable computing devices has
seen a sharp increase in many application fields. Several reconfigurable archi-
tectures have been proposed in the last decades, with different levels of gran-
ularity and complexity and SRAM-based Field Programmable Gate Array
(FPGA) remains the target support to develop reconfigurable architectures.
However, even if FPGA is an established technology, it is not fully optimized
for detailed partial run time reconfiguration. In fact, FPGAs reconfiguration
granularity is large, even if single resources are configured by few bits, since the
amount of data to be re-loaded inside the configuration memory for small
changes is huge. Considering that the major bottleneck of reconfiguration is the
excessive reconfiguration time, which is proportional to the number of bits to be
reconfigured, when reconfiguration involves few basic resources, such archi-
tecture leads to a considerable overhead.
In this paper, we propose a new reconfigurable computing architecture that

implement distributed reconfiguration at the lowest granularity to maximize
flexibility and scalability. This is obtained providing to the basic reconfigurable
functional unit the ability to reconfigure itself and the neighbor units. In fact,
each cell, beside functioning as Logic, Memory and Connectivity can also
trigger reconfiguration for itself and for given portion of the array of cells. To
show the feasibility and the advantages of our idea, we designed and imple-
mented a Reconfigurable Multipotent Cell, ReM. The results obtained with the
implementation of benchmark circuits on this architecture confirm the advan-
tages in terms of reconfiguration time.

Keywords: FPGA � Reconfigurable architectures � Reconfiguration time �
Reconfigurable array

1 Introduction

In the last decades, the adoption of the Reconfigurable Computing device has seen a
sharp increase. This is because Reconfigurable Systems increasingly provide oppor-
tunities to fulfill the growing needs of flexibility and performance in several applica-
tions, such as signal processing, cryptography, arithmetic, scientific computing, and
networking. In fact, the capability of dynamically allocate resources at run-time has
become so attractive for several reasons: it allows to implement time-space partitioning
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and consequently space saving, to extend product life exploiting fault recovery tech-
niques or to enhance application performance by adapting computational effort to
payload variations [1].

In literature, two main categories of systems can be identified: coarse-grained and
fine-grained architectures according to the data width processable by the smallest
reconfigurable basic unit. Considering the granularity with respect to the smallest
functional unit data width and computational capability, FPGAs present a fine level of
granularity since its basic tile elaborate at the bit level [2, 3].

Anyway, the reconfiguration granularity can be seen more specifically in terms of
atomic reconfigurable unit. i.e., the smallest addressable configuration memory seg-
ment. If FPGA granularity is seen from this point of view, it is fine only virtually,
because its smallest reconfigurable memory unit is the Frame, a very long bit word. In
fact, even if single resources like Look-up Tables (LUTs), Flip- Flops (FFs) and
Routing segments are controlled by few bits, when they have to be reconfigured, a large
number of bits should be re-loaded inside the configuration memory [4]. This is due to
the current FPGA architecture, which is implemented as a two layers system. In fact, on
the top of the configurable logic layer there is the configuration memory layer, which
replicate the regular FPGA structure but is not atomically addressable. For instances, in
Xilinx 7 Series device the smallest addressable memory segment is 3,232 bits wide and
its bits are configuring (partially) different resources, even physically distant in
reconfigurable physical layer [4, 5]. Considering that the major bottleneck of recon-
figuration is the excessive reconfiguration time, which is strongly dependent from the
number of bits to be reconfigured, this architecture became a limit, especially when the
reconfiguration should be performed frequently and for small portion of the design.

In this paper we propose a different reconfigurable computing model with the aim
to give more flexibility and to minimize reconfiguration time by re-thinking the
reconfiguration mechanism itself. We suggest an architecture in which configuration
settings and reconfigurable resources are tidily coupled instead of being separated in
two different layers.

The key idea of this work is to implement the reconfiguration in a distributed
manner at the lowest granularity to maximize flexibility, scalability, parallelization and
concurrency. This is obtained providing to the basic reconfigurable functional unit the
ability to reconfigure itself and the neighbor units. In fact, each cell, beside functioning
as Logic, Memory and Connectivity can also trigger reconfiguration for itself and for
given portion of the array of cells.

To show the feasibility and the advantage of our idea, both in terms of reconfig-
uration time and flexibility, we also present the design of a Reconfigurable Multipotent
Cell, that we called ReM, as a possible implementation for the basic unit of the
computational model we propose.

Furthermore, to confirm the feasibility of our approach we implement the physical
layout of a ReM Cell and we map several benchmark circuits with ReM architectural
model, showing a significant reduction in terms of reconfiguration bits and time.

The rest of the paper is organized as follows: Sect. 2 provide the Background and
the Motivations behind the work, in Sect. 3 the principles of the suggested computa-
tional model are clarified presenting the Multipotent Reconfigurable Cell. In Sect. 4 the
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results of the ReM Implementation and Layout are provided with an evaluation of
circuits implementation on its architecture, while in Sects. 5 Conclusions and Future
Works are provided.

2 Background and Motivations

In the last decades, the growth of computational demand in several applications fields,
such as signal and image processing, security and cryptography, pattern recognition
and matching, networking and routers, has resulted in various emergent architectures,
and among them the Reconfigurable Computing one is among of the most promising
[1, 6, 7].

In fact, reconfigurable computing has experienced a period of rapid development
and several alternative architectures have been proposed. According to the granularity
of the basic computational unit, reconfigurable devices have been classified in two
main categories: fine-grain and coarse-grain. Fine-grain Reconfigurable architectures
show higher configuration capabilities but higher area overhead with respect to coarse-
grain ones. Complex arithmetic functions and sophisticated sequential control result
less convenient for fine-grain cells. However, increasing the granularity size results in a
strong reduction of the flexibility. Coarse Grain Reconfigurable Architectures (CGRAs)
can be grouped in three macro categories: Hybrid Architectures, Arrays of Functional
Units and Arrays of Processors [2].

A Hybrid Architecture combines a processor with a reconfigurable fabric as a
computational support to speed-up the computations, such as MorphoSys and
DAPDNA [8, 9].

In Functional Array, computation is managed by a large number of Reconfigurable
Functional Units which process algorithms already partitioned in a sequential flow of
configurations to be dynamically configured. In this architecture the on-chip control
processor is absent, and the dynamic reconfiguration is controlled by the configuration
manager which do not perform any calculation. Among this category, XPP and
MATRIX Architectures can be mentioned [10, 11].

Arrays of Processors instead allow great flexibility since they consist in scalable
architecture made of simple processors with local memory and dedicated interconnect.
What is dynamically configured in this case is the interprocessor communication
network. RAW and picoArray belong to this category [12, 13].

On the opposite corner of the reconfiguration granularity there is the concept of
Filed Programmable Transistor Arrays (FPTAs) in which the programmability is at the
level of transistor characteristic. In these devices the dimension and the type of
Transistor can be chosen at run-time to accommodate the increased variability of
individual device characteristic. Even if this is an attractive concept, it is feasible only
at the cost of large area overhead. Some examples of FPTA are PAnDA and PTA
architecture [14, 15].

Even if both CGRA and FPTA are interesting computational architectures most of
them have never been employed in real case scenarios and remain academic models. In
fact, FPGA remains the golden reconfigurable computing architecture, because its
granularity level provides a reasonable trade-off between Complexity and Flexibility.

ReM: A Reconfigurable Multipotent Cell 297



Furthermore, several application merging FPGAs portions embed with a fixed
process general purpose processor are recently emerged, such as Stretch S6000 [16]
and Menta eFPGA augmented CPUs [17]. In fact, to meet the variation in standards or
algorithms, which require to accordingly modify the accelerators, a new alternative to
highly customized VLSI macros is the use of reconfigurable custom-size embedded
FPGAs.

Despite their granularity and their applicability, what all these architectures have in
common is that their reconfiguration relies on a two layers mechanism: configuration
settings for the programmable resources (resource layer) are stored in the configuration
memory layer. Furthermore, reconfiguration is typically scheduled and managed by a
dedicated agent such as a microprocessor or a configuration manager.

In fact, there are several approaches to perform Reconfiguration, both form the
point of view of the configuration interface and the portion of bitstream to reconfigure.
Typical interfaces are the Serial Configuration Mode and JTAG Partial Reconfigura-
tion, which have a slow transmission speed due to the interfaces hardware character-
istics. Faster interfaces are the parallel port configuration interfaces (i.e., Xilinx
SelectMAP) and the FPGA internal configuration approach, which exploits the avail-
able Internal Configuration Access Port (ICAP) [4, 18].

The frame is the smallest addressable memory segment in configuration memory,
thus reconfiguration time is directly proportional to the number of downloaded frames.
Scrubbing is the classic method adopted when the whole FPGA needs to be recon-
figured; in this case, all the configuration memory frames are re-written. On the other
hand, the typical partial reconfiguration approach allows configuring only the config-
uration frames belonging to the target Reconfigurable Region (RR). On both cases, all
the configuration frames are transmitted into the FPGA’s configuration memory
independently from their content: thus, even empty frames are downloaded. A Capil-
lary (C) approach has been proposed [4] in order to download exclusively the used
frames, reducing the reconfiguration time [19].

What is important to notice is that even if the Basic Functional Unit of the FPGA,
elaborates at bit level its bitstream description is not compact: the entire basic unit uses
128 bits in vertical that span over 68 frames along the horizontal axes. In details, 26
frames subsection are used for the routing while the remaining 10 for LUTs and
Control Logic. Thus, to change the settings of one LUT, which are described by few
bits, all the frames these bits belong should be reconfigured. For Xilinx 7 Family
FPGAs, the length of a Frame is 3,232 bits [5].

Considering this overhead and adding the one related to the Reconfiguration
Mechanism, if the goal is to perform small changes in the design, the current archi-
tecture can result penalizing.

This is the reason why we suggest a different architectural model for fine-grained
reconfigurable device, to implement the reconfiguration in a distributed manner and to
providing to the basic reconfigurable functional unit the ability to reconfigure itself and
the neighbor units to maximize flexibility, scalability, parallelization and concurrency.
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3 The ReM Cell Architecture

The key idea of the ReM Cell Architecture is to have as basic unit of a computing
system a cell that is as simple as possible and that can easily switch between multiple
functionalities according to its content and the one of the neighbors. In Fig. 1 the
functional scheme of the ReM Cell is reported. Circuits implementation is obtained by
exploiting several ReM Cells organized in a 2-dimensional array.

Since ReM is the basic element of a reconfigurable computing system, the state
available for the cell are the primitives one for calculation: Logic, Memory, Connec-
tivity and Reconfiguration. For each one of these functionalities, several modes are
available, according to few bits. In fact, one of the main efforts in building the cell has
been focused in find the most synthetic way to encode different states to use the
minimum number of bits. The string of bits to dynamically reconfigure the cell
behavior consist of just 8 bits. Other 3 extra bits are needed in the reconfiguration unit
to define the Update Rules, i.e., the rules on which reconfiguration propagate for each
cell as well as all the states of the cell, as it will be clarified in the following paragraphs.

3.1 Connectivity

Each Cell has one input and one output on each side. Each one of them can act as a
pure interconnect point or as an input/output for each functionality. In fact, the setting
of each input and output multiplexer defines where the signal should go, and thus,
implicitly, which block is active inside the cell. To have a light structure and do not
increase complexity, not each direction is reachable from each port. The selectivity of
the communication has been realized keeping in mind which are the most probable
links to implement functions, as it will be clarified in the following paragraph.

To define Cell Connectivity and thus also the state, only 5 bits are required
(Fig. 2a). The available connections are: Straight (North to South and vice versa, East
to West and vice versa), Knee (North to West, South to East, East to North and West to
South) and connection to activate and connect Logic and Memory.

LOGIC

MEMORY

RECONFIG.

CNFG_REG
RULES_REG

REM[X,Y]

IN_logic1

IN_logic2

OUT_logic

IN_mem

OUT_mem_s

OUT_W

IN_mem_latch

OUT_mem_lgc
IN_W

OUT_E

IN_E

OUT_NIN_N

IN_SOUT_S

Fig. 1. Overall functional ReM Cell Architecture.
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Furthermore, there is the possibility to activate at the same time both Straight and
Knee to allow each input port to have fanout equal to two, as showed in Fig. 2b.
Furthermore, as showed in Fig. 2c, to increase routability, it is possible to activate two
independent orthogonal connections in the same Cell. It has been obtained adding the
Single/Double connection bit (the most significant one). When it is equal to one, the
two couple of bits are both interpreted as port index, and the Straight connection of that
ports are implicitly activated at the same time, as showed in Fig. 2c.

3.2 Computation

Elaboration features are two: Logic and Memory. The bits configuring the Elaboration
features are 3 and they will be interpreted as settings of Memory or Logic according to
the value of the 5 bits devoted to configuring connections. In fact, if the bits are
activating the input and, automatically the output, of the Memory or the one of the
Logic, the 3 bits will be automatically interpreted respectively according to the
Memory or the Logic Encoding. On the other hand, if the 5 Connection bits are
activating simple routing these 3 bits will be not considered. The logic block receives
two inputs, produce one output and consists in one NAND gate, one NOR gate in
parallel and a NOT on their output, all connected to inputs, output and between them
with some multiplexer and demultiplexer. Thus, according to the 3 configuration bits,
the cell can be programmed in 8 different modes: AND, NAND, OR, NOR, NOT
Input1, NOT Input2, Buffer Input1 and Buffer Input 2. To link with the previously
mentioned selectivity if the connections, it is important to notice that the connectivity
configuration has been contrived in order to facilitate the cascade of logic operations
and to easily add sequential behavior.

The memory block consists instead of an Edge Triggered Flip-Flop and a Level
Sensitive Latch, which are again connected with the input and the output of the block
by means of multiplexers and demultiplexers. According to the configuration bits, the
input signal can be sent to one of the two sequential elements or bypass both of them
and forward or to the output or the Reconfiguration Block. This last possibility is the
one that allows the cell to trigger its own reconfiguration or neighbor reconfiguration.

Single/Double
Connection Select Input Select Signal

(and automatically
theoutput) 0 0 0 0 0

Select North InputPort

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

ToElaboration Block

Straight connection :

N->S
S->N
O->E
E->O

Kneeconnection :

N->O
E->N
S->E
O->S

Both Straight andKnee
Connection [Fanout =2]

Logic
Memory

10

00

01

11
10

00

01

11

0 0 0 0 1 1 0 0 1 0

a) b)

c)

CNFG_REG

Fig. 2. ReM connectivity.
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It is again important to notice as the connectivity of Memory functionality has been
contrived to make easier to insert sequential behavior in logic function (Memory output
to the left side), to cascade several logic elements to produce Flip-Flop Chains and to
receive Latch enable signal (North Input Latch).

3.3 Reconfiguration

The key innovation of the developed Reconfigurable Architecture is that the Recon-
figuration management is embed inside the cell itself instead of being dislocated on a
higher level. The effective implementation of the Reconfigurable Block follows the
scheme reported in Fig. 3.

We distinguish between two kinds of reconfiguration: the Static one, when the
succession of the possible states of the Cell is known and statically determined, and the
Dynamic one, in which the scheduling of the states is not known a priori. The first one
sees the Configuration Engine as a Finite State Machine. The second kind of recon-
figuration, even if the Architecture has been contrived in order to support it in the
future, has not been completely defined yet. Anyway, the shift from Static to Dynamic
Reconfiguration should conceptually be like the shift from Finite State Machine to
Pushdown Automata, as it will be clarified soon. In both cases, Cell reconfiguration can
be triggered from the Cell itself, and from the two cells on its sides.

In fact, it has tree separated inputs and 2 separated outputs, beside the 4 inputs and
output of the Cell described in Paragraph 1 of this chapter.

This is due to the fact that Reconfiguration should be triggered in any moment, so it
should be independent from the current configuration of the Cell and especially from
the activation of its input and outputs. In the Static Reconfiguration, the circular buffers
are filled at the start-up with the possible configurations that are going to be taken from
the Cell. When the reconfiguration is triggered from one of the three possible inputs,
the Finite State Machine will enable the change of states in the cell itself, in the one on
the left, in the one in the right, or in any combination of them, according to the content
of the register of the Sub-Configuration Register. The content of this register defines
the ‘Update Rules’ and in the Static Reconfiguration it is written only once at the start
up. The Update Rules basically define the rules according with the reconfiguration

Fig. 3. Reconfiguration mechanism.
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propagates in the Array of Reconfigurable Cells. For the Static Configuration con-
sidered 3 bits are enough to define all possible states. In the Dynamic one, the com-
plexity of the Reconfiguration Block will be higher: the number of bits required to the
update rules will increase as well as the inputs of this block, and the circular buffers will
become more similar to a small RAM, but we leave the design and the discussion on
the trade-off between complexity and flexibility as future developments.

4 Experimental Results

In this section the result of the placement and routing of the ReM Cell itself with
standard cells are provided, to demonstrate the implementability of this architecture.

Then, the results about the implementation of several benchmark circuits on ReM
architecture are shown in order to highlight the benefit of the proposed approach.

A VHDL model of ReM cell has been realized in order to evaluate its imple-
mentability. To make a fair comparison with FPGA basic unit in this section only the
part relative to the reconfigurable resource is considered. In fact, since no information
are available about the configuration memory size and distribution in the Xilinx FPGA,
the reconfiguration Module of ReM is neglected.

The ReM Cell design has been synthesized using the full 45 nm NangateOpenCell
Library with Design Compiler. The area obtained is equivalent to 251 Nand Gate,
which considering the target Library corresponds to a total logic area of 200.298 lm2.

The ReM netlist has been used to obtain the cell layout. In order to obtain a first
estimation of the area (no constraints or optimization has been applied) and to confirm
the routability of the circuit has been used the PDD_Place&Route tool [20] developed
in Politecnico di Torino.

The ReM Placement and Route consists in 190 Standard Cells, 131 Nets composed
by 274 segments, distributed in 12 Routing Metal Layer.

The 190 Standard Cells of the basic layout, organized in a 13 � 16 Greed, occupy
an area of 207.063 lm2, value which is compliant with the one provided by Design
Compiler considering the additional space dedicated to routing.

To further evaluate the proposed architecture the technology mapping of the first 6
benchmarks of the ITC’99 Set [21] has been obtained.

Since a custom tool for the purpose is not already available, to obtain the resources
utilization Design Compiler has been used. In order to compute the needed ReM Cells,
each design has been synthesized omitting all the NangateOpenCell Library Gates
except for the ones available in ReM (AND2_X1, NAND2_X1, OR2_X1, NOR2_X1,
INV_X1, and Memory Elements). In this manner, the amount of required ReM Cells in
Memory and Logic Mode is accurately obtained. The number of ReM Cell in Con-
nection Mode has been extracted interpolating the information provided by Design
Compiler about edges and nets with the routability provided by the ReM Cell in
Connectivity Mode.

Furthermore, a comparison with the same benchmarks implemented on the FPGA
(Xilinx ZYNQ7020) in terms of resources and Reconfiguration Time has been made.
The summary of this comparison is reported in Table 1. As is possible to guess, the
ReM Implementation pay a bit in terms of resources usage, even if a fair comparison is
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difficult because no information is available about the area occupied by the FPGA
Configurable Logic Block and Switch Matrix. But considering the Reconfiguration
Time, the ReM approach is considerably faster. In fact, if we consider the Capillary
Reconfiguration Approach [4], in which only the used frame for a design are recon-
figured, the reconfiguration time is enormous, since each Frame needs about 10 ms to
be reconfigured. With ReM Architecture instead the whole circuit can be reconfigured
within a clock cycle with the systolic propagation of a Reconfiguration Trigger. The
ReM Configuration times are computed with a working frequency of 10 MHz.

5 Conclusions and Future Works

In conclusion a new Reconfigurable Computing Paradigm has been developed, which
consists in exploiting Reconfiguration in a distributed manner at the lowest granularity,
providing to the basic reconfigurable functional unit the ability to reconfigure itself and
the neighbor units to maximize flexibility, scalability, parallelization and concurrency.
We also provide a proof of concept of our idea by implementing a physical model of
the ReM Cell, which is a basic reconfigurable element which can behave as Logic,
Memory, Connection and Reconfiguration Trigger. Finally, we demonstrate the ben-
efits in terms of reconfiguration time.

Several future developments spreads, such as trying to make a fair comparison with
FPGA area by investigating the real area used by FPGA resources, From the theoretical
point of view we will further investigate the trade-off between granularity, area and
reconfiguration time by and suggesting different version of Reconfigurable Basic
Element. In parallel we will work on the realization of a tool chain to easy circuits
implementation and evaluation on ReM architecture. In the future we also plan to a
realize a real device with or technology architecture.
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Abstract. Configurable hardware accelerators offer the opportunity to
execute compute intense parts of applications with a higher performance
and a higher energy efficiency as in pure software execution. One impor-
tant component in such accelerators is the memory access to the system
memory. Typically, this is realized through a cache hierarchy. In this con-
tribution, we implement two different cache coherence protocols in two
different configurable HW accelerators on real hardware. Using multiple
benchmarks, we evaluate the influence of the cache coherence protocol
on the execution time of the accelerators. As a result, we show that the
Dragon protocol performs better than the MOESI protocol.

1 Introduction

Hardware (HW) accelerators have the potential to substantially improve the per-
formance of software systems. In Field Programmable Gate Arrays (FPGA), HW
accelerators can be customized for the application. In Coarse Grained Reconfig-
urable Arrays (CGRA), the application is mapped to the existing resources of
the array. Both types of accelerators have in common that they need a regular
processor to execute the software parts that were not mapped to the accelerator.
Also, both accelerator types are highly dependent on the efficiency of memory
accesses from the accelerator to the main memory. Multiple accesses should be
possible at the same time in order to provide a maximum degree of parallelism.
This is achieved by using multiple caches that can be accessed in parallel. These
caches in turn get their data either from a secondary cache level or from the
main memory. Additionally, these caches have to be kept in a coherent state.

Cache coherence has been a major research topic in the area of multi-core
CPUs. Different protocols have been proposed and investigated. Nevertheless, in
the use case of HW accelerators a stronger correlation and more locality of the
access patterns can be expected.

In this contribution, we study the effect of two different cache coherence
protocols on the efficiency of data caches for HW accelerators. We measure the
execution times of different applications on the two accelerator types using the
MOESI protocol and the Dragon protocol. It turns out that the Dragon protocol
performs better than MOESI.
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The remainder of this paper is structured as follows. Sections 2 and 3 discuss
related work and the two coherence protocols. It is followed by a description
of the different machine concepts and an evaluation using multiple application
oriented benchmarks is shown in Sect. 5. Finally, we give a conclusion in Sect. 6.

2 Related Work

Most reconfigurable accelerators do not use a typical multi cache system. Some
approaches like DySer [6] rely on the memory subsystem of the host processor
to load data from the memory. While this approach eliminates the need of cache
coherence protocols, this is a major bottleneck of the accelerator [6].

Plasticine [8] streams data from the memory directly into the accelerator
using Pattern Memory Units. This is very efficient but it can only be done with
a priori knowledge of the memory access patterns. Similarly, [3] uses Global Data
Transfer Units to load data from the offchip memory into the accelerator.

In [7] a single dual port cache is used in the accelerator but the cache of the
host processor has to be flushed and invalidated when the accelerator starts exe-
cution. The accelerator cache uses write-through, no-allocate strategy to ensure
coherence.

LegUp is a relatively well known high level synthesis (HLS) tool to create
application specific hardware accelerators. Their cache consists of a single mem-
ory which is connected to processor and accelerators likewise. This eliminates the
need to implement a coherence protocol. Furthermore, they take advantage of the
dual port feature of BRAMs found on FPGAs. In order to increase the number
of ports, they either use multi-pumping (MP) or a live value table (LVT) [2]. MP
time multiplexes the BRAM blocks using a clock of higher frequency. Therefore,
the number of ports that can be created by this technique is limited. The LVT
approach replicates the BRAM multiple times increasing the area with O(n2)
and n being the number of ports. This leads to an enormous area consumption
for systems with many caches.

In [13] the authors automatically generate multi-cache systems with caches
of varying size using spare BRAM resources on the FPGA. Nevertheless, they
assume a direct mapped cache architecture with fixed line size and never take
into account the effect of the implemented coherence protocol.

3 Cache Coherence Protocols

3.1 MOESI Protocol

The MOESI protocol is an invalidation based protocol developed to maintain
coherent data over any number of caches. It consists of five states: Modified,
Owned, Exclusive, Shared and Invalid. Each cache line can either be valid or
invalid. If it is valid, it can either be shared or exclusive and it can either be mod-
ified or unmodified. Therefore, the Modified state is also exclusive, the Owned
state is modified and shared while the Exclusive and the Shared states are both
unmodified. For further information see [11].
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Compared to simpler protocols, the Owned state allows to share dirty cache
lines. The dirty value is only written back when the cache line is replaced.

This type of protocol is called invalidation based since one cache will invali-
date a shared line in all other caches before writing to it. Therefore, the cache
line will be transitioned from the Shared or Owned state into the Modified state
in the writing cache, while being transitioned into the Invalid state in every
other cache.

3.2 Dragon Protocol

The main issue with the MOESI protocol is that upon a (shared) write access,
a notification is sent and all other caches holding that line will invalidate their
copy. If the data is needed later on, it has to be reloaded.

The Dragon protocol [1] tries to avoid these reloads by not invalidating the
cache line in all other caches upon a write access. Instead, the new value is
directly sent with the notification. The Dragon protocol is therefore update based.

Consequently, Dragon has the same states as MOESI. However, when one
cache writes to a shared cache line, that cache line is transitioned to the Owned
state instead of the Modified state while all other cashes maintain their copy in
the Shared state. The update can be done in the background and no delay is
needed if no other requests are posted on the bus during that time.

3.3 Comparison

Table 1 shows different events that delay an access to the cache. In order to show
the advantages and disadvantages of these two protocols, it is best to compare
these events.

Case (1a) is inevitable while case (1b) can only happen when an invalidation
based protocol such as MOESI is used. The Dragon protocol would not cause
this event since the value would be updated directly and the line would remain
in a valid state.

The occurrence of case (2) is inevitable for both coherence protocols.

Table 1. MOESI vs Dragon delay events

Event Reason MOESI
invalidate

Dragon
update

(1a) L1 Miss Line was never read • •
(1b) Line was invalidated by another cache •
(2) Write

back
Replaced cache line was in state Owned or
Modified

• •

(3a) Bus con-
gestion

Two caches write to a shared cache line
alternatingly in quick succession

• •

(3b) One cache writes to a shared cache line in
quick succession

•
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Case (3a) causes delays in both caches. For MOESI each write access will
invalidate the cache line in all other cache and the data has to be reloaded for
the next access. When Dragon is used, the updates congest the coherence bus.
Therefore, they cannot be done in the background any more. The same holds
for Dragon in case (3b). However, this case cannot occur when MOESI is used
because the first write access invalidates the cache line in all other caches.

In conclusion, one can say that using the Dragon protocol will reduce the miss
rate because a shared line will be updated instead of invalidated. At the same
time depending on the access pattern the cache latencies might increase when a
single cache is repetitively writing a shared cache line. However, the occurrence
of delay types (3a) and (3b) can be minimized by reducing the number of shared
lines in the system.

4 Accelerator Concepts

We implemented cache based memory interfaces into a CGRA based (Sect. 4.1)
and an FPGA based (Sect. 4.2) accelerator architecture.

4.1 CGRA Based Accelerator

In the AMIDAR system a CGRA based accelerator whose configurations can
be created and loaded at runtime is used [14]. AMIDAR is a token-based Java
processor which is tightly coupled to the accelerator. The accelerator is shown
in Fig. 1a. It consists of an array of Processing Elements (PE, white and green),
a context control unit (red) and the Condition Box (C-Box, yellow).

Fig. 1. CGRA architecture and memory hierarchy of the AMIDAR system (Color
figure online)
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Each PE can execute one instruction per clock cycle provided by the context
memories (blue). New configurations for different kernels are created and loaded
at runtime to adapt to the program flow. No user interaction in any way is
needed at this point.

In order to accelerate arbitrary applications with irregular access patterns,
several PEs are equipped with memory interfaces (green) which can load data
from the memory on demand via caches.

Figure 1b shows the cache hierarchy in AMIDAR. Cache lines can be
exchanged between both L1 and L2 caches in one clock cycle. The cache prop-
erties using the DDR3 memory of the Nexys Video board as main memory are
shown in Table 2. Note that in the AMIDAR processor, the cache is addressed
indirectly via an object handle and an offset, referred to as virtual address-
ing. This technique is limited to object oriented programming languages where
pointer arithmetic is not allowed [12].

Access Classification and Distribution. When a kernel is mapped onto the
CGRA, a combined placer and scheduler [10] maps each memory access to a PE.
Depending on this decision, the number of shared cache lines varies. As a result,
the quality of the mapping algorithm directly influences the performance of the
kernel.

As explained in Sect. 4.1, the cache in the AMIDAR system is virtually
addressed using an object handle as base address and an offset. Since the absence
of aliasing can easily be proven in most cases, it can be assumed that memory
accesses with the same base address are more likely to cause cache conflicts than
memory accesses with different base addresses.

In order to minimize those cache conflicts, the scheduler tries to classify
memory accesses and distributes them to the PEs in a manner that memory
accesses with the same base address are mapped to the same PE. In the following,
this processes will be called ACD (Access Classification and Distribution).

ACD is done with the help of a list for each base address in the kernel. The
list contains all PEs on which an access with the corresponding base address
was scheduled. The following heuristic is used when binding the memory access
instructions to the PEs:

1. Find all memory accesses with the same base address
2. If there are more than twice as many read accesses than write accesses, there

are no restrictions in order to exploit parallelism.
3. If not, each access in this class has to be mapped to a PE which is already in

the list of the corresponding base address (if possible).
4. Update the list as follows when an access is mapped:

– Add PE to the list if the current access is a read access
– Add PE to the list and remove all other PEs if the current access is a

write access

Note, that this heuristic will improve the cache access times but at the same
time this might lead to longer schedules since less operations can be parallelized.
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Table 2. AMIDAR and PIRANHA cache properties (see Figs. 1b and 2)

AMIDAR/CGRA PIRANHA

L1 Core Cache 64KB, 32Byte/8Word per Line

Virtually addressed, 4-Ways

8KB, 16Byte/8Word per Line

4-Ways

L1 Acc. Cache in sum 16KB, 32Byte/8Word per Line

Virtually addressed, 4-Ways

16KB, 16Byte/8Word per Line

4-Ways

L2 Cache 256KB, 32Byte/8Word per Line

Virtually addressed, 4-Ways

Non-existent

L1 miss Latency

read

... from other L1 Cache 5+ Cycles 4+ Cycles

... from L2 Cache 10+ Cycles Non-existent

... from main memory 48+ Cycles 36+ Cycles

4.2 Application Specific Accelerator

Application specific accelerators are created at compile time and are directly
integrated into the system. Their advantage is that the accelerators and the
surrounding architecture such as the cache system can be tailored to the specific
needs of the application.

PIRANHA. The Plugin for Intermediate Representation ANalysis and
Hardware Acceleration (PIRANHA) can be used to automatically generate appli-
cation specific hardware accelerators while compiling the system’s firmware with
the GCC [5]. It can be integrated into any System-on-Chip (SoC) kit for FPGAs
that uses the GCC to compile the firmware. The idea is to take advantage of
the fact that systems deployed on FPGAs can be newly synthesized after each
change to the firmware giving the opportunity to insert additional application
specific hardware.

Currently, PIRANHA is mainly used with the SpartanMC, an 18-bit SoC-kit
designed to get the optimum use of the internal structures of an FPGA [4]. The
toolchain automatically integrates the plugin into the compiler. The key concept
is that code analysis, loop selection and accelerator generation run completely
transparently. The firmware developer neither has to indicate which parts of the
code to accelerate nor what assumptions about code can be made.

PIRANHA accepts a parameter that indicates the number of available mem-
ory ports to the accelerators. During operation scheduling this number serves as
a resource constraint on how many concurrent memory accesses can be scheduled
in one time step.

Decoupling memory operations is a non trivial task for the C language due
to pointer aliasing. Therefore, most memory accesses can only be performed
out of order or in parallel when it can be proven at compile time that they
never refer to the same memory address. This is usually the case when both
operations access different elements of the same array. Two read operations are
always independent of each other.
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Fig. 2. Interconnect between softcore, hardware accelerator and caches

The memory accesses are assigned to memory ports after scheduling.
PIRANHA uses the GCC internal algorithms to calculate a base address object
for every memory access instruction that follows a regular access pattern [9]. The
algorithm tries to bind memory access with the same base address to the same
port in order to reduce the number of shared lines in the cache. In comparison to
the ACD method, this binding algorithm is not executed during scheduling but
afterwards. Therefore, it is not possible to prevent shared cache lines by forcibly
scheduling memory accesses of the same array to the same port in different time
steps. Furthermore, due to pointer aliasing, two memory accesses with different
base addresses can still refer to the same data.

Cache Integration. Figure 2 shows the interconnect between softcore, hard-
ware accelerators and data caches. The accelerators are connected to the proces-
sor as peripherals. Live-in and live-out variables are transferred using the periph-
eral bus. Accelerators and the SpartanMC core use different types of caches. Only
one accelerator can be active at a time. Therefore, they can share the access to
all accelerator caches. Coherence is maintained over the coherence bus.

Note that the coherence bus is able to transfer a whole line in parallel. This
increases the efficiency of the system. The cache properties using the DDR3
memory of the Nexys Video board are shown in Table 2.

5 Evaluation

The cache coherence strategies will be evaluated with three applications:
The Mandelbrot calculation contains a compute heavy inner loop that cal-

culates i values of a complex valued sequence for each pixel in a picture. It uses
a random access pattern for the color lookup and a linear access pattern to store
the colors of the pixels.

The AES-256 application encrypts and decrypts a given byte array. There-
fore, many memory accesses have a regular access pattern and arrays are changed
in place.
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In the JPEG encoder many different kernels with different characteristics
are computed ranging from color space transformation over discrete cosine trans-
formation to Huffman encoding.

The problem size of all applications was chosen to exceed the cache size of
the combined L1 caches in the SpartanMC system as well as the L2 cache of the
AMIDAR system. This ensures that at no point during runtime the entire data
of the application can be stored inside the cache system. Nevertheless, it has to
be considered that depending on the algorithm not all data is used at the same
time.

5.1 Preselection of Cache Parameters

Basically, it would be possible to sweep over all available parameters for the
cache design. Yet, this would span a huge search space and it would take an
unbearable time to evaluate. Thus, we try to make reasonable choices for some
of the parameters.

Experiments with the cache line size have shown that with a line size of 8
words in both accelerator types the best performance was gained. Smaller or
larger line sizes had a negative effect on almost all test cases. Thus, we fixed the
line size to 8 words.

Varying the cache size in total might change other influence factors. Nev-
ertheless, we found that beyond 16 KB cache size these effects are no longer
relevant. At the same time this cache size seems to be reasonable. Thus, we
fixed the cache size to 16 KB.

Eventually, we analyzed the effect of different associativities. Comparing 1,
2, and 4-way caches, we found that 4-way caches always performed at least as
good as the others, which could be expected. At the same time, the timing of
these 4-way caches in the accelerator was still within the limits of the other
system components. Thus, the only mentionable drawback of a 4-way configura-
tion is the relatively small hardware overhead (more comparators for the tag).
Consequently, we fixed the associativity to 4.

As a result of this preselection, the following parameters will be swept: num-
ber of caches (between 1, 2 and 4) and the coherence protocol. In case of the
CGRA based accelerator, additionally we evaluated the usage of ACD.

5.2 Evaluation of Application Specific Accelerators

All three benchmarks were executed on the SpartanMC in order to evaluate the
impact of the coherence protocol in a system with application specific acceler-
ators. The system was synthesized for an Artix-7 FPGA on the Nexys Video
board. This board includes a 512 MB DDR3 memory which was used as main
memory. A baseline was created by executing each benchmark without any accel-
erators present.
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Fig. 3. Comparison of the speedup for a total cache size of 16 KB and line size of 8
words executed on the SpartanMC with application specific accelerators

Figure 3 compares the speedup for MOESI and Dragon. It can be seen that
MOESI outperforms Dragon as long as there is only a single accelerator cache
connected to the system. This is not surprising since the processor is idling while
the accelerator is running. Therefore, it is more beneficial to invalidate a line the
first time it is written.

Once there is more than one accelerator cache present, Dragon outperforms
the MOESI protocol. As explained in Sect. 4.2, PIRANHA is currently not able to
efficiently classify memory instructions in order to reduce the number of shared
writes to the cache system. Therefore, the system benefits from directly updating
a shared line.

The evaluation also shows that the coherence protocol has close to no effect
on the Mandelbrot benchmark. The implementation of the benchmark has two
arrays: the color lookup table, which is read only, and the output picture, which
is write only. Due to the unroll factor of 4, all ports can be fully exploited.
The coherence protocol does not have any influence on read only data, since the
data is never invalidated. Furthermore, the delay to access a write only array
simultaneously from multiple ports is almost identical for MOESI and Dragon
since both protocols demand a single coherence access either to request and
invalidate or to update the line.

The last thing to note is that the JPEG performs best when a single cache
and MOESI is used. This is due to the fact that the algorithm is hard to decouple.
Therefore, the additional memory interfaces have a low utilization and it is better
to use a single bigger cache.

5.3 Evaluation of CGRA Based Accelerators

For the CGRA a cycle accurate simulator was used and a design space explo-
ration sweeping the parameters presented in Sect. 5.1 was done.

Figure 4 shows the speedups for AES, JPEG and Mandelbrot with and with-
out ACD. The baseline is an execution of the applications on the AMIDAR
system without CGRA acceleration. In Mandelbrot the difference between the
different coherence strategies is negligible for the same reasons presented in
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Fig. 4. Comparison of the speedup for a total cache size of 16 KB and line size of 8
words executed on AMIDAR with reconfigurable accelerator

Sect. 5.2. When just one cache is used, MOESI is better or results at least in the
same performance and ACD has no effect as all memory accesses will be mapped
to the one cache anyways. When more than one cache is present, Dragon per-
forms better for both, AES and JPEG, when no ACD is used. When ACD is
used, MOESI is slightly better in all cases.

A more detailed evaluation was made using 24 benchmarks1 in two different
sizes. A thorough discussion is omitted here, but the key findings are be given
in the following.

When only one cache is present, the cache lines are only shared with the
cache of the host processor. Updating shared cache lines brings no benefit but
only slows down the execution. Therefore, MOESI outperforms Dragon in this
case.

For CGRAs with more than one cache and without ACD, Dragon is always
better than MOESI because written values are updated directly in the other
caches.

ACD increases the performance in both Dragon and MOESI. Yet, ACD can-
cels the advantages of Dragon. Therefore, MOESI with ACD is slightly better
because MOESI blocks unnecessary cache line sharing with the cache in the host
processor.

As a conclusion of both system evaluations we can say that if there is just
one cache in the CGRA MOESI is better than Dragon and ACD is unnecessary.
If there is more than one cache, Dragon is better if ACD cannot be used. If ACD
is used both protocols have a similar performance while MOESI has a slight
advantage if there are fewer caches in the CGRA. The more caches are added,
the better Dragon performs.

1 AES, Blowfish, DES, IDEA, RC6, Serpent, Skipjack, Twofish, XTEA, BLAKE256,
CubeHash512, ECOH256, MD5, RadioGatun32, SHA1, SHA256, SIMD512, Con-
trastFilter, GrayscaleFilter, SobelFilter, SwizzleFilter, ADPCMdecode, ADPCMen-
code, JPEG.
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6 Conclusion

In this contribution, we have investigated the influence of different coherence
protocols on the efficiency of the memory subsystem of two accelerator architec-
tures. In summary, we found that the number of useful memory ports is depen-
dent on the nature of the accelerator and the thoroughness of the memory access
analysis. In contrast, the Dragon coherence protocol is always the better choice,
if more than one cache is used. In case the memory accesses can be classified
and distributed, the Dragon protocol does not have an advantage over MOESI,
but in all other cases, the Dragon protocol leads to a better performance.
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Abstract. The trend towards more parallelism in information process-
ing is unbroken. Manycore architectures provide both massive parallelism
and flexibility, yet they raise the level of complexity in design and pro-
gramming. Prototyping of such architectures helps in handling this com-
plexity by evaluating the design space and discovering design errors.
Several system simulators exist but they can only be used for early soft-
ware development and interface specification. FPGA-based prototypes
on the other hand are restricted by available FPGA resources or expen-
sive multi-FPGA prototyping platforms. We present a hybrid prototyp-
ing approach for manycore systems that consists of an FPGA-part and
a virtual part of the architecture on a host system. The hybrid proto-
typing requires less FPGA resources while retaining its speed advantage
and enabling flexible modeling in the virtual platform.

We describe the concept, provide an analysis of timing accuracy and
synchronization of the FPGA with the Virtual Platform (VP) and show
an example in which the hybrid prototype is used for feature development
and evaluation of a scientific manycore architecture. The hybrid proto-
type allows us to evaluate a 7× 7 architecture on a Virtex-7 XC7VX485T
FPGA board which otherwise could only fit a reduced 2× 2 design of our
architecture.

Keywords: Hybrid prototyping · Manycore · Virtual Platforms

1 Introduction

The trend towards more and more cores on a single chip has been predicted for
many years, yet even today we still see only few real manycore architectures
present in academia and industry. This is mostly due to major challenges in the
programmability of such architectures. Yet the development of a manycore hard-
ware architecture itself, its feature selection, composition and micro-architecture
is not trivial. A major role regarding performance and fulfillment of other non-
functional properties is played by the interconnect and the memory architecture.
Their impact is much more severe in a manycore, compared to traditional single,
dual or quad-core architectures. Towards a scalable interconnect backbone for
manycore architectures, Networks-on-chip (NoC) solutions have emerged. These
c© Springer Nature Switzerland AG 2019
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NoC, while simple in concept, have increased in complexity over the years in
order to offer QoS guarantees, low power, safety, security, etc. Yet many new
concepts are evaluated purely on abstract software simulators, leaving actual
hardware implementations of novel NoC extensions and concepts a rare case.
This is especially true for large manycore architectures, since they are difficult to
develop and prototype. However, real hardware implementations are an impor-
tant factor in strengthening a concepts credibility and help integrating useful
approaches into other architectures. The reason why there are so few implemen-
tations is often simply the extra effort that has to be spent on developing a
concept as an actual hardware block, compared to doing so in an abstract soft-
ware simulator. However, there is also the problem of prototyping, debugging
and evaluation of a hardware implementation. This problem is exceedingly more
difficult in the context of NoCs and manycore: Huge architectures that do not
fit into a single FPGA and that do not scale well in hardware simulation.

In this paper we introduce and investigate hybrid prototyping, i.e. a combi-
nation of FPGA and Virtual Platforms (VP), in the context of manycore design.
At first, the current state-of-the-art in manycore prototyping is illustrated and
the existing shortcomings are discussed. Afterwards the concept of hybrid proto-
typing for manycore architectures is introduced and its benefits highlighted. The
detailed design and implementation that is applied to a scientific manycore archi-
tecture is shown afterwards. Furthermore, the synchronization and delay among
the domains of the hybrid prototype is analyzed. Finally, the hybrid prototyping
is evaluated based on a NoC extension of said manycore architecture.

2 Traditional Manycore Prototyping

Besides high-level synthesis based on functional descriptions in OpenCL, Sys-
temC or even plain C which slowly gains more attraction, the typical way for
hardware design is still based on Hardware Description Languages (HDL) like
VHDL or Verilog and their extensions. The common approach for evaluation,
debugging and verification of HDL code is the use of hardware simulators. These
simulators provide cycle accurate simulation of all signals present in a design.
A large benefit of such simulators is the fact that any design change can be
recompiled rather quickly. Furthermore, all signals in the design can be moni-
tored and observed at cycle-level granularity. On the other hand, simulations on
such a detailed level are rather slow. Simulation time directly correlates with the
design size, i.e. the amount of signals that need to be simulated. Thus, in the case
of a manycore, it becomes unfeasible to simulate the whole hardware platform
together with the applications running on it. Instead, typically testbenches are
used which test only small components of a platform. However, this often leads
to unrealistic scenarios or uncovered corner cases, causing design failures in real
hardware. Furthermore, it is impossible to evaluate and compare implementation
performance in any real use-case scenario.

An alternative to pure software based hardware simulators is FPGA proto-
typing. Using FPGA for prototyping is sometimes also seen as an enhancement
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or extension to hardware simulation, labeled simulator acceleration. Field pro-
grammable gate arrays have a long history in hardware prototyping besides also
being a target technology for hardware implementation and deployment in many
different application domains [11]. FPGA prototyping allows clock frequencies
of up to a few hundred MHz and it provides fully parallel hardware execution,
in contrast to sequential execution in any software simulator. This allows high
performance and good scalability with growing design size. However, this scala-
bility is limited by the available resources on an FPGA. In fact, a single resource
such as LUT, FF or BRAM that exceeds its limit prevents the placement of the
whole design. Additionally, the more resources are in use, the less likely it is for
the tools to provide good routing to allow high clock frequencies. Even though
FPGAs are growing in size each generation, no single FPGA can currently host
a full manycore design with hundreds of cores on its own. A common approach
for prototyping a manycore architecture is thus based on a multi-FPGA pro-
totyping platform. Such prototyping systems typically host a fixed number of
FPGAs connected via high-throughput and low-latency interconnection cables
or boards. Partitioning a manycore architecture onto multiple FPGAs as shown
in Fig. 1 typically uses the NoC-links between routers (R) to separate the design
at the FPGA boundaries. However, the links which cross FPGA boundaries typ-
ically cannot be operated with the same delay as FPGA-internal links, resulting
in restrictions for the design and potentially even different timing behavior. Fur-
thermore, there is always an overhead when connecting pins for the FPGA inter-
connect and doing delay calibration among all signals on such a link. Another
drawback of FPGA prototyping is the large time for synthesis and place & route,
especially in big designs. Changing any configuration, fixing a bug or implement-
ing a new feature requires a new synthesis which can easily take several hours
to finish. The time is further increased if timing and mapping constraints are
difficult to fulfill and require further optimization steps by the synthesis tools.
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Fig. 1. A manycore partition onto a multi-FPGA prototyping system.
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3 Related Work

Since the performance of manycores largely depends on the on-chip intercon-
nect, a large amount of research on the design and prototyping of manycore
architectures focuses specifically on NoCs. The authors of [5] present AdapNoC,
a flexible FPGA-based NoC simulator. The authors also provide a thorough com-
parison about the state of the art regarding NoC simulators. Major distinctions
among FPGA-based simulators are made based on virtualization techniques,
traffic generation and the decoupling of simulator and network.

All NoC simulators have to provide some form of traffic generation which
can either be synthetic or real traffic (typically trace-based). The authors in [14]
decouple the simulator from the simulated architecture and use C-based traffic
generation on the host while in [7] the traffic generation is handled by a soft-core
on the FPGA.

In [10], Papamichael introduces a virtualization technique on FPGAs, which
allows much larger designs than the available resources would normally allow.
In this approach, the NoC architecture is split into several virtual regions that
run on a single physical instance of such a region. Thus, the logic of the region
exists just once and only the state holding elements must be duplicated to exist
physically for each virtual region. A similar virtualization approach on FPGAs,
targeted towards cores of a Multicore instead of the interconnect is presented
in [12].

All these approaches lack the availability of a full manycore architecture
including the processing elements, I/O, memories etc. Prototyping such full
manycore architectures suffers from the sheer size and complexity much more
than pure interconnect simulators/emulators. Software based approaches using
instruction set simulators (ISS) may achieve high execution speeds and allow
rather simple architecture modelling, yet they always face the issue of accuracy
loss, not being a physical implementation. Furthermore, software simulators work
by sequential execution, which results in bad scalability when the dimensions of
the emulated architectures are increased. Gem5 [3] is an example of a full-system
simulator that has been extended and used for design-space explorations and
proof-of-concept evaluations in manycore architectures.

Attempts to bring full manycore architectures onto FPGA were made with
the introduction of Formic [8] by Lyberis et al. In their work they describe a new
FPGA board that is tailored exactly towards a manycores resource requirements.
However, a lot of boards and FPGA in an interconnected scheme are still required
to host a full manycore. Synopsys provides their HAPS multi-FPGA boards
that have recently been extended towards a hybrid prototyping approach in
conjunction with their Virtualizer tool [2]. We introduce a similar approach,
however it is tailored towards manycores and can be used with any available
FPGA board.
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Table 1. Resource cost comparison of example components present in a manycore
architecture.

LUT FF Mux BRAM

1 LEON3 core 8797 2583 96 16

1 Tile (5 Cores) 61572 27949 733 132

1 Aethereal router [4] 2658 N/A N/A N/A

4 The Hybrid Prototyping

In this paper we investigate the hybrid prototyping, which is essentially a fusion
of software based virtual platforms (VPs) and FPGA prototyping, for manycore
and NoC design. The application of a hybrid prototype is motivated by the obser-
vation that the full level of detail is not always needed in every component when
developing a manycore. The approach is similar to the concept of testbenches
for small sub-components when designing hardware in cycle accurate simulators.
In this case however, the goal is to execute real applications and prototype the
full manycore architecture, yet not every component at the same level of detail.
As such, we propose to implement a part of the architecture on an FPGA, while
modelling the remaining part in a virtual platform. This allows us to have more
FPGA resources for the components we want to investigate while creating a
prototype that encompasses a much larger manycore architecture in total.

An analysis of the area consumption of a CPU that is available as syn-
thesizable HDL description and a multi-CPU tile that is typically part of a
manycore architecture is shown in Table 1. The core is a LEON3 processor from
Gaisler Research including 32 KB/64 KB I/D L1 caches, a typical tile consists
of 5 cores, local bus, network interface and debug link. As it can be seen, the
LUT requirements are the limiting factor for the cores and tiles. Based on the
resources available on the XC7V2000T (1,222M LUTs and 2,443M FFs), we
could theoretically fit a full design consisting of 17 tiles and routers. In compar-
ison, there are resource utilization numbers of the aethereal NoC available as
provided in [4] which hint towards a theoretical number of 459 routers fitting on
the XC7V2000T. While these theoretical numbers can’t be achieved in an actual
synthesis due to placement constraints, this estimation demonstrates the impact
of mapping only a subset of an architecture to the FPGA.

Based on these area observations, we present two major scenarios for many-
core prototyping. The first scenario implements a spatial fragment of the archi-
tecture (i.e. several tiles including their NoC routers) on the FPGA, while mod-
eling the remaining tiles and routers in a virtual platform. This approach is
shown in Fig. 2. The connection between FPGA and virtual platform is located
between two routers in the NoC, i.e. a physical router on the border of the FPGA
that is connected to a neighboring router in the virtual platform. The interface
between the physical router on the FPGA and the virtual router on the host PC
will be described in detail later. In this setup, the focus is on the investigation
of the tiles, which are prototyped with full FPGA accuracy but can send and
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receive their data to respectively from a much larger architecture. This allows
the modeling of different load scenarios, access latencies over the NoC, I/O and
large background memory on the host system.

The second scenario (Fig. 3) is focused on the network-on-chip interconnect
itself. In this scenario, a full NoC and all its physical links are implemented
on the FPGA, while the tiles including the network interface is modeled in
the virtual platform. The connection between FPGA and VP is thus at the
local port of each router at which point the data is transferred to the host and
processed by a virtual network interface and the virtual tiles. This scenario allows
us to investigate much larger NoC architectures under real application traffic,
provide resources (e.g. memory, I/O) that might not be available on the FPGA
itself and enables modeling of different (end to end) network protocols in the
virtual platform (e.g. shared memory versus message passing). Since the “cut”
between FPGA and VP is on regular NoC links and the local port/link typically
behaves exactly the same as the links between two routers, both scenarios can be
handled by the same physical interface implementation and only require different
modeling on the VP side.

5 Implementation

Figure 4 shows the full hybrid prototyping scheme. On the left we see the Host-
PC, on which the virtual platform and the application code running within the
platform resides. The virtual platform can also be abstracted on a functional level
by the use of a communication library that handles the access to the FPGA. The
virtual platform uses a direct access to a PCIe driver for the physical interface
to the FPGA. On the right we see the FPGA part, that is split into three
components: The fragment of the manycore architecture that is prototyped (i.e.
the two scenarios), a NoC Interface which collects/distributes and prepares all
the data from/to the NoC, and the host interface that includes the PCIe.
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5.1 Host Interface

The requirements for the FPGA-host interface are low latency data transfers
and high potential throughput so that large manycore architectures with high
network load can be handled. We choose PCIe for this task since it offers the best
performance in comparison to any other typically available interface between
FPGA and host-PC. The PCIe interface is clocked with 250 MHz and offers 128
bit width for the data transfers. Data is transferred via DMA requests into a
ringbuffer in the main memory on the host PC. The main memory hosts two
separated ringbuffers, one for the receiving and one for the sending side.

5.2 NoC Interface

The NoC interface as shown in Fig. 5 is responsible for collecting all the data from
the NoC towards the VP, and distributing the data from the VP to the NoC. For
this task we introduce a Dummy Network Interface (DNI) that is able to handle
the communication with the routers. All dummy NIs are connected to one of the
parallelizers, which bundle the data streams of multiple NIs into 128 bit packets
that are used by the PCIe Interface. A configurable amount of dummy NIs can
be connected to a parallelizer, yet with a typical NoC Link bandwidth of 32 bit
that are converted to 128 bit, we choose four dummy NIs for each parallelizer.
The parallelizer also adds a header to each packet which indicates the ID of
the router and the virtual channel on which a packet arrived. The parallelizers
are connected to a collector. This unit contains dual clock FIFOs which allow
an arbitrary configuration of the clock frequency of the NoC, while keeping the
PCIe Interface at maximum clock speed for best performance. The collector is
then connected to the Host Interface, that contains a Xilinx PCIe core.
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5.3 SW Interface

When data is copied from the FPGA into the host memory via DMA, an inter-
rupt is raised to notify the user-space software. We implemented a specific driver
that takes care of the low-level tasks for communication of user-space software
with the FPGA design. The driver can reserve memory ranges in the host mem-
ory, initialize the PCIe device and setup DMA and interrupts. It creates a char-
acter device with the following syscalls: open, close, read, write, ioctl, poll. The
driver makes sure that only valid data is read and supports both blocking as well
as non-blocking calls. This interface allows the creation of user-space libraries
and applications that directly work on the driver in order to send and receive
data to, respectively from the FPGA.

5.4 VP Interface

In order to prototype a full manycore system, all the components that are not
placed on the FPGA need to be modeled on the host. As an example, according
to scenario 2 we place the NoC interconnect on the FPGA while modeling the
network interface and the tiles in a virtual platform. In order to be fully binary
compatible, we require an Instruction Set Simulator (ISS) as well as a modeling
and platform generation framework for arbitrary components like the network
interface, memories and local interconnects within a tile. One existing framework
that fulfills these goals is Open Virtual Platforms (OVP) [1]. OVP contains
processor models for many different ISA, allows platform and system generation
and the generation of peripherals that can be modeled to behave exactly like real
hardware with fully compatible interfaces to the software. These peripherals also
allow the use of a semihosting functionality, which gives access to host resources
including drivers. Through semihosting we can access the low level SW-Interface
and our PCIe driver, process the data within the modeled peripheral and make
load/store accesses to data in the memories of the virtual platform.

6 Timing Accuracy Analysis

Fully cycle accurate operation as in a HDL simulator is only provided on the
FPGA part of the hybrid prototype. The host part including the virtual platform
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works on instruction accurate processor models and fixed delay peripherals. This
means that the hybrid prototype is inherently not a fully timing accurate model
of a real hardware synthesized manycore, since it does not consider processor
pipelines, memory access times and any other elements that are part of the VP.
As motivated earlier, this is often perfectly fine when focusing on a single aspect
of the whole architecture, using the hybrid prototype for functional testing,
validation and debugging. However, there are situations in which a certain level
of timing accuracy is desirable for the whole prototype, mostly considering design
space exploration and performance evaluations. We will focus on analyzing the
synchronization of the two domains of the hybrid prototype: FPGA and VP.
However, the authors in [13] show that it is also possible to bring accuracy to
virtual platforms, at the cost of execution speed that is lowered by a factor of
150–170. In the following, we investigate the timing delays induced by the two
different domains and describe approaches for bringing certain levels of timing
accuracy into the hybrid prototype.

We identify three different modes of operation regarding synchronization of
the two domains of the hybrid prototyping:

– Fully-synchronous stepping
– Pseudo-synchronous operation
– Delta-based execution.

The Fully-synchronous stepping refers to a mode of operation in which all
elements in both domains progress one cycle and synchronize before the next
cycle is processed. This mode has been investigated in many publications in
the past when coupling HDL simulators, typically used for testbenches, with
FPGA prototypes that run the design under test. The authors in [6] give an
overview of existing techniques and present an optimization based on events and
net clustering. Such an approach can be adapted for virtual platform execution
that is proposed in this paper, however it would completely defeat the purpose
of providing fast evaluation speeds and is thus not considered a valid option.

The second mode of operation, labeled Pseudo-synchronous operation, does
not use any direct synchronization and thus does not provide the same behav-
ior as a fully cycle-accurate execution. Instead, it balances the speeds of both
domains in order to allow similar execution patterns compared to the fully syn-
chronous mode. This mode tries to avoid two imbalances:

– The FPGA running too fast, resulting in situations where a request towards
the FPGA is handled before another request takes place, resulting in loss of
resource contention scenarios that might happen in synchronized execution.

– The VP running too fast, resulting in request clogging in the FPGA which
might not have happened in a synchronized execution.

Realization of this mode requires that the hybrid prototype is running at defined
speeds in both domains, for example by scheduling the VP elements so that they
are sequentially executed to match the FPGA clock speed. This can be achieved
by inserting sleep cycles after all elements have sequentially processed for a time
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slot. Another issue that needs to be addressed is the delay that is introduced by
crossing the domains between FPGA and VP. The shortest possible request that
crosses the domain and triggers a response is the critical part in this regard. In
our scientific manycore architecture, the shortest request that crosses boundaries
is a remote read operation. In a full hardware implementation it takes 9 cycles for
input processing in the network interface, 5 cycles for bus and memory access of
a single word, and another 9 cycles for output processing. Providing an accurate
remote read thus requires that within 23 cycles on the FPGA, the dummy NI
can transfer the request to the host and retrieve the data in time. We analyze the
delays of the domain crossing between FPGA and VP in Table 2. FPGA to Host
and Host to FPGA both encompass the parallelizer, collector and PCIe interface
as described earlier. They represent the delay between a packet being sent to the
local dummy NI via the NoC, till the processed PCIe packet is located in the
ringbuffer in the host memory. The software delays encompass the interrupt and
the packet processing on the host, including the access to the virtual platform.
We use the Linux RT (real time) patch on the latest kernel to avoid large delays
due to the regular linux scheduler. As we can see, the software is the major
source of delay. The biggest issue is not the average delay but instead the fact
that there are some outliers with a much larger delay than average. These outliers
were vastly improved by the use of the RT patch, yet they are still four times
larger than the mean delay. In order to provide in-time requests over the domain
crossing in accordance with the presented findings, we can run the VP and the
FPGA design at lower frequencies. This does not affect the performance of the
Host-interface on the FPGA since it operates in its own clock domain.

Table 2. Delay measurements for the domain crossing

Domain Mean SD Min Max

FPGA to Host 0.52µs 0.04µs 0.39µs 1.49µs

Software 4.46µs 0.74µs 3µs 24µs

Host to FPGA 1.54µs 0.33µs 1.28µs 7.24µs

Sum 6.52µs 1.11µs 4.67µs 32.73µs

The last mode retains a global synchronization that is valid in any task driven
model of computation like Kahn process networks. The general assumption is
that the FPGA is inherently accurate and any interaction with the VP is based
on timestamps taken from an accurate clock counter in the FPGA. When data
from the NoC is collected by the dummy NI, the global clock counter is sampled
and attached to the PCIe packet towards the host. In the VP on the host, each
data that was updated via the NoC is linked to such a timestamp. When a
consuming task is triggered by that data, the VP starts processing and takes
the timestamp as a baseline, adding its processing time to the timestamp. When
processing in the VP triggers another event (i.e. message over the NoC), the new
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timestamp will be added to the data transfer towards the FPGA. In the FPGA,
the timestamp is used to delay packet injection into the network until the global
clock counter reaches the provided timestamp. While this mode does come with
some limitations as to the model of computation and requires the FPGA part to
be slowed down so that the VP is always able to run ahead (to avoid a situation
in which a request is sent to the FPGA that should have been injected at a
global clock cycle earlier than the current clock cycle), it also provides a fast
and accurate execution aside from the inaccuracies of the virtual platform itself,
which are out of scope here.

7 Use-Case Evaluation

The hybrid prototyping approach was devised in order to evaluate and develop
new features for a scientific manycore architecture with a special focus on the
NoC interconnect. As a first use case we select a previous work about a NoC
extension for low latency shortcuts that was presented in [9]. The NoC extension
specifically targets long distance, multi-hop traffic and thus requires large NoC
dimensions to be beneficial. The concept was first implemented and evaluated
on a cycle-accurate SystemC simulator since large manycore/NoC designs did
not fit any available FPGA. A HDL based implementation was presented, yet
it could only be verified in HDL simulation testbenches and small application
fragments. With the proposed hybrid prototyping we were able to bring the
implementation onto a single FPGA and use it for verification, bug detection and
feature optimization. We show the gained insights and results in the following.
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Fig. 6. The resource consumption of the NoC (the design under test) and the host
interface including the NoC interface.

In our example setup we use a Xilinx Virtex-7 XC7VX485T evaluation board
connected to a regular Intel PC with 8xPCIe 2.0 as a host system. The resource
overhead that accompanies the hybrid prototyping can be seen in Fig. 6. As we
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can see, in a 4× 4 NoC design 7.7% of the total available LUT and 5.2% of
total FF on the FPGA were used by the host interface, compared to 20.6% of
LUT and 4.9% of FF used for the NoC itself. The host interface thus adds an
overhead of 37% LUT to the design under test in a 4× 4 meshed NoC. Since the
figure shows that LUT are the limiting factor, we can ignore the overhead in FF.
A comparison with the more complex, multi-layer design of the extended NoC
router in a 4× 4 NoC shows that in more complex routers the overhead is even
less significant. When looking at larger NoC sizes, we can see that the NoC IF
and the PCIe part scale better than the NoC itself, resulting in an overhead of
24% in a 7× 7 design.

Table 3. Run time of the blackscholes trace on NoC prototypes from different proto-
typing domains, each representing a 4× 4 NoC.

Hybrid prototype SystemC sim HDL sim

179 s 1 d 2 h 10 d 8 h

For determining the prototyping speeds, we analyze the runtime of a simple
benchmark application in our available implementations: SystemC, HDL simu-
lator and FPGA. We choose a trace of the network traffic that was generated
from the blackscholes algorithm, mapped onto several tiles of a 4× 4 architec-
ture. We selected a 4× 4 architecture since the HDL simulator does not scale
well and would take an unreasonable amount of time for a larger mesh. For a
fair comparison we use the exact same input trace in all three variants. How-
ever, by including a suitable VP, the hybrid prototype can also natively execute
the algorithm in contrast to the other methods. We use SystemC version 2.3,
ModelSim SE-64 10.0d for the HDL simulation and Vivado 2017.3 for FPGA
synthesis. The results are shown in Table 3. The FPGA was able to execute the
whole trace via the communication library and the PCIe interface in 179 s. The
SystemC simulator took 93 678 s (1 day 2 h) based on a cycle accurate model of
our NoC that contains some simplifications and is not synthesizable. The Mod-
elsim simulation took a total of 927 047 s (10 days 8 h). The design was based
on the same HDL description that was synthesized onto the FPGA, minus the
PCIe interface and the collector logic but instead with a testbench that reads
the traces of the blackscholes benchmark. The runtime difference is enormous
and highlights the benefits of hybrid prototyping besides the ability to execute
the same code as on a physical platform and the modeling advantages of the
VP. The gap will increase even more to a point where it is completely unfeasible
when the designs grow larger or include the processors, memory, etc. in the HDL
simulation and SystemC models.

Compared to a HDL simulator, the hybrid prototype requires synthesis of
the FPGA part and thus induces some extra time for re-synthesis when design
changes are made. We show the measured times for a hybrid platform in Table 4.
To put these numbers in comparison, we also show the build duration required
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to re-synthesize an architecture containing the same amount of tiles for a large
multi-FPGA prototyping platform. As it can be expected, these numbers are
much larger since the multi-FPGA platform hosts a design containing the full
tiles and thus much more logic needs to be synthesized. Depending on the map-
ping onto the multiple FPGA, the build durations may be decreased by utilizing
more parallelism (i.e. synthesizing all FPGAs in parallel), if enough comput-
ing power is available. However, this will improve the build duration even in
the best case scenario at most by a factor that is equivalent to the amount
of FPGA boards in such a system. Considering this, the hybrid prototype can
be re-synthesized much more quickly and allows higher tile counts even on a
smaller FPGA board (Virtex-7 XC7VX485T for the hybrid prototype versus the
Virtex-7 XC7V2000T of the multi-FPGA platform).

Table 4. Build duration for a commercial Multi-FPGA platform and the proposed
hybrid prototype.

Prototyping platform Tile count Build duration

Multi FPGA 4 5h 51m

16 23 h 24m

Hybrid 4 20m

16 42m

49 1 h 19m

Using the hybrid prototype with our use-case NoC extension helped us to
detect several bugs and design issues that would have gone unnoticed without.
We were able to reproduce most of the observed issues in small HDL testbenches
after analyzing the behavior on the FPGA. However, we even found an issue
with a wrongly written assert statement, that was ignored in HDL simulation
but caused issues in the FPGA design. Since asserts are deleted by the tools in
synthesis, some critical assignments were incorrectly deleted due to a missing
semicolon. The synthesis gave a waring about ignoring the assert but gave no
hint that actually a large chunk of code was deleted. The HDL simulator on
the contrary simply evaluated the assert as true and scheduled the assignments
correctly.

8 Conclusion

In this paper, we use hybrid prototyping for design and validation of manycore
and NoC architectures. Our approach allows the prototyping of large architec-
tures with full FPGA accuracy and speed for critical components at much lower
cost compared to large FPGA-clusters while giving additional flexibility for the
traffic generation and protocol implementation thanks to the virtual platform.
We also present an investigation into timing accuracy and timing delays of such
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an approach and showcase its application for the feature development and eval-
uation of a scientific manycore architecture.

Acknowledgment. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center Invasive Computing
[SFB/TR 89].

References

1. Open Virtual Platforms (OVP). http://www.ovpworld.org/
2. Synopsys Hybrid Prototyping Solution. https://www.synopsys.com/verification/

virtual-prototyping/virtualizer/hybrid-prototyping.html
3. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Comput. Archit. News

39(2), 1 (2011). https://doi.org/10.1145/2024716.2024718
4. Goossens, K., Bennebroek, M., Hur, J.Y., Wahlah, M.A.: Hardwired networks on

chip in FPGAs to unify functional and configuration interconnects. In: Second
ACM/IEEE International Symposium on Networks-on-Chip, NOCS 2008. IEEE,
April 2008. https://doi.org/10.1109/nocs.2008.4492724

5. Kamali, H.M., Hessabi, S.: AdapNoC: a fast and flexible FPGA-based NoC sim-
ulator. In: 2016 26th International Conference on Field Programmable Logic and
Applications, FPL. IEEE, August 2016. https://doi.org/10.1109/fpl.2016.7577377

6. Kwon, Y.S., Kyung, C.M.: Performance-driven event-based synchronization for
multi-FPGA simulation accelerator with event time-multiplexing bus. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 24(9), 1444–1456 (2005). https://doi.org/
10.1109/tcad.2005.852035

7. Lotlikar, S., Pai, V., Gratz, P.V.: AcENoCs: a configurable HW/SW platform for
FPGA accelerated NoC emulation. In: 2011 24th International Conference on VLSI
Design. IEEE, January 2011. https://doi.org/10.1109/vlsid.2011.46

8. Lyberis, S., et al.: Formic: cost-efficient and scalable prototyping of manycore archi-
tectures. In: 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines. IEEE, April 2012. https://doi.org/10.1109/fccm.
2012.20

9. Masing, L., Srivatsa, A., KreB, F., Anantharajaiah, N., Herkersdorf, A., Becker,
J.: In-NoC circuits for low-latency cache coherence in distributed shared-memory
architectures. In: 2018 IEEE 12th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, September 2018. https://
doi.org/10.1109/mcsoc2018.2018.00033

10. Papamichael, M.K.: Fast scalable FPGA-based Network-on-Chip simulation mod-
els. In: Ninth ACM/IEEE International Conference on Formal Methods and Mod-
els for Codesign, MEMPCODE 2011. IEEE, July 2011. https://doi.org/10.1109/
memcod.2011.5970513

11. Rodriguez-Andina, J., Moure, M., Valdes, M.: Features, design tools, and appli-
cation domains of FPGAs. IEEE Trans. Ind. Electron. 54(4), 1810–1823 (2007).
https://doi.org/10.1109/tie.2007.898279

12. Saboori, E., Abdi, S.: Hybrid prototyping of multicore embedded systems. In:
2013 IEEE Conference Publications on Design, Automation & Test in Europe
Conference & Exhibition (DATE) (2013). https://doi.org/10.7873/date.2013.330

http://www.ovpworld.org/
https://www.synopsys.com/verification/virtual-prototyping/virtualizer/hybrid-prototyping.html
https://www.synopsys.com/verification/virtual-prototyping/virtualizer/hybrid-prototyping.html
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/nocs.2008.4492724
https://doi.org/10.1109/fpl.2016.7577377
https://doi.org/10.1109/tcad.2005.852035
https://doi.org/10.1109/tcad.2005.852035
https://doi.org/10.1109/vlsid.2011.46
https://doi.org/10.1109/fccm.2012.20
https://doi.org/10.1109/fccm.2012.20
https://doi.org/10.1109/mcsoc2018.2018.00033
https://doi.org/10.1109/mcsoc2018.2018.00033
https://doi.org/10.1109/memcod.2011.5970513
https://doi.org/10.1109/memcod.2011.5970513
https://doi.org/10.1109/tie.2007.898279
https://doi.org/10.7873/date.2013.330


Hybrid Prototyping for Manycore Design and Validation 333

13. Schreiner, S., Gorgen, R., Gruttner, K., Nebel, W.: A quasi-cycle accurate timing
model for binary translation based instruction set simulators. In: 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simu-
lation, SAMOS. IEEE, July 2016. https://doi.org/10.1109/samos.2016.7818371

14. Wang, D., Lo, C., Vasiljevic, J., Jerger, N.E., Steffan, J.G.: DART: a programmable
architecture for NoC simulation on FPGAs. IEEE Trans. Comput. 63(3), 664–678
(2014). https://doi.org/10.1109/tc.2012.121

https://doi.org/10.1109/samos.2016.7818371
https://doi.org/10.1109/tc.2012.121


Evaluation of FPGA Partitioning
Schemes for Time and Space Sharing

of Heterogeneous Tasks

Umar Ibrahim Minhas(B) , Roger Woods , and Georgios Karakonstantis

Queen’s University Belfast, Belfast, UK
u.minhas@qub.ac.uk

Abstract. Whilst FPGAs have been integrated in cloud ecosystems,
strict constraints for mapping hardware to spatially diverse distribution
of heterogeneous resources at run-time, makes their utilization for shared
multi tasking challenging. This work aims at analyzing the effects of such
constraints on the achievable compute density, i.e the efficiency in uti-
lization of available compute resources. A hypothesis is proposed and
uses static off-line partitioning and mapping of heterogeneous tasks to
improve space sharing on FPGA. The hypothetical approach allows the
FPGA resource to be treated as a service from higher level and supports
multi-task processing, without the need for low level infrastructure sup-
port. To evaluate the effects of existing constraints on our hypothesis, we
implement a relatively comprehensive suite of ten real high performance
computing tasks and produce multiple bitstreams per task for fair eval-
uation of the various schemes. We then evaluate and compare our pro-
posed partitioning scheme to previous work in terms of achieved system
throughput. The simulated results for large queues of mixed intensity
(compute and memory) tasks show that the proposed approach can pro-
vide higher than 3× system speedup. The execution on the Nallatech
385 FPGA card for selected cases suggest that our approach can provide
on average 2.9× and 2.3× higher system throughput for compute and
mixed intensity tasks while 0.2× lower for memory intensive tasks.

Keywords: Cloud environments · Data centers · Space sharing

1 Introduction

Cloud computing offers users ubiquitous access to a shared pool of resources,
through centralized data centres. With increasing device sizes and efficiency for
high performance computing, there has been an increased interest in recent times
to integrate Field Programmable Gate Arrays (FPGAs) in data centres [5,11].
However, their architecture and programming environment presents a different
resource sharing model when compared to software programmable accelerators.

The challenge lies in sharing the device space by accommodating multiple
heterogeneous tasks at one instance of time. Heterogeneous tasks in our context
c© Springer Nature Switzerland AG 2019
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are defined by heterogeneity in resource utilization (compute, memory, logic)
and execution time. Optimization of system’s resource utilization in time and
space when executing these tasks in a shared environment is a challenging task,
leading to suboptimal compute density and system throughput.

In software-based systems, a runtime approach can map a task to any por-
tion of underlying hardware. This together with microsecond latency context
switching between tasks, provides flexible sharing of resources. For FPGAs, the
tasks are custom designed and mapped spatially on the device off-line. This,
along with the reconfiguration overhead associated with task initiation, places
extra constraints for efficient utilization of FPGA resources [9].

A common way of sharing the FPGA space is to partition it into partially
reconfigurable regions (PRRs) which can be configured independently in time
and partially in space. Flexibility in space is partial as incoming tasks can only
be placed in one of the statically defined PRR via dynamic partial reconfigura-
tion (DPR) at runtime. This means that tasks with diverse resource needs are
mapped to the same homogeneous PRR which may result in inefficient resource
utilization. To address this challenge, researchers have looked at providing more
flexibility in space using heterogeneous PRRs and multiple bitstreams for a single
task [3]. Although this approach increases the system throughput via intelligent
off-line and runtime PRR design, the same intrinsic idea of mapping more than
a single task to the same PRR still may lead to inefficient resource utilization.

This work first analyses the effect on compute density due to constraints
imposed by PRR. To achieve this, we create multiple bitstreams per tasks for
ten real high performance computing (HPC) tasks, for domains such as graph
analytics, dense linear algebra, scientific computing, etc., allowing exposure of
the area-throughput trade-off. This design space exploration (DSE) allows us to
estimate the average utilization of heterogeneous resources (Logic Cells, DSPs,
BRAMs) in a homogeneous PRR. Furthermore, along with the help of an exhaus-
tive simulator, the DSE allows us to gauge the effect on system speedup for
various PRR optimizations of runtime scheduling using real HPC tasks.

Secondly, we also evaluate an alternative approach to PRR by hypothesizing
that a higher compute density can be achieved via static partitioning and map-
ping (SPM) of heterogeneous bitstreams. The SPM looks to provide complete
spatial independence as heterogeneous tasks can be mapped to custom designed
regions utilizing all of the resources on the FPGA. This only provides partial
time independence, however, as tasks sharing the FPGA need to be reconfigured
and executed at the same time, resulting in stalling by the longest running task.

Thirdly, our work compares both approaches while varying system design
parameters. To achieve this, the simulator allows scheduling of large task queues
with varying execution times to estimate average system speedup. Moreover,
implementation of selected cases on an actual FPGA allows us to analyze the
constraints of both approaches when targeting compute or memory intensive
tasks, and report on performance in terms of System Throughput (STP ), a
metric defined specifically for multi-task workloads processing. The above men-
tioned DSE and PRR optimisations enable a fair comparison of both approaches.
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The results show that SPM can provide a higher compute density while allow-
ing for bitstreams generation from a higher level Open Computing Language
(OpenCL) representation. SPM can be complemented with data center work-
load characterization [1] to select the best approach for varying environments.
Statically generated high compute density bitstreams fit well with the idea of
providing users with a library of optimized IPs allowing tasks to access the
FPGA resource as a service (Amazon Marketplace for Amazon FPGA Image).

We first discuss the motivation of this work based on previous studies in
Sect. 2. We then present our implementation and evaluation methodology in
Sect. 3 and our detailed experimental evaluation in Sect. 4 followed by conclusions
in Sect. 5.

Fig. 1. FPGA partitioning for PRR

2 Background and Motivation

Cloud services are being used by range of users with diverse computing require-
ments which vary with task size and type [16]. In FPGA, the compute versus
memory intensity of the task, suggests the need for FPGA sharing by hetero-
geneous tasks in order to achieve maximum system utilization. For sharing, the
FPGA is partitioned into rectangular PRRs which are configured typically with
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a new bitstream via DPR, independently of the processing going on in other
PRRs [17]. This provides independence in time to each PRR, such that a task
A running in a PRR can be instantly replaced by task B, when task A finishes.

The design of PRRs is challenging since the spatial distribution of various
types of resources on FPGA is not uniform or homogeneous (Fig. 1). The whole
FPGA can be represented as a matrix, with dimensions X×Y , of tiles where each
tile, xiyj , represents a resource type; logic cell, DSP block or BRAM. Resources
of same type form the columns, ydsp, ybram, etc., of a matrix where each row, xi,
contains at least 1 tile involving all type of resources. Furthermore, the FPGA is
divided into multiple clock regions across both the vertical and horizontal axes,
where the crossing of the region boundary requires custom logic implementation.

Now since the tasks are physically mapped to this diverse distribution of
resources, their relocation at runtime is challenging, particularly along the hor-
izontal axis [6]. For more complex mappings, modern bitstream relocation tech-
niques [14] allow for relocation from one region to another vertically only, due
to the column-based FPGA architecture, whilst permitting routing of interface
connections and clock. However, such a relocation scheme cannot happen from a
non-clock crossing region to a clock crossing region and vice versa. Thus, reloca-
tion is only possible among homogeneous regions along the y-axis and at discrete
starting points with a step size equal to height of clock regions (Fig. 1), in line
with work on partially reconfigurable systems for independent tasks [17].

These mapping constraints require PRRs to be majorly homogeneous and
along the y-axis which may lead to inefficiency in resource utilization by hetero-
geneous tasks. Firstly, after omission of the static area used for memory intercon-
nects near I/O pins and other hard static logic, the homogeneous region along
the y-axis can be as low as 60% area of the FPGA [17]. The concept is explained
in Fig. 1 where the marked boundaries represent the total available area and
area distribution for homogeneous PRRs and heterogeneous PRRs (discussed in
Sect. 3.2) after considering static resources and clock regions. In this case, PRR
area is limited to 80 rows of resources compared to total 128 rows of FPGA along
the vertical axis, with further limitations on horizontal axis. Secondly, within the
rectangular boundaries defined for any task, the actual area being allocated to
task may be lower than the area available in that region, namely 38%–51% [18]
which is similar to our own implementation of HPC tasks (Sect. 4). This is wors-
ened in case of fixed PRRs due to diverse spatial placement of different types of
resources.

Whilst mapping optimizations using PRRs is well researched [3,17], for the
first time, this work intends to analyze the effect on compute density caused by
the constraints of PRRs and inefficient utilization of resources when mapping
heterogeneous tasks. Firstly, we create a large design space using a range of real
high performance computing tasks while exposing the area-throughput trade-
off, using the biggest selection of the most relevant HPC tasks to date [4,15].
This allows us to quantify the heterogeneity in resource utilization by modern
workloads when mapping to FPGA and to project the need for heterogeneous
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mapping. The DSE also allows us to quantify various existing PRR optimizations
in literature using a range of real workloads.

We then propose SPM of tasks in heterogeneous regions as a mean to achieve
higher compute density. Although the technology has supported this approach,
this is the first time it has been analyzed from a high level perspective for use in
space sharing FPGAs in data centers. The approach aims to provide complete
spatial independence for highly optimized mapping on account of partial time
independence. Time independence is partial as all tasks need to be reconfigured
at the same time. We aim to quantify this and comment on design parameters
that affect system performance. Finally, we fairly compare both approaches using
the DSE on a flexible simulator as well as real hardware execution measurements.

3 Implementation and Evaluation Methodology

In this section, we describe multiple aspects of the design environment (Fig. 2).
In particular, we start with multiple bitstreams generation for each task and then
define the optimizations applied to PRR mapping. Finally, we briefly define our
simulator and metrics used for evaluation.

Fig. 2. Summary of implementation and evaluation methodology

3.1 Multiple Tasks’ Bitstreams with Area-Throughput Trade-Off

A key goal is to generate multiple hardware bitstreams of the same task that
provide a speedup corresponding to the resources used. Using an area-throughput
curve, this allows for precise quantification of the variation in compute density
with resource utilization due to different partitioning strategies.

To achieve this, we make use of the OpenCL framework for heterogeneous
parallel programming that both provides abstraction of parallelism and a high
level DSE model for tuning the underlying hardware mapping. In addition to
OpenCL, we use general high level synthesis parameters, to scale the task over
multiple parallel compute units (CUs); multiple pipelines can be defined via
a Single Instruction Multiple Data (SIMD) parameter, whilst the key compute
intensive loops can be unrolled via the UNROLL (U) parameter. For some tasks,
we vary task-specific parameters such as block size or number of rows, where
these define the parallel processing of a defined parameter size. All these param-
eters allow scaling of the underlying hardware by varying the number of custom
parallel data paths for each task.
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3.2 Partially Reconfigurable Regions Mapping Optimizations

Using the same created design space, we can quantify the various optimizations
presented in earlier studies and which are important to fairly compare PRR with
SPM. The optimizations are mainly targeted at avoiding segmentation, causing
vacant regions of FPGA, by varying the sizes of used bitstreams. Basic PRR
mapping generates homogeneous regions as well as a single bitstream for each
task corresponding to that region. Among the optimizations, the first one is
called Elastic resource allocation which looks at adjacent PRR regions. If they
are free, the approach attempts to fit larger bitstreams of the same task in this
combined region, thus replacing the current task bitstream with a larger one to
gain a speedup [17].

Another way to increase mapping flexibility is to partition the FPGA into
heterogeneous PRRs which offer different number of resources [3,5]. The tasks
are then custom designed for one of the PRRs. Heterogeneous PRRs can be
defined by including a different ratio of each heterogeneous resource type. How-
ever, in our case, the device size is not big enough to benefit from such an
approach, so we define heterogeneous PRRs by varying the number of each type
of resources while their relative ratios remain the same (Fig. 1). We define the
areas on top of homogeneous regions which means it can either be configured as
homogeneous or heterogeneous, allowing flexibility in mapping options from the
generated design space. Another optimization that is made possible by hetero-
geneous PRRs is using smaller (contracted) bitstreams for tasks when none of
the original bitstream can be fit into a region [3].

Finally, we provide simulated results for continuous y-axis, i.e. the hypothet-
ical performance gains that can be made if the bitstream relocation step size is
reduced to a single row by future technology support. At present, this can be
achieved by generating multiple bitstreams, equal to the number of rows within
each clock region, by varying starting y-coordinates for each unique bitstream.

3.3 Runtime Simulator and Hardware Implementation

The key configurable parameters and functional blocks of the runtime simulator
are summarized in Fig. 3. The DSE provides the bitstreams’ characteristics such

Fig. 3. Runtime simulator
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as area and resource utilization, and relative speedup. This along with tasks’
parameters, such as their execution time and limitation on resource utilization
of bitstreams as per the available resources, is used to generate a task queue
which is then fed into task placement and sequencing modules. For evaluation
of average speedup, these modules then treat the task queue mapping as a rect-
angle fitting problem with configurations set for continuous y, homogeneous and
heterogeneous PRRs along with other mapping optimizations or use SPM, while
keeping under the overall available resources. As for the sequencing of tasks, we
use a basic first fit heuristic which takes the task queue and tries to fit tasks in
incoming sequence.

For evaluation of compute density on hardware, the bitstreams for SPM have
been generated using Intel OpenCL SDK for FPGA, and all tasks run at the same
frequency. This, however, is not a limitation of design as varying frequencies can
be used for statically generated task cores. Also for PRR evaluation, OpenCL is
used to generate the intermediate design files and constraints file, then modified
to include bounding rectangular regions, as per defined PRRs for logic placement
before generating the final bitstream. Similar efforts were used to map the largest
possible bitstream configurations both for PRR and SPM within their respective
area constraints.

3.4 Metrics

Assessing the system performance of a multi-task workload running in parallel on
a single hardware is challenging as the performance of individual tasks may not
entirely relate to system performance. We use two different metrics for simulated
and hardware results to have a comprehensive assessment. First, simulation of
large task queues allows us to project average speedup, measured as variation in
execution time of complete queue. Secondly, for measuring compute density, we
use various configurations of bitstreams of same tasks implemented on hardware
which consume varying execution times to process the same data size, as well
as allow to share FPGA with different number of tasks. We then use the STP
metric [7] as defined by:

STP =
n∑

i=1

NPi =
n∑

i=1

CSP
i

CMP
i

(1)

where NP is each task’s normalized progress defined by the number of clock
cycles it takes in single (CSP

i ) task mode when the task has all of the resources
of FPGA, compared to multi (CMP

i ) task mode, when it is sharing the space
with other tasks. Here, n defines the number of tasks sharing the FPGA.

3.5 Evaluated Tasks

We have considered a number of tasks belonging to various computing dwarfs [2]
and application domains with varying ratio of compute and memory operations.
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(a) Page Rank (PR) is a graph analysis algorithm used for link analysis of web
pages, social networks, etc. [13].

(b) Alternative Least Squares (ALS) based Collaborative Filtering is a verified
approach based on the aggregated behavior of large number of users used to
develop recommender systems for commercial domains such as Netflix [19].

(c) Lower Upper Decomposition (LUD) is an important dense linear algebra
used for solving systems of linear equations with reduced complexity [4].

(d) Binomial Option Pricing (BOP) is a key model in finance that offers a
generalized method for future option contract evaluation and for options
with complex features [12].

(e) Breadth First Search (BFS) is a challenging and important graph traversal
algorithm forming the basis of many graph-processing workloads [4].

(f) 3 Dimensional Finite Difference Time Domain (FDTD) is an important
numerical method for electromagnetic propagation modeling in space [10].

(g) Sparse Matrix Vector Multiplication (SpMV) is an important sparse linear
algebra algorithm used in scientific applications and graph analytics, etc.
[8].

(h) Matrix Matrix Multiply (SGEMM) is used in various compute intensive algo-
rithms and benchmarks [8].

(i) Video Downscaling (VD) is used by a range of media streaming services for
real-time bandwidth reductions [10].

(j) Needleman-Wunsch (NW) is a bioinformatics optimization algorithm used
for protein sequence alignment [4].

Table 1. Use cases characteristics where the step size is 2×, unless otherwise specified.

Use case Dwarf Data size Bitstreams scaling Speedup

PR Sparse linear algebra Pages: 64K (CU: 1,2,4) × (U: 1, 2,

4)

6×

ALS Sparse linear algebra Users: 4K (CU: 1, 4) × (U: 1, 4) 2×
BOP Structured grids Options: 2K CU1 × (U1, U2, U4,

U8, U16); CU2 × U16;

(CU: 3, 4, 5) × U8

21×

BFS Graph traversal Nodes: 64K U: 1–16 5×
SpMV Sparse linear algebra X × Y: 4K× 4K U: 1–32 190×
FDTD Structured grids X × Y × Z: 512 × 512× 1K Block size: 1–16 13×
LUD Dense linear algebra X × Y: 4K × 4K CU1 × (U: 1–16);

(CU: 2, 3) × U16

18×

VD Structured grids Resolution: 4K Parallel rows: 1–32 8×
SGEMM Dense linear algebra X × Y: 4K × 4K SIMD1 × (U: 1–64);

SIMD4 × (U: 32–64)

204×

NW Dynamic programming X&Y: 4K Block size: 2–128 33×
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Table 2. Average resource utilization when using PRRs

Resource Custom regions Homogeneous PRRs

Avg. Util. Min./Max. Util. Avg. Util. Min/Max Util.

Logic 52.54% 30.36%/79.40% 37.12% 18.47%/61.19%

Block RAM 60.56% 15.49%/95.82% 45.05% 10.07%/91.91%

DSPs 32.33% 0.0%/97.0% 26.30% 0.0%/97.0%

3.6 System Hardware

The DSE has been accomplished via Intel OpenCL SDK for FPGAs v 16.1,
performed on a Nallatech 385 with an Intel Stratix V GX A7 FPGA chip and
8GB DDR3 memory. The A7 chip has 234,720 ALMs, 256 DSPs as well as 2,560
M20K BRAM blocks. The runtime simulations are performed via Python v3.3.7.

4 Results and Analysis

Our implementation of real tasks is given in Table 1. Besides providing real
area numbers for spatial mapping problem, the implementation provides area-
throughput graphs for HPC tasks. To measure the speedup, the baseline through-
put, corresponding to the lowest area bitstream, is defined by the serial pipelined
benchmark implementation. The maximum throughput is defined by the largest
bitstream, limited by FPGA resources. We have generated 4–9 bitstreams per
task providing 2–204× maximum speedup compared to slowest bitstream with
speedup for each task mentioned in Table 1. The table also mentions the par-
allelization used for each task, such as number of compute units, unrolling of
main computing loop, using SIMD pragma for work items parallelism and data
block size variation where elements in a block are executed in parallel and relate
to resources utilized in mapping. The generation of multiple bitstreams is a key
step in evaluating the mapping strategies as we discuss in coming sections.

4.1 Analysis of Heterogeneous Tasks

Using the DSE, we analyse the heterogeneity in resource utilization by tasks. We
mainly focus on three resources, Logic cells, DSPs and BRAMs and evaluate the
inefficiency in resource utilization caused by the rectangular and fixed size shapes
of PRRs resulting in homogeneous regions. We present percentage utilization of
resources from two perspectives.

The first case calculates percentage resource utilization compared to the
bounding box where dimensions are custom defined for each bitstream, as per
bitstream’s resource requirements. We use all of the bitstreams which are smaller
than the largest PRR. The second case deals with percentage utilization com-
pared to the PRRs available on the FPGA. We use 4 sizes of heterogeneous
PRRs (Fig. 1).



Evaluation of FPGA Partitioning Schemes for Time and Space Sharing 343

In total, there are 80 rows of FPGA that can be configured as a single region
(PRR-1) or a set of two homogeneous regions of 40 rows each (PRR-2). We
define two more heterogeneous PRRs, namely 30 (PRR-3) and 50 (PRR-4) rows,
based on the sizes of generated bitstreams. Note that either the homogeneous or
heterogeneous PRRs can be used at a single instance of time.

We select bitstreams for each task that would maximize the resource uti-
lization in each of 4 PRRs, i.e. up to 4 bitstreams per task and give average
percentage resource utilization by these bitstreams compared to their respective
PRRs. The measurements in Table 2 show that due to the homogeneous nature
of PRRs, the logic, DSP and BRAM utilization is limited to 37%, 26% and 45%
on average.

4.2 Runtime Simulation

In this section, we use our simulator to analyse various mapping strategies.
Firstly, we examine the speedup achieved by various improvements on the PRR
mapping, as explained in Sect. 3.2. We use three different mapping strategies,
namely the continuous y-axis, heterogeneous PRRs and homogeneous PRRs and
their respective bitstreams (Fig. 1). Please note that this is a study of resource
utilization efficiency of various mapping approaches and does not consider data
transfers from host CPU memory to DRAM memory on the FPGA board. Fur-
thermore, the DRAM to FPGA on-chip memory transfers are not considered as
bottlenecks for simulation purposes, but their effect is discussed in more detail
in next section using real execution on hardware.

The runtime scheduler performs Elastic and Contract optimizations, as
explained in Sect. 3.2. We use the actual measured relative throughput of various
bitstreams of tasks to calculate the new execution time of tasks. For Contract,
we found out that if the difference in speedup for a smaller bitstream replacing
the bigger is too large, the total execution time increases rather than decrease.
Thus, we limited the allowed speedup degradation for smaller bitstreams to 5×.

The graphs in the Fig. 4 show the speedup achieved for various configurations.
Generally, Elastic is more useful with gains up to 1.24× whereas the best gain
for Contract is 1.05×. Optimizations benefit more on heterogeneous mapping
to tackle segmentation, hence, the gain is negligible for our case of only two
heterogeneous regions while no gain is achieved for homogeneous regions.

Next we investigate gains made by SPM in comparison to PRR. For the
SPM, we either use the same region as used for PRR (Homogeneous Regions
in Fig. 1) and call it Partial Static or use all of the available area for task logic
(Fig. 1) and call it Whole Static. This approach helps to differentiate between
the speedup achieved by heterogeneous mapping in the same region as well as
the gains made by the availability of extra logic when mapping statically.

As the results in Fig. 5 show, a key finding is that SPM gives on average 4.6×
higher throughput, measured in terms of total execution time for a set size of
tasks queue. A 2.4× speedup is achieved via heterogeneous mapping while the
rest is achieved via use of higher resource availability. The results show that if the
y-axis can be made continuous, then a throughput gain of 2× can be achieved.
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Fig. 4. Speedup achieved by optimization of PRR mapping on various bitstreams

Fig. 5. Speedup achieved by SPM versus PRR mapping

So far, the reported speedup numbers have considered an ideal scenario for
SPM by considering all of the tasks sharing the FPGA at any time, have same
execution time. This is not the case for real workloads. Next, we vary the execu-
tion time of tasks and report on speedup achieved. We use a uniform distribution
for execution time and vary the range of distribution.

The results shown in Fig. 6 depict a surprising trend. Even with increasing
range of execution time by up to 32× (beyond this range a reconfiguration
overhead would become negligible for most tasks), the speedup decreases but
remains higher than 3×. This is because on average, the device under test may
be used by 3 or less tasks using SPM, as constrained by the size of FPGA and
tasks bitstreams. Thus, a task may stall up to two tasks or a maximum of about
50% resources with an average much lower than that. Stalls by smaller tasks
are overcome by the higher average compute density and gains made when the
longest running task is not the smallest. However, to gauge the effect of the
approach on bigger devices, we estimate the speedup possible by increasing the
size of available resources while keeping the size of tasks’ bitstream the same.
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Fig. 6. Speedup variation of SPM with variation in execution times (Tasks = 1024)

Fig. 7. STP variation with data sizes for 2 compute intensive tasks - MM and LUD

The results show that for a device double the size, the gains drop below 1 for an
execution time variation greater than 4×. Such a study can help optimize the
number of tasks that may be shared at a single instance of time.

4.3 Evaluation on Hardware

A key limitation of using SPM is the need to generate each multi-task het-
erogeneous bitstream separately. This limitation can be overcome partially by
benchmarking cloud and data center workloads to estimate the frequency and
data sizes of incoming tasks [1]. This can help decide the combination of tasks
that may be shared on a single FPGA as well as the percentage resource allo-
cation for each task. These decisions, apart from helping with a higher resource
utilization on-chip, result in minimizing bottlenecks in off-chip resources, such as
DRAM access. To analyze this further, as well as provide numbers for through-
put for real hardware execution, we discuss some of the extreme cases below
using the STP metric defined in Sect. 3.4.
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Fig. 8. STP variation with data sizes for 2 memory intensive tasks - ALS and PR

Fig. 9. STP variation with data sizes for one compute and one memory intensive tasks
- LUD and PR

In terms of resource utilization, SPM resulted on average 60%, 59% and
129% higher logic, BRAM and DSP utilization compared to PRR. Furthermore,
Figs. 7, 8 and 9 show the achieved STP for PRR and SPM for two compute,
memory and mixed (one compute/one memory) intensive tasks, respectively.
The graphs also show the difference in factor between the execution times of
both tasks on the second y-axis. In our experiments, the execution time between
both tasks varied by up to 5108×, 14× and 361× for compute intensive, memory
intensive and mixed tasks. Note that for SPM, NP for each task is calculated
using the time for longest running task.

STP for PRR stays relatively uniform with variation in data sizes while for
SPM it generally reduces with increase in difference of individual execution times.
The results show that for compute intensive and mixed tasks, SPM performs on
average 2.9× and 2.3× better than the PRR mapping, respectively.
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Fig. 10. STP variation for PRRs and static designs for two configurations using four
tasks - SPMV, NW, LUD, PR

For memory intensive tasks, the increase in resource utilization did not result
in a performance increase. This is because the for memory intensive tasks, the
increase in throughput via higher utilization of on-chip compute resources is
limited by external memory access latency and bandwidth. For memory intensive
tasks, PRR has 1.25× higher STP on average than the SPM.

Finally, for all cases, the trend for SPM is not entirely dependent on the
variation in execution time of tasks sharing the FPGA. This is because it also
depends on the percentage resource utilization as well as the NP of the longest
running task. To explain this further, we present another set of results where we
have 4 tasks sharing the FPGA. However, we focus on a single task, LUD, and
use two different SPM configurations. In SPM 1, LUD has a minimum number
of resources while in SPM 2, it is allocated more such that it has a 10× higher
individual NP in SPM 1 compared to SPM 2. Furthermore, we select data sizes
for the rest of the tasks such that their execution time is similar to each other.
We then vary the data size of LUD (size of square matrices from 128 to 1024 in
steps of 2×). The resulting STP presented in Fig. 10 shows that for the SPM
1, the PRR performs 1.9× better than the SPM while for SPM 2, the SPM
performs 1.2× better than PRR for the same data sizes of LUD. Also even for
the second case, SPM performs worse for first sample projecting that sharing 4
tasks on this size of an FPGA reduces the average system throughput.



348 U. I. Minhas et al.

5 Conclusion

This work analyses the constraints of mapping bistreams of heterogeneous tasks
to FPGA at runtime and their effect on compute density when using partially
reconfigurable regions for space shared multi-task processing. Static partitioning
and mapping of tasks to achieve higher speedup and system throughput is pro-
posed and several aspects of each approach are evaluated via design space explo-
ration using a range of HPC tasks, a comprehensive simulator and evaluation
on hardware. Static partitioning provides up to 2.9× higher system through-
put and facilitates a completely software based implementation of a multi-task
computing environment without requiring low level support for PRR.

Acknowledgment. The work was supported by the European Commission under
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Abstract. The FPGA community is at an exciting juncture in the
development of 3rd party CAD tools for FPGA design. Much has been
learned in the past decade in the development and use of 3rd party tools
such RapidSmith, Torc, and IceStorm. New independent open-source
CAD tool projects are emerging which promise to provide alternatives
to existing vendor tools. The recent release of the RapidWright tool sug-
gests that Xilinx itself is interested in enabling the user community to
develop new use cases and specialized tools for FPGA design. This paper
provides a survey of the current landscape, discusses parts of what has
been learned over the past decade in the author’s work with 3rd party
CAD tool development, and provides some thoughts on the future.
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1 Introduction

Traditionally, the CAD tools for compiling HDL designs onto FPGAs have been
available only from the FPGA vendors themselves. However, a number of 3rd
party research CAD tools have also been created over the years to provide func-
tionality lacking in the vendor tools. One example of such lacking functionality
is specialized analysis of physically implemented designs for fault mitigation
purposes.

Recently, interest in 3rd party tools has accelerated with a number of publicly
available open source CAD tools emerging for use with FPGA devices from a
variety of vendors. The purpose of this paper is to provide a survey of some of
these 3rd party tool efforts, including tools developed over the past decade as
well as some recently emerged (and emerging) tools in this space.
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First, a three-part taxonomy is developed with the goal of categorizing var-
ious tools in this space, while illustrating some of the considerations for such
tools. For each category in the taxonomy, a selection of prior work is described.
Next, a more in-depth review is then given of RapidSmith, Tincr, Rapidsmith2,
and Maverick—tools from the taxonomy’s categories and which were developed
in the Configurable Computing Laboratory at Brigham Young University. In the
context of these tools some lessons learned and ramifications for future work are
described. Finally, some recent alternative tool efforts from other sources are
described followed by conclusions1.

2 Taxonomy

A taxonomy regarding 3rd party FPGA CAD tools is described in this section,
and which may be useful for discussing the various tools created over the years.
The taxonomy has three categories including (1) Architecture and CAD Research
Tools, (2) Cooperative CAD Tool Frameworks, and (3) Stand-Alone, Vendor-
Independent Tools. These three tool categories will be discussed in terms of two
basic criteria:

Criteria 1. How dependent are tools from a given category on existing vendor
tools to complete their tasks? Do they require vendor tools for some tasks or
are they able to run completely independently?

Criteria 2. What is the level of reverse engineering of the FPGA device that
is required for the tool’s development and operation? I use the term reverse
engineering loosely here and include, among other things for example, the
work required to understand and support all of the operating modes and
parameterization of the various soft- and hard-IP blocks included on the die,
the work required to read and write file formats required to interoperate with
vendor tools, etc.

2.1 Category 1: Architecture and CAD Research Tools

The principal example of this first category is VTR and VPR which, for many
years, have provided the platform of choice for the evaluation of proposed or
new FPGA architectural features. Additionally, they have provided an important
platform for researching and demonstrating new CAD algorithms and tools.

In general, the research uses of VTR/VPR have not been targeted at com-
mercial FPGA devices but rather have been used to study hypothetical FPGA
devices. The CAD tools included in VTR/VPR can readily be adapted to map
designs onto these devices, thus providing the ability to predict the impact a

1 Missing from the discussion in this paper are the myriad tools which provide high-
level design paradigms and functionality such as domain specific languages or HLS
tools. Also missing are tools such as floorplanning tools and PR management tools.
Rather, the focus here is on physical design tools, specifically the steps of synthesis
through bitstream generation.
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new feature might have on an FPGA device and on applications mapped to that
device in terms of performance, area, and power.

With regards to Criteria 1, the VTR/VPR tool suite typically requires no
interaction with vendor CAD tools since it does not target commercial FPGA
devices. This eliminates the need to export designs from and import designs
back into vendor tools. With regards to Criteria 2, there is similarly no need to
exhaustively analyze commercial devices to create such tools. Rather, much of
the complexity and power of VTR/VPR comes from its ability to model new
FPGA architectures, the ability to rapidly re-target its toolchain to these new
architectures, and the strong modelling provided in the toolset for predicting
performance, area, power consumption, etc.

2.2 Category 2: Cooperative CAD Tool Frameworks

Tools in the second category of this taxonomy focus on targeting commercial
FPGA devices. The goal with such tools has not necessarily been to create fully
vendor-independent CAD tool flows, but rather to provide a way for 3rd party
CAD tools to create, analyze, and modify designs in ways not supported by the
vendor tools. These tools are called Cooperative CAD Tool Frameworks because
they cooperate with vendor tools, performing only certain portions of the flow
and relying on the vendor tools for other portions.

Examples of tools in this category include RapidSmith, Torc, and Rapid-
Smith2 (the first two operate with ISE and the last with Vivado). These tools
have proven useful in cases when the vendor tools cannot (or will not) perform
specialized functions required for a particular application or use model.

As one example of the need for this category of tools, consider the area
of circuit reliability and in particular, the use of Triple Modular Redundancy
(TMR). Here, circuit triplication and voting circuits are used to protect a design
against single event upsets, the assumption being that a single configuration
memory bit fault cannot cause erroneous results. This assumption, however, is
incorrect—the routing multiplexors of at least some FPGA’s are structured such
that a single configuration bit corruption can easily defeat TMR by affecting
signals in more than one of the triplicated circuit copies. The solutions proposed
in [2] and [3] are to detect these single points of failure and then physically
re-place and/or re-route portions of the circuit to eliminate them—operations
which require custom 3rd party physical design and analysis tools.

With respect to Criteria 1, Cooperative CAD Tool Frameworks rely, at a min-
imum, on the ability to export designs from the vendor flow and then re-import
designs back into that flow—i.e. they are not intended to function as complete
stand-alone flows by themselves. As a result, a given tool in this category need
not address the entire flow but may provide very limited functionality focused
on a specific issue. As will be seen later, this has made such tools extremely
valuable for many research groups and projects. And, in many instances, it can
greatly simplify the creation of such a specific tool since it does not need to
implement the entire flow.
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Criteria 2 represents a challenge in the creation of such tools. Since these
tools typically need to be prepared to accept any vendor-generated design, they
must support at least the import and export of all device features (even if they
don’t allow them to be manipulated using an API). This is because the vendor
tools, as a part of their normal operation, will produce designs which use all
device features This may require substantial effort to understand the many con-
figuration options associated with the many IP blocks embedded in the device
as well as other device issues such as BEL and site route-throughs, router-based
LUT pin permutations, cell/BEL dynamic pin mappings, etc.

2.3 Category 3: Stand-Alone, Vendor-Independent Tools

This third category of tools focuses on providing a replacement for vendor tools
by compiling HDL designs to commercial FPGA devices without vendor tool
involvement. The IceStorm project was the earliest and, to date, the most notable
example of this class of tool. It provides a reverse engineered bitstream for the
iCE40 FPGA, along with a complete Verilog-to-bitstream tool flow for that
FPGA. At the time of the writing of this paper, a variety of other tools in this
category are beginning to emerge (as evidenced by projects visible on Github).
Some of these are mentioned later.

With respect to Criteria 1, the stand-alone CAD tools in this category have
no need for regular interactions with vendor tools. But, they typically require
the assistance of vendor tools to initially develop a device description database.
But, once such development is complete they can operate independently of com-
mercial tools. Interestingly, Category 3 tools have less stringent requirements, in
some ways, than Category 2 with regards to commercial device support, some-
thing which may initially sound counter-intuitive. Since they are not designed
to consume designs produced by vendor tools (but rather create designs anew
themselves), they need not initially support every device feature. While it may
be undesirable to not support all FPGA device functionality in this way, it does

Table 1. Summary: 3rd party FPGA CAD tools taxonomy

Pros Cons

Cat. 1 Support what-if studies for both
CAD tools and architectures

Doesn’t target commercial devices

Cat. 2 Is not a full tool flow. Provides
framework for 3rd party
special-purpose tool development.
Has found widespread use in a
variety of research projects

Is not a full tool flow. Must suport
import/export of all device
features

Cat. 3 Provides full tool flow, replaces
vendor tools. Need not support all
device features

Requires completing full tool flow
including bitstream generation.
Lower QOR than vendor tools?
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provide a pathway an incremental development path, where some device fea-
tures are not initially supported. Ultimately, however, Category 3 tools provide
the entire flow, and therefore don’t have the ability to rely on vendor tools like
Category 2 tools do and this is their most notable characteristic.

Table 1 summarizes this taxonomy. Note that for Category 2 tools, the phrase
“Is not a full tool flow.” is listed as both a pro and a con, in accordance with the
description from above. In the following sections a series of 3rd party CAD tools
are described in more detail, providing some insights into the considerations
associated with creating such tools.

3 RapidSmith

RapidSmith is a Category 2 tool (Cooperative CAD Tool Framework) which
emerged from the HMFlow project in 2010. The goal of the HMFlow project [12]
was to investigate rapid prototyping methods, specifically by reducing the time
required for the edit-compile-debug loop in FPGA design. The approach taken
in HMFlow was to mimic the IC design flow where pre-compiled (and physically
implemented) circuit modules are assembled (placed and interconnected) to form
the final design. The benefit of such a flow comes from the need for the tool
to place and route relatively few modules and interconnecting wires. But, this
macro placement and routing requires a custom CAD tool and RapidSmith was
developed to support that need.2 The resulting HMFlow tool flow was able to
demonstrate more than 70x CAD tool speedups over ISE, with the resulting
design clock rates being approximately 75–90% of those produced by ISE.

Fig. 1. RapidSmith usage model

The Xilinx ISE toolset provides a textual design and device description file
format called XDL. As shown in Fig. 1, RapidSmith reads and writes XDL files
2 The Torc tool [19] was developed at approximately the same time as RapidSmith

and the two tools are similar in many ways. Interestingly, both tool suites have
their roots in a common joint research project between their respective development
teams.
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and so is able to manipulate Xilinx ISE designs. ISE’s .xdl file format describes a
design as a collection of instances which correspond to Xilinx sites such as SLICE,
IOB, and BRAM blocks. Instances in a .xdl file can be placed or unplaced.
Attribute strings within instances are used to describe the configuration of the
site’s contents: LUT equations, internal routing MUX settings, etc. Nets are used
to interconnect instance pins and can be either unrouted or routed. If routed,
the net’s physical route is described by a list of the PIPs making up the physical
route.

The .xdlrc file format, also provided by ISE, describes the contents and struc-
ture of a specified FPGA device. It is very detailed, representing every tile, site,
wire, and PIP in the entire device. This combination of both .xdl and .xdlrc files
supports the creation of 3rd party CAD tools with the ability fully analyze and
manipulate Xilinx designs and map them onto arbitrary Xilinx devices.

The use model for RapidSmith as illustrated in Fig. 1 provides the ability
to export a design from ISE (as a .xdl file) at multiple points in the ISE flow.
It also processes the huge .xdlrc files produced by ISE into compact device
representations called device files. It then provides an API into those exported
design and device files so that tools can be written against that API to perform
a variety of analysis and circuit implementation functions.

RapidSmith is best characterized as a 3rd party CAD tool framework since
it provides few, if any, complete analysis or implementation tools itself (beyond
a collection of demonstration programs). Rather, the goal with RapidSmith was
to provide an infrastructure for both ourselves and others to develop their own
custom CAD tools on top of.

3.1 RapidSmith Adoption in the Research Community

RapidSmith was open-sourced at SourceForge in approximately 2010 and has
served as the foundation for a large number of custom CAD tools created by
others, a sampling of which is given in this section. [21] used it to rapidly create
SoC designs on FPGAs from system specifications. [14] used it to implement the
relocatable and dynamically reconfigurable modules of their Dreams framework
while [15] implemented a bidirectional mapping framework, StML, between RTL
and FPGA primitives with it.

In [5], researchers used RapidSmith to extract hard macros from a netlist as
part of their dynamic and partial reconfiguration framework. [9] used it as part
of a VPR-based design flow targeting Xilinx devices. And, [10] used it to embed
logic analyzers into placed and routed circuits, avoiding the need to re-implement
the entire design.

In the area of FPGA reliability, [4] used RapidSmith to modify LUT equa-
tions and re-purpose carry chains to mask faults while [1] used it to create hard
macros of test configuration circuits for an online integrity test of the FPGA’s
components. In [24], the authors developed a fault-tolerant placement algorithm
with it and [16] used it to correlate bitstream frame addresses to the recon-
figurable module located at that frame for use in their fault tolerant soft-core
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processer system. In [17], it served as the basis of a soft-error vulnerability anal-
ysis framework for Virtex 5 FPGAs, including a visualization tool for identifying
vulnerable areas. Finally, in the area of FPGA security, RapidSmith was used in
[18] to insert a denial of service trojan (post synthesis) into an FPGA and [11]
used it to create a digital to analog converter on the FPGA’s power rails as a
side-channel attack demonstration.

RapidSmith has thus found relatively widespread use within the research
community. At the time of the writing of this paper, it has been downloaded
more than 5,100 times, a surprising number given the relatively small niche it
occupies.

The RapidSmith experience demonstrated to us the strong desire in the
research community for 3rd party FPGA physical design tools. A second take-
away is that the advantages and disadvantages of the RapidSmith tool corre-
spond, in large part, with the characteristics of XDL. The XDL representation
is fairly simple, and therefore RapidSmith is correspondingly straightforward to
use. However, XDL was best suited for describing designs at the slice level—it
contains no explicit representation of individual cells (LUTs, FFs, . . . ) internal
to an instance. Rather, their existence must be inferred from XDL’s attribute
string settings, a clumsy and part-family-specific process. RapidSmith is thus
most useful for applications which analyze and manipulate designs at the slice
level.

4 Vivado, Tincr, and RapidSmith2

With the introduction of Vivado, the XDL tool disappeared. Vivado, however,
provided a Tcl facility for interacting with its design representation. Vivado
represents a design as a netlist of cells which may be placed onto physical BELs
- a much lower level of representation than in XDL. This both simplifies and
complicates a number of issues surrounding 3rd party CAD tool development.

An initial evaluation of the capabilities of Vivado’s Tcl interface and its suit-
ability as a replacement for RapidSmith demonstrated that its low performance
and lack of memory management (specifically, garbage collection) made it unsuit-
able for this use. While not unexpected, that work quantified and demonstrated
its limitations [22,23].

The Tincr project was then initiated to determine whether a Tcl script could
extract sufficient information from Vivado to produce a device description in the
.xdlrc format. The .xdlrc format was chosen since existing tools which work with
.xdlrc would be able to support newer Vivado-only devices without modification
as a result. And, importantly, we were able to produce 7-Series .xdlrc files from
Vivado and compare them with the original 7-Series XDLRC files produced by
ISE for verification purposes.

Tincr [23] is thus a Tcl library of routines, one portion of which produces
.xdlrc files by querying the Vivado device representation and outputting an
equivalent .xdlrc representation. Once it was verified for 7-Series devices, Tincr
was then used to demonstrate the generation of .xdlrc files for Ultrascale devices,
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demonstrating the viability of Tincr-generated .xdlrc for devices beyond those
supported by ISE.

Going beyond the production of .xdlrc files, however, Tincr also generates
a large set of meta-data regarding Xilinx devices and cell libraries never avail-
able with XDL, and thus overcomes some key limitations mentioned above with
regards to RapidSmith. This information is encapsulated in .xml files associated
with a .xdlrc file and includes, among other things (1) an explicit representation
of the Xilinx cell library, (2) information on the legal mappings of cells to BELs,
(3) cell pin to BEL pin mappings, (4) cell properties, (5) alternate site types
present in devices, and (6) information on legal route-through locations. None of
this information was available with XDL, but is essential for performing subsite
design manipulations such as packing cells into sites, an example of an operation
which is terribly difficult to do using RapidSmith and its XDL representation.
This meta-data is created by Tincr and supplied to external tools as a set of
XML files as shown in the top-center of Fig. 2.

4.1 Design Export from Vivado: Tincr/VDI

The VDI (Vivado Design Interface) project was then initiated to complete the
system by providing for the export and import of complete design data between
Vivado and an external representation. It uses Tincr to extract the needed infor-
mation and package it as a specialized checkpoint file, called a RapidSmith
Checkpoint (RSCP) file, and which contains the logical design (EDIF netlist)
plus physical placement and routing information for the design’s cells and wires.
This checkpoint information is shown in the center portion of Fig. 2. This check-
point, coupled with the XML meta-data described above and the XDLRC-based
device file representation (also described above), provides all the data needed
for an external tool to fully manipulate Vivado designs.

Fig. 2. VDI: Vivado design and device export/import
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A number of challenges were encountered in extracting all needed design
data from Vivado, for which solutions were developed as a part of the Tincr
and VDI projects and which are documented in [23] and [20]. A few examples
are given here. (1) A first issue is route-throughs, which are instances where
the router will use an unoccupied BEL or an entire unoccupied site for routing
purposes. Route-throughs are not represented in Vivado’s logical netlist for the
design. (2) The logical representation for VCC/GND nets does not match their
physical implementation. (3) The Xilinx cell library contains both cells which are
primitives as well as cells which are macros made up of primitives. These issues
(and others) require special handling in order to import and export designs from
Vivado.

Reimporting a design back into Vivado using Tcl has its own set of challenges
as well. For example, when a cell is placed onto a BEL in a site, Vivado seems to
immediately route that site’s internals. Surprisingly, the order of placement of
cells onto BELs inside a slice matters—doing so in the wrong order (?) will cause
Vivado to reject legal placements [20] (and changing the order of the placement
directives solves the problem). That is, Vivado seems to be able to easily paint
itself into a corner from which it cannot emerge. Thus, a specific ordering for
placing cells (determined through experimentation) must be observed.

Most importantly, however, importing designs back into Vivado through the
Tcl interface is a slow process, taking many minutes or even hours for large
designs. Thus, while useful for a variety of applications, Tincr/VDI not suitable
for applications requiring rapid re-import of designs. See [20] for more details on
the development of these tools.

4.2 RapidSmith2

RapidSmith2 is new version of RapidSmith, modified to work with Tincr/VDI-
produced designs3. Like RapidSmith, it processes .xdlrc files to create highly
compressed device files for its use. But unlike RapidSmith, it does not use .xdl
files but rather reads and writes its own checkpoint file formats.

A number of other features distinguish it from RapidSmith. Its design repre-
sentation more closely reflects that of Vivado—its logical model represents the
design as a network of cell objects placed onto BELs. This makes it straight-
forward to do design analyses and modifications inside sites. This is in contrast
to the XDL approach of RapidSmith where attribute strings had to be inter-
preted to infer the cell- and BEL-level structure of the design. Additionally, the
XML meta-data generated by Tincr (described above) and a large collection of
higher-level abstractions in its API (such as structured route tree objects) make
RapidSmith2 better suited for creating tools which manipulate designs at the
cell/BEL level. In particular, the RSVPack project [6] which investigated packing
algorithms using RapidSmith2 would not have been practical using RapidSmith
and XDL.

3 RapidSmith2, Tincr, and VDI are all available open-source at GitHub.
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4.3 Tincr, VDI, and RapidSmith2 - Discussion

A major lesson learned from the Tincr/VDI/RapidSmith2 experience were the
difficulties encountered, an understanding of which may provide guidance to
future projects targeting Xilinx FPGA devices. The author estimates that the
RapidSmith2 development effort was more than an order of magnitude larger
than the RapidSmith effort.

This can be attributed to two things. Vivado and its Tcl interface was more
difficult to work with than ISE, was more buggy, and yet was more powerful than
ISE and its XDL. Additionally, the work of [6,8] in creating a packer illustrated
a number of complexities associated with targeting recent Xilinx FPGAs. The
structure of a Xilinx 7 Series slice is complex and irregular, in contrast to the
comparatively interconnect-rich and regular structures usually targeted by VPR.
Many special-case rules regarding legal packings for this irregular structure had
to be discovered and created before even a rudimentary packing tool could be
tested. There is thus a significant barrier to entry for the creation of tools such
as RapidSmith2 that work at the sub-site level. In spite of these challenges, the
benefits of a tool such as RapidSmith2 to be able to work at the level of intra-site
design manipulation have been significant (if not for the faint-of-heart).

5 RapidWright

RapidWright [13] is a recently released Xilinx CAD tool framework which
promises to support the creation of 3rd party FPGA design tools for use with
Vivado. It fits most closely into the Cooperative CAD Tool Frameworks category
of the taxonomy above. That is, it exports/imports designs to/from Vivado and
provides an API to manipulate those designs. In this respect it closely paral-
lels the operation of RapidSmith and Torc. In fact its heritage (code base and
authorship) derive, in part, from the original RapidSmith tool.

RapidWright natively (and very rapidly) reads and writes Vivado Design
Checkpoints, and thus overcomes a shortcoming of previous tools which were
relatively slow due to their reliance on XDL or Tcl for import and export. And,
the promise is that it should track Vivado updates and support all future Xilinx
devices as a part of its operation.

Two demo applications of RapidWright are included in its distribution: (1)
building an IP integrator design with pre-implemented blocks and (2) creating
the physical design for a high speed SLR crossing circuit for UltraScale+. Both
of these demonstrate its API’s support for the creation of physical design tools,
similar in spirit to the tools described above.

Interestingly, RapidWright itself is not actually a 3rd party, open source tool.
It was developed by and is supported by Xilinx and much of its functionality is
distributed only in compiled code form. In these respects, it is similar to normal
vendor-supplied tools. In spite of these characteristics, however, one could argue
that RapidWright will likely become the Cooperative CAD Tool Framework of
choice for creating 3rd party tools in the future (especially those requiring phys-
ical design capabilities). This is due to its support for all Vivado design and
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device features and its planned ability to support future Xilinx device fami-
lies. It is the author’s hope that an active user community will develop around
RapidWright to encourage its further development and to create new and novel
3rd party tools. Finally, of great interest, recent presentations made by Xilinx
[29] (see especially pp. 76–80), under the title “Open Source Community Call
for Action”, now actively encourages the user community to participate in the
development of new usage models and associated CAD tools for Xilinx FPGAs.

6 Maverick

Leaving Category 2 tools and moving to Category 3, the recent Maverick project
at Brigham Young University investigated the feasibility of creating a fully stand-
alone CAD tool flow for Xilinx devices. The Maverick flow is based on several
existing and new tools including Yosys [26] for synthesis, RapidSmith2-based
tools [6,7,20,23] for packing/placement/routing, and the Project X-Ray tools
[27] for bitstream generation.

Maverick targets partial reconfiguration (PR) regions within a static design
on an FPGA. To do so it first uses the Vivado PR flow to create a bitstream
for a full-chip static design containing a PR region. It then is able to compile
Verilog designs into partial bistreams and configure those into that PR region
in a running design.

(a) Static Design Creation (b) Maverick Stand-Alone Flow

Fig. 3. The Maverick flow

Figure 3(a) shows how an initial static design is created using Vivado’s PR
flow. This initial step (which must be done only once for each such static design)
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is done using a combination of Vivado’s PR flow and Tincr/VDI. The results
of this step include: (a) an initial bitstream for the static design, (b) a list of
resources within the PR region used by the static design and which the remainder
of the flow must avoid (these are created by the Vivado PR flow and must be
noted), (c) a partial device representation for RapidSmith2 which describes the
device contents which lie within the PR region, and (d) a bitstream database
for the device of interest (generated by the Project X-Ray tools and used in the
creation of partial bitstreams for the PR region, see next section for details).
These products are shown passing from left to right in the figure.

Once this initial step is done, the actual Maverick flow can be run as shown in
Fig. 3(b), which compiles Verilog designs to partial bistreams for the PR region
without any interaction with or support from Vivado—it is a truly stand-alone,
untethered flow. The result of the Maverick flow is a partial bitstream which
targets the PR region in the original static design. This may then be dynamically
configured into the programmed FPGA’s PR region.

Because the Maverick flow targets only PR regions, care must be taken for
it to interoperate with static designs created by Vivado’s PR flow. In particular,
the Vivado PR flow creates partial routes that connect the static portion of
the design with the PR region at special locations called partition pins. These
partition pins typically lie inside the PR region, meaning partial routes enter the
PR region from the static region and must be avoided by the PR compilation
tools. In addition, Vivado at times will simply run static routes through the PR
region and these must also be avoided by the PR compilation tools. A key step in
Fig. 3(a) is thus to generate a list of these reserved routing resources to prevent
them from being used by the Maverick placement and routing tools later in the
flow.

This stand-alone portion of Maverick has been demonstrated on Digilent’s
PYNQ-Z1 board. The entire CAD flow runs on the PYNQ’s embedded ARM
processors and is used to compile and then configure Verilog designs into a
PR region in the FPGA’s static design. For a set of basic Verilog designs that
might be designed as part of an introductory digital systems course, the Maver-
ick compilation flow consumed just over 200 MB of memory, demonstrating the
extremely small footprint achievable for the tool. Ongoing Maverick work being
pursued will test it with larger designs, larger PR regions, and even multiple PR
regions within a single static design to understand its limitations and possible
use cases. Such a system opens up new possibilities for autonomous systems
which are able to create, implement, and program new HDL designs onto their
own programmable fabric without any outside assistance.

7 Other Category 3 Tools

Additionally, the IceStorm project (mentioned previously) has demonstrated the
feasibility of creating a complete external CAD flow for the Lattice iCE40 FPGA
device. And, due to its relatively small memory footprint, not only does it run
on conventional workstations but a version of it has been demonstrated running
on a Raspberry Pi as well [25].
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Recently, a variety of other open-source projects have appeared on the Inter-
net, all related to the creation of Category 3 stand-alone FPGA CAD tools. They
represent an exciting development and, hopefully, an acceleration of work in the
area of 3rd party CAD tools for FPGA devices. I note that the recent “Workshop
on Open Source Design Automation (OSDA) 2019”, held in conjunction with
the DATE conference is another encouraging sign in this direction.

One example recent tool effort is Project X-Ray [27], the website of which
states that it “contains both tools and scripts which allow you to document the
bit-stream format of Xilinx 7-series FPGAs”. And, as of the time of the writing
of this paper, partial bitstream databases for one or more devices can be found in
the prjxray-db Github repository. Note that Project X-Ray figures prominently
in the Maverick flow described above—a modified version of it is the tool which
converts the placed-and-routed circuit description created by the RapidSmith2
tools of the Maverick flow into a final partial bitstream.

As another example, the nextpnr tool [28] “aims to be a vendor neutral,
timing driven, FOSS FPGA place and route tool”. Its website states that it
currently supports two Lattice families and further states the authors hope to
see Xilinx 7 Series devices supported in the future.

8 Conclusions

The FPGA community seems to be at an exciting juncture in the development
of 3rd party CAD tools for FPGA design. Much has been learned in the past
decade in the development of 3rd party tools such as have been described in
this paper. And, activity surrounding 3rd party CAD tool development within
the FPGA community seems to be accelerating. As the efforts outlined above
mature and gain traction, many more design tools possibilites will hopefully be
available to users of FPGA devices. The result, undoubtedly, will be the creation
of new use cases across a spectrum of application domains and the development
of many new and exciting tools for users.
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Abstract. This paper presents a hardware-aware sparse fully convolu-
tional network (SFCN) for semantic segmentation on an FPGA. Seman-
tic segmentation attracts interest since for self-driving car it is important
to recognize road and obstacles in pixel level. However, it is hard to imple-
ment the system on embedded systems since the number of weights for
the SFCN is so large that embedded systems cannot store them using
limited on-chip memory. To realize good a trade-off between speed and
accuracy, we construct an AlexNet-based SFCN which has no skip con-
nections and deconvolution layers to reduce the computation costs and
the latency. Furthermore, we propose a filter-wise pruning technique that
sorts the weights of each filter by their absolute values and prunes them
by a preset percent filter-by-filter from a small order. It is more suit-
able for the hardware implementation since the number of computation
of each filter becomes equal. We trained the AlexNet-based SFCN by
using Camvid image dataset and implemented on Xilinx zcu102 evalua-
tion board. The results show that the FPGA system is 10.14 times faster
than a mobile GPU one, and its performance per power consumption is
24.49 times higher than the GPU counterpart.

Keywords: FPGA · Fully convolutional network ·
Sparse neural network · Semantic segmentation

1 Introduction

In recent years, convolutional neural networks (CNNs) [1] achieve state-of-the-
art performance, and they are widely used for computer vision tasks, such as
object classification, object detection, and semantic segmentation. Among them,
semantic segmentation is a fundamental task in image processing that performs
pixel-wise classification, as shown in Fig. 1. It has been increasingly required in
a variety of embedded systems such as robots, self-driving cars, and drones.

For good performance of the task, some CNNs incorporate additional convo-
lutional layers, new components, and a new architecture. The resulting models
are so complicated and big that they are not suitable for resource-limited embed-
ded systems, such as FPGAs. To deal with it, [2] proposes a small network for
c© Springer Nature Switzerland AG 2019
C. Hochberger et al. (Eds.): ARC 2019, LNCS 11444, pp. 371–386, 2019.
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Fig. 1. Example of semantic segmentation using CamVid dataset.

road segmentation, and its FPGA implementation meets a real-time processing
requirement. In exchange for the FPGA realization by the proposed small model,
it can deal with road class only, and therefore the implementation challenges of
the task for many categories still remain. To deal with the problem, we propose
a filter-wise weight sparse fully convolutional network (SFCN) based on AlexNet
[3]. The model has no skip connections and deconvolution layers, and it leads
to a considerable reduction in the buffer size for the feature maps, the num-
ber of memory accesses, and the computation cost. Additionally, the filter-wise
pruning is applied to our model, and the filters in a layer of the resulting model
have the same number of nonzero weights. It means that since the number of
convolutional computation for each filter in a layer is the same, the circuitry
runs efficiently. Our contributions are as follows.

1. We suggest an AlexNet-based SFCN on an FPGA. While our model has fewer
parameters and is a very smaller network than conventional ones, its accuracy
is practical.

2. We propose a filter-wise pruning technique that sorts weight parameters by
their absolute values and then prunes them by a preset percent from a small
order. Our technique realizes higher sparse model without accuracy degrada-
tion than previous work [4].

3. Our model is evaluated on an FPGA to investigate area requirement. As far
as we know, this is the first FPGA implementation of a multi-class semantic
segmentation system.

4. We compare our system on an FPGA with on a mobile GPU in term of
speed, power, and power efficiency. As for frame per second (FPS), the FPGA
realization is 10.14 times faster than the GPU one.

2 Related Works

2.1 Semantic Segmentation

Fully Convolutional Network (FCN) [5] generates a coarse label map from input
images by a pixel-wise classification, and the map is resized into input image
size by a bi-linear interpolation, then we obtain a more fine-grained label map.
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SegNet [6] incorporates skip connections during deconvolution to improve per-
formance for small objects using middle-level features. Pyramid Scene Parsing
Network (PSPNet) [7] adopts a pyramid pooling module which applies pyramid
pooling to feature maps, extracts features from them, and concatenates their
futures to deal with multi-scaling objects. In addition, PSPNet uses resizing
function provided by OpenCV as an upsampling layer. ICNet [8] uses various
resolution input to go through the corresponding networks and combine them
using a cascade feature fusion unit.

Since their networks are not suitable for embedded systems due to their net-
work size and complexity, we modify the model structure. The resulting model
is a feed-forward architecture model which has no skip connections and replace
deconvolution layers into a resizing function as an upsampling layer. By remov-
ing them, the circuitry does not need to have their buffers and decreases memory
access significantly with low accuracy degradation, which means that our pro-
posed network is more suitable for embedded systems.

2.2 Sparseness Approach for Weight Memory Reduction

Since the modern CNN requires a large number of weight parameters, an FPGA
on-chip memories cannot store the all parameters. To deal with it, there are two
varieties of sparseness (pruning) methods for after training and during training.

As for pruning during training, [9] proposed a gradual pruning method that
increases a weight pruning ratio using binary mask variable. [10] uses sparse
various dropout for both dense and convolutional layers to realize high sparsity.
[11] reduces the rank of the parameter matrices in each layer.

On the other hand, there are many works for pruning after training, and the
representative one is deep compression [4] which combined quantization, weight
pruning, and Huffman coding method together, obtaining 3–4 times speedup.
Neuron pruning [12] shows that pruning neurons instead of edges (weights) real-
izes high sparse model, maintaining the sequential memory access. For the hard-
ware of SIMD architecture, [13] proposes SIMD-aware weight pruning which
provides high parallelism using a specific format, such as compressed sparse
rows (CSR) format.

We propose a filter-wise pruning which eliminates weights filter-by-filter by
a preset percent from a small order after training, since it is able to train faster
than pruning while training counterparts from our experiments. Figure 2 shows
the learning curves of both pruning while training and pruning after training
models when using our technique. The pruning after training converges faster
than the during training one. We consider that the pruning after training type
is more suitable for our technique.

3 Preliminary

We employ three metrics which are often used to measure performance. Let nij

is a #pixels of class i predicted as class j, nclass is a number of class to recognize.
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Fig. 2. Learning curve of both pruning after training and pruning while training models
when using a filter-wise pruning. Note that we used a polynomial shift for scheduling
learning rate.

The metrics are as follows.
Pixel-wise accuracy (Pixel-wiseAcc):

∑nclass

i=1 nii∑nclass

i=1

∑nclass

j=1 nij
=

Accurate area

All area

Mean class accuracy (mClassAcc):

1
nclass

nclass∑

i=1

nii∑nclass

j=1 nij
=

Area predicted as class i

Truth area of class i

Mean intersection over union (mIoU):

1
nclass

nclass∑

i=1

nii∑nclass

j=1 (nij + nji) − nii

4 Fully Convolutional Network

4.1 Definition

A fully convolutional network (FCN) is a variation of convolutional neural net-
works (CNNs) which consists of convolutional layers only. It can deal with any
size input data. To perform classification, FCNs uses 1× 1 convolutional layer
instead of dense layer.
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Input feature map

Output feature map

skip
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skip

Kernel
(Sparse)

Fig. 3. Sparse convolutional operation.

4.2 Convolutional Operation

Let i be i-th layer, Xi(x, y, ch) be an input feature map value at (x, y, ch) coor-
dinates in i-th layer, W i(x, y, ch) be a weight value, wbias be a bias, Si(x, y)
be an intermediate variable, fact(s) be an activation function, and Zi(x, y) is an
output feature map. The K×K 2D convolutional operation at (x, y) coordinates
in (i+1)-th layer is as follows:

Si+1(x, y) = wbias +
Ni−1∑

ch=0

K−1∑

r=0

K−1∑

c=0

Xi(x + r, y + c, ch) × W i+1(r, c, ch) (1)

Zi+1(x, y) = fact(Si+1(x, y)),

where Ni is a number of input feature maps, ch, r, c are coordinates of depth-
axis, x-axis, and y-axis, respectively. The input is multiplied by a weight and
the resulting sum is applied to the activation function, or MAC (multiply-
accumulation) operation. In this paper, we use the rectified linear unit (ReLU)
functions as the activation function. As shown in Expr. (1), when K = 1, it
performs classification corresponding to the part of input images.

4.3 Sparse Convolutional Operation

Figure 3 illustrates a sparse convolutional operation. After a pruning technique
is applied, many weight values become zero. To store such weight parameters
formed in the sparse matrix to block RAMs (BRAMs) efficiently, we employ
coordinate (COO) format. Figure 4 shows the COO format overview. The arrays,
row, col, ch, and data store its row, column, channel indices, and nonzero weight
values of the sparse matrix, respectively. Since our proposed pruning technique
realize high sparse ratio, the overhead of additional memory requirement (row,
col, and ch arrays) is small compared with that for nonzero weights. When COO
format is introduced, the sparse convolutional operation at (x, y) coordinates is
formulated as follows.
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Fig. 4. COO representation of weight parameters.

Si+1(x, y) = wbias +
N−1∑

i=0

Xi(x + rowi, y + coli, chi) ∗ datai

Zi+1(x, y) = fact(Si+1(x, y)),

where N is a number of nonzero values, datai is a weight value, and coli and
rowi are column and row indices, respectively.

4.4 AlexNet-Based Sparse Fully Convolutional Network

In recent years, many models for semantic segmentation are proposed. How-
ever, these models are so complex and deep that their FPGA implementations
are not feasible. Therefore, we investigate an FPGA-aware model with high
accuracy and propose an AlexNet-based model as shown in Table 1. Batch nor-
malization (BN) [14] is conducted after each convolutional layer. To realize high
accuracy, we removed the last max pooling layer and decided the low sparse ratio
for the pixel-wise convolutional layers. While other models employ deconvolu-
tion layers, we replaced it with bi-linear function on a host processor, as shown
in Fig. 5, since the deconvolution layers incur many memory accesses and do
not affect the accuracy significantly. Table 2 shows a comparison with the other
model. Our model achieves comparable performance in floating-point precision.
Therefore, we employ our floating-precision model as a baseline model.

5 Filter-Wise Pruning by Using Distillation

As for related works, pruning techniques are applied to the weight parameters of
each layer. However, considering an FPGA implementation, they are not suitable
since if the sparse ratio of each filter varies significantly (in other words, there is
a big difference between the number of nonzero values in certain two filters, as
shown in Fig. 6), we should adjust the circuitry to the worst case. This means
that all filters except for the worst case filter should conduct wasteful calculation.
To address the problem, we propose a filter-wise pruning by using distillation
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Fig. 5. AlexNet-based FCN, using resize function instead of deconvolutions.

Table 1. The sparse ratio of our AlexNet-based model

Layer #In. F.maps#Out. F.maps In. F.SizeKernel size Stride Padding Zero weight ratio

Hardware part:

Conv 3 64 480× 360 11× 11 4 0 21,888/23,232 (94.2%)

MaxPool 64 64 119× 89 3× 3 2 0 -

Conv 64 64 59× 44 5× 5 1 2 96,320/102,400 (94.1%)

MaxPool 64 64 59× 44 3× 3 2 0 -

Conv 64 128 29× 22 3× 3 1 1 69,376/73,728 (94.1%)

Conv 128 128 29× 22 3× 3 1 1 138,624/147,456 (94.0%)

Conv 128 128 29× 22 3× 3 1 1 138,624/147,456 (94.0%)

Conv 128 128 29× 22 1× 1 1 0 13,184/16,384 (80.5%)

Conv 128 11 29× 22 1× 1 1 0 1,067/1,408 (75.8%)

Software part:

Resize 11 11 22× 29 - - - -

Total − − - - - - 479,083/512,064 (93.6%)

Table 2. Comparison with existing results on CamVid dataset.

SegNet [6] Ours

Params [M] 1.425 0.515

Pixel-wiseAcc 84.0% 77.6%

mClassAcc 54.6% 65.9%

mIoU 46.3% 45.0%

that weights of each filter are sorted by absolute amount, and then eliminates
them by a preset percent of the total from a small order. The details of our
proposed technique procedure are as follows:

(1) Train floating-point precision model
(2) The pre-trained weights of each filter are sorted by its absolute value
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(3) Prune their small value ones by a preset percent per each filter
(4) Retrain their nonzero weights by using distillation

By following the above procedure, sparse ratios of each filter are the same, which
leads to improvement of its implementation circuitry performance. In our exper-
iments, we set the pruning percent 94% for convolutional layers, and 80% or 75%
for pixel-wise convolutional ones, as shown in Table 1.
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Fig. 6. Filter-wise zero weight ratio of the 1st convolutional layer.

5.1 Distillation Scheme for Retraining

Distillation [15] is a compression technique that can obtain a small model by
using the class probabilities produced by the cumbersome model as “soft tar-
gets”. Some works apply the knowledge distillation to both object classifica-
tion [16] and object detector [17]. In this paper, we exploit it to semantic seg-
mentation tasks to obtain a high sparse model using the dense model. The sparse
model can acquire high accuracy by using not only ground truth, which is called
“hard targets”, but cumbersome dense model as “soft targets”. We introduce
following two losses to accelerate convergence and also get higher accuracy. In
our training method, two types of training losses are defined.

(1) Hard targets: Soft-max cross entropy loss
We use pixel-wise cross entropy loss between the predicted class probabilities
produced by sparse model and the ground truth, which is defined by

Lsft = − 1
HinWin

nclass−1∑

ch=0

Win−1∑

x=0

Hin−1∑

y=0

log
(
σ (sx,y)ch

)
pch,x,y

σ (sx,y)ch =
exp(sch,x,y)

∑nclass−1
k=0 exp(sk,x,y)

,

where Hin,Win denotes input image size, σ(sx,y)0, . . . , σ(sx,y)nclass−1 are
predicted class probabilities. nclass is equal to 11 for the CamVid dataset,
and pch,x,y ∈ {0, 1} are the ground truth class probabilities.
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Fig. 7. Pruning method using distillation.

(2) Soft targets: Mean squared losses
For soft target loss, we use mean squared losses between feature maps of
sparse model and dense model.

Therefore, the total loss is defined by

L =
1
M

M−1∑

j=0

αj

CjHjWj

Cj−1∑

ch=0

Wj−1∑

x=0

Hj−1∑

y=0

(
s
tj
ch,x,y − s

′tj
ch,x,y

)2

+ βLsft,

where M represents a number of feature maps to apply distillation, αj , β are
hyper parameters to balance learning rate, s, s′ is feature map of sparse model
and dense model, and Lsft is soft-max cross entropy loss. In our experiment,
we set M 3, which means that the soft target loss uses output feature maps of
“conv1”, “conv2”, and “conv7” as shown in Fig. 7.

Finally, we get 40.53% [mIoU] without “soft targets” and 44.90% [mIoU] with
both soft and hard ones, while the weights are pruned by 93.6%. This means
only 0.14% [mIoU] drop from the dense model.

6 Implementation

Figure 8 shows the overall circuitry. The design consists of buffer parts for param-
eters and convolutional block (CB) part, which forms task-level pipeline archi-
tecture. All parameters such as weights and biases area loaded into on-chip
buffers from DDR3 memory. After that, the processor sends an input image
to the design, and the convolutional operations are performed on the first CB.
The output feature maps are sent to the ping-pong buffer in the next CB, to
be read to compute the next layer operation. Finally, the outputs of the last
CB (7-th CB) are sent to the ARM processor to resize them into the given input
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size by using OpenCV software. Weight parameter matrices are stored to on-
chip memory as COO format. Filter-wise pruning can be stored on the on-chip
memory (BRAM), thereby implying that this circuitry achieves better power
performance.

Conv. 1 
Block

Conv. 2 
Block

Conv. 7 
Block

…

On-Chip Memory (BRAM)

AXI4 BUS

Off-Chip 
DDR3 Memory ARM Cortex-A53

Fig. 8. Overall architecture.

Fig. 9. Absolute and relative localization. The convolutional operation counter has the
absolute localization of the top-left pixel in the kernel, such as (y, x) = (1, 1) and the
COO decoder contains relative localization denoted in blue (col, row, ch) = (2, 1, 0).
(Color figure online)

6.1 Convolutional Block

Figure 10 shows a CB circuitry. It consists of a COO decoder, a COO counter, a
counter for convolutional operation, a ping-pong buffer for feature maps, sequen-
tial MAC units, and a processing element (PE) for both BN and ReLU. The
COO counter counts up to the number of nonzero weight parameters of each
filter, and the number is fed into the COO decoder which outputs corresponding
relative address, or col, row, and channel values. After that, to fetch values from
feature map memory, the absolute address is calculated using both the relative
addresses and the convolutional counter which outputs both row and column of
the localization at which the convolution is performed. As shown in Fig. 9, the
localization of convolution, (y, x) is (1, 1), and the relative address, (col, row,
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Fig. 10. Convolutional block.

Fig. 11. SIMD convolutional operation.

ch) is (2, 1, 0). Therefore, the absolute localization of corresponding feature map
value is (y+col, x+row, ch) = (3, 2, 0). The fetched value and the weight are fed
into sequential multiply-accumulate (MAC) unit, followed by PE for BN and
ReLU. Finally, the output is stored to the ping-pong buffer for the next CB
computation. In our experiments, the calculations in the CB use half-precision
floating-point representation.

In our experiments, we modify the above CB circuitry to improve the exe-
cution speed. Figure 11 shows the behavior of a SIMD CB which has several
sequential MAC units, and Fig. 12 shows the circuitry. Several successive feature
map values along to width-axis are fetched simultaneously, and a corresponding
weight is broadcast to all sequential MAC units to realize parallel computing.
Their outputs are fed into the PE for both BN and ReLU. The resulting values
are output sequentially, and sent to the next CB. The configured parallel number
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Fig. 12. SIMD Convolutional block.
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is shown in Table 3. Since 1st and 2nd CB perform convolution on large images
than their successive blocks, we set the parallel number of 1st and 2nd CB bigger
number to improve the latency differences among all CB. In addition, we use
array partition technique to load several feature map values simultaneously.

Table 3. SIMD configuration for 300× 225 images.

Conv. 1 Conv. 2 Conv. 3 Conv. 4 Conv. 5 Conv. 6 Conv. 7

#SIMD lanes 300 37 19 19 19 19 19

7 Experimental Results

7.1 Accuracy Comparison

In our experiments, both Chainer [18] and ChainerCV [19] deep learning frame-
works train our dense and sparse models, and we use CamVid [20] dataset
which is one of the popular datasets of the semantic segmentation task for
self-driving cars to evaluate our model performance. The image size is set
(height, width) = (360, 480), and the number of the categories is 11.

Table 4 shows accuracy comparison results. Our sparse model achieved the
dense model performance. The results imply that by using our technique, its
resulting model has high zero weight ratio with very few accuracy degradation.
Figure 13 presents some examples of both our model outputs and ground truth
images.

7.2 FPGA Implementation

We implemented our model for various image sizes on an FPGA and inves-
tigated their resulting areas by using Xilinx Inc. SDSoC 2018.2 with a tim-
ing constraint of 99.9 MHz. We used a Xilinx Inc. Zynq UltraScale+ MPSoC
zcu102 evaluation board, which is equipped with a Xilinx Zynq UltraScale+
MPSoC FPGA (ZU9EG, 68,520 Slices, 269,200 FFs, 1,824 18 Kb BRAMs,
2,520DSP48Es). Table 5 shows an implementation results. Since our design uses
ping-pong buffer for feature maps and array partition to increase memory band-
width, the utilization of the BRAM is a dominant part. Due to the above reason,
our circuitry cannot realize larger image size than (300, 225).

7.3 Comparison with a Mobile GPU

We compare the FPGA with a Jetson TX2 GPU (NVIDIA Corp.) on the basis
of both frame per second (FPS) and power consumption. Note that we used the
same sparseness CNN for both platforms to fair comparison. In this paper the
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Table 4. Semantic segmentation result

Dense model Sparse model

Zero Weight Ratio - 93.6%

mIoU 45.04% 44.90%

mClassAcc 65.92% 61.62%

Pixel-wiseAcc 77.64% 79.38%

Sky 85.58% 85.78%

Building 53.36% 60.80%

Pole 8.85% 8.28%

Road 86.51% 84.15%

Pavement 63.66% 59.26%

Tree 57.26% 60.66%

Sign symbol 12.75% 16.41%

Fence 16.88% 13.56%

Car 63.20% 61.46%

Pedestrian 21.75% 19.01%

Bycyclist 25.65% 24.53%

Fig. 13. Example of inference results using the test dataset.
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Table 5. Implementation on an FPGA for various image sizes (utilization of the zcu102
evaluation board). Note that, SDSoC 2018.2 obtains the following results.

Image size 120× 90 180× 135 240× 180 300× 225

18Kb BRAM 224(12.28) 432(23.68) 779(42.71) 1,123(61.57)

DSP48E 183(7.26) 252(10.00) 333(13.21) 390(15.48)

FF 41,957(7.65) 59,865(10.92) 77,122(14.07) 100,508(18.34)

LUT 50,654(18.48) 66,416(24.23) 83,864(30.60) 105,060(38.33)

mIoU 29.23% 35.91% 40.79% 42.62%

power consumption is defined as dynamic one, and the Chainer framework is used
for the GPU board. The comparison results are shown in Table 6. As for dynamic
power consumption, the GPU system was 2.9 W, while the FPGA consumed
only 1.2 W. Thus, it reduced power consumption by 1.7 W. As for performance
on average, the GPU achieved 16.3 FPS, whereas the FPGA achieved 165.4 FPS,
which means that only our proposed one meets a real-time processing (30 FPS).
In terms of performance per power consumption (FPS/W), the FPGA was 24.49
times higher than the mobile GPU. From these results, our system is more
suitable for FPGA.

Table 6. Comparison with a mobile GPU with a 300× 225 image size

Platform Mobile GPU FPGA

Device Jetson TX2 zcu102

Clock freq. [GHz] 1.3 0.1

Speed [avg. FPS] 16.3 165.4

Power [W] 2.9 1.2

Efficiency [FPS/W] 5.6 137.9

8 Conclusion

We presented a SFCN made by the filter-wise pruning technique. By using
the proposed method, the generated model is more suitable for embedded sys-
tems since each convolutional circuitry runs efficiently with maintaining high
sparse ratio. From our experiments, our model achieved good performance on
the CamVid dataset and outperform its GPU system in term of both speed and
power efficiency.
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Abstract. Convolutional Neural Networks (CNNs) obtain very good
results in several computer vision applications at the cost of high compu-
tational and memory requirements. Therefore, CNN typically run on high
performance platforms. However, CNNs can be very useful in embedded
systems and its execution right next to the source of data has many
advantages, like avoiding the need for data communication and real-time
decisions turning these systems into smart sensors. In this paper, we
explore data quantization for fast CNN inference in low density FPGAs.
We redesign LiteCNN, an architecture for real-time inference of large
CNN in low density FPGAs, to support hybrid quantization. We study
the impact of quantization over the area, performance and accuracy
of LiteCNN. LiteCNN with improved quantization of activations and
weights improves the best state of the art results for CNN inference in
low density FPGAs. With our proposal, it is possible to infer an image
in AlexNet in 7.4 ms in a ZYNQ7020 and in 14.8 ms in a ZYNQ7010
with 3% accuracy degradation. Other delay versus accuracy ratios were
identified permitting the designer to choose the most appropriate.

Keywords: Convolutional Neural Network · FPGA ·
Data quantization

1 Introduction

A CNN consists of several layers in a dataflow structure starting with the input
image until the final layer that outputs a classification result. Each layer receives
IFMs (Input Feature Map) from the previous and generates OFMs (Output
Feature Map) to the next. The main and most common layers are: convolutional,
fully connected and pooling.

Convolutional layers are the main modeling blocks of a CNN. For each IFM a
2D convolutional kernel is applied to generate a partial output map. The partial
maps and a bias are accumulated to generate an OFM.

The set of 2D kernels form a 3D kernel. Each 3D kernel slides over the IFMs
and the convolutions produce an OFM. CNNs consider several kernels at each
convolutional layer and so the same number of OFM are produced at each layer.
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Convolutional layers may be followed by pooling layers to sub-sample the OFMs
to achieve translation invariance and over-fitting. Pooling reduces the size of the
feature map by merging neighbor neurons into a single neuron using functions
like max or average pooling.

The last layers are usually the fully connected (FC). In a FC layer each neuron
is connected to all neurons of the previous layer. The last FC layer outputs the
classification probabilities. A nonlinear activation function is applied on every
neuron. A common function recently adopted for its simplicity and effectiveness
is the Rectified Linear Unit (ReLU) that calculates max(0, activation value).

Several CNNs has been developed with different number and type of layers,
and number of kernels. One of the first was LeNet [3] with a total of 60K weights.
The model was applied for digit classification with small images. Later, a much
larger CNN, AlexNet [10], won the ImageNet Challenge. It consists of five con-
volutional layers plus three fully connected layers. Different number of kernels
with different sizes are applied at each layer with a total of 61M weights requir-
ing a 724 MACC (Multiply-ACCumulate) operations to process images of size
224 × 224 × 3. Other CNN models have followed, like VGG-16 [12], GoogleNet
[13] and ResNet [8].

Executing a CNN model (inference) can be done on the same platform used to
train it or in an embedded system with strict performance, memory and energy
constraints. In a vast set of applications, it is advantageous or necessary to have
the inference process near the data input sensor so that important information
can be extracted at the image sensor instead of sending the information to the
cloud and wait for the answer. Also, in systems where the communication latency
and data violations are undesirable, like autonomous vehicles, local processing
at the sensor is also desirable.

A common feature of these CNN models is the high number of weights and
operations. Due to the limited performance and memory of many embedded
platforms it is very important to find architectural solutions to run large CNN
inferences in low cost embedded platforms. One approach to achieve such imple-
mentations is to reduce the type and size of data without compromising the
network accuracy. Size reduction reduces the complexity of arithmetic units and
the memory requirements to store feature maps and weights.

In this paper, the focus is on the optimization of LiteCNN [16] for run-
ning inference of large CNNs in low density FPGAs (Field-Programmable Gate
Arrays) using data size reduction.

The following has been considered for the optimization of LiteCNN:

– Lite-CNN only supports 8 bits dynamic fixed-point. An extended framework
based on Caffe [9] and Ristretto [7] was developed to explore other fixed-point
sizes;

– LiteCNN modifications are proposed to support generic fixed-point sizes;
– A performance model for LiteCNN was developed to allow design space explo-

ration;
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– Tradeoffs among performance, area and accuracy were obtained allowing the
designer to choose the most appropriate LiteCNN configuration for a partic-
ular CNN model and accuracy.

The paper is organized as follows. Section 2 describes the related work on
FPGA implementations of CNNs and optimization methods based on data size
reduction. Section 3 describes the flow used to explore data size reduction of
CNNs. Section 4 describes the LiteCNN architecture, the modifications neces-
sary to support other data sizes and the performance model. Section 5 describes
the results on inference accuracy and area/performance of LiteCNN running
well-known CNNs and compare them to previous works. Section 6 concludes the
paper.

2 Related Work

Common general processing units achieve only a few hundred GFLOPs with
low power efficiency. This performance is scarce for cloud computing and the
energy consumption is too high for smart embedded computing. GPUs (Graphics
Processing Units) and dedicated processors (e.g. Tensor Processing Unit - TPU)
offer dozens of TOPs and are therefore appropriate for cloud computing.

FPGAs are increasingly being used for CNN inference for its high energy
efficiency, since it can be reconfigured to adapt to each CNN model.

The first FPGA implementations of CNNs considered small networks [1,2].
A larger CNN was implemented in [19] but only for the convolutional layers.

A few authors considered low density FPGAs as the target device. In [14]
small CNNs are implemented in a ZYNQ XC7Z020 with a performance of 13
GOPs with 16 bit fixed-point data. In [5] the same FPGA is used to implemented
big CNN models, like VGG16, with data represented with 8 bits achieving per-
formances of 84 GOPs.

In [4] the authors implemented a pipelined architecture in a ZYNQ XC7Z020
with data represented with 16-bit fixed point. The architecture achieves 76 GOPs
with high energy efficiency.

Previous implementations on low density FPGAs have performances below
100 GOPs. Previous works [6,11] show that dynamic fixed-point with 8 bits
guarantee similar accuracies compared to those obtained with 32-bit floating
point representations. In [17] hybrid quantization schema is proposed with dif-
ferent quantizations for different layers targeting edge computing. To deal with
this hybrid quantization, the authors propose a pipeline structure with a layer
at each pipeline level. The problem is that a pipeline structure requires enough
memory to store intermediate feature maps and so it is not adequate for low
density FPGAs with scarce memory resources.

Datawidth reduction is essential to implement CNN in target platforms with
low on-chip memory and low resources. In this work we consider data bitwidths
that can vary between layers and between activations and weights and study
the impact of this hybrid quantization over the inference delay, accuracy and
hardware resources.
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The extended LiteCNN architecture with support for hybrid quantization
proposed in this work is able to achieve several hundred GOPs in a low cost
FPGA, like the ZYNQ7020, improve the inference delays of the original LiteCNN
and of previous works and achieve high area and performance efficiencies. With
LiteCNN, we have determined the tradeoffs between area, performance and CNN
accuracy. Our solution improves the CNN inference delays of previous works in
low density FPGAs with similar network accuracies.

3 Framework for Bitwidth Optimization

We have developed a framework based on Caffe [9] and Ristretto [7] to explore
the bitwidth of both activations and weights. Ristretto determines the number
of bits to represent data enough to guarantee a maximum error in the precision
of the network specified by the user. To explore particular bitwidth sizes, we
established a design flow with the following steps:

– The network is initially trained with single precision floating-point;
– Ristretto is applied to the trained network with different precision errors,

generating solutions with different datawidths;
– From the results, we extract the fixed-point quantifications from each solution;
– From these values, we create a generic linear model of the quantification

parameters (fractional and integer parts of fixed-point quantification);
– From this model we generate architectures with the required number of bits

and train them to determine their accuracy.

Usually for a given target hardware architecture some data size configurations
are more efficient than others in terms of area/performance. So, we want to
explore these more efficient solutions in terms of network accuracy. This design
flow permit us to determine the network accuracy for specific data bitwidths.

4 LiteCNN Architecture - 8 Bits

4.1 LiteCNN Architecture

The Lite-CNN architecture consists of a cluster of processing elements (PE) to
calculate dot-products, a memory buffer to store on-chip the initial image and
the OFMs, one module to send activations and two modules to send and to
receive weights to/from the PEs (see Fig. 1).

The architecture executes layers one at a time. The execution of convolu-
tional and fully connected layers work the same because we transform the 3D
convolutions in linear dot-products identical to those used in FC layers, to be
explained above. Layers are executed the following way:

– Before starting the execution of a layer, the architecture is configured for the
specific characteristics of the layer. It also specifies if there is a pooling layer
at the output of the feature maps being calculated;
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Fig. 1. Block diagram of the Lite-CNN architecture

– The input image and the intermediate feature maps are stored on-chip. Since
the layers are executed one at a time, the buffer memory only has to be
enough to store the IFM and OFM of any layer;

– For the first convolutional layer, the image is loaded from external memory.
For the others, the IFM is already in on-chip memory. At the same time,
kernels are read from external memory and sent to the PEs. Besides the
weights, the kernel includes the bias value which is stored in the bias memory.
Each PE receives one kernel. So, each PE calculates the activations associated
with one OFM;

– The initial image or intermediate feature maps in the on-chip memory are
broadcasted to all PEs;

– After each calculation of a complete dot product associated with a kernel, all
PEs send the output activations back to the receive neurons module that adds
the bias and stores the result in the on-chip memory to be used by the next
layer. If the layer is followed by pooling, this module saves the activations in
a local memory and wait for the other members of the pooling window;

– The process repeats until finishing the convolution between the image and
the kernels. After that, the next kernels are loaded from memory and the
process repeats until running all kernels of a layer.

The process allows overlapping of kernel transfer and kernel processing. While
the PEs process their kernels, in case the local memory is enough to store two
different kernels, the next kernels are loaded at the same time. This is funda-
mental in the fully connected layers where the number of computations is the
same as the number of weights.

Also, in case the on-chip memory is not enough to store the whole image and
the OFM (usually the first layer is the one that requires more on-chip memory),
the image is cut into pieces which are convolved separately.

The PE cluster contains a set of PEs. Each PE (see Fig. 2) has a local memory
to store kernels and arithmetic units to calculate the dot product.
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Fig. 2. Architecture of the processing elements

Each PE stores a different kernel and so is responsible for calculating the
activations of the output feature map associated with the kernel. This way mul-
tiple output feature maps are calculated in parallel. Also, in convolutional layers,
the same kernel is applied to different blocks of the IFM and produce different
neurons of its OFM. The number of output neurons to be processed in parallel
in each PE is configurable. For example, to calculate two activations in parallel
it receives two input activations from the feature memory in parallel. This mech-
anism permits to explore the intra-output parallelism (fully connected layers do
not use intra-output parallelism). Finally, weights and activations are stored in
groups, that is, multiple weights and activations are read in parallel in a single
memory access (e.g., with 8-bit data, a 64 memory word contains eight neurons
or weights) permitting to explore dot-product parallelism.

The block sendWeights is configured to send kernels to the PE cluster. The
block receives data from direct memory access (DMA) units that retrieve data
from external memory and send it to the PEs in order. It includes a bias memory
to store the bias associated with each kernel.

The sendNeurons and receiveNeurons blocks are responsible for broadcasting
activations from the feature memory to the PEs and receive dot product results
from the PEs, respectively. The send neurons module includes a configurable
address generator. The receive neurons module implements the pooling layer in
a centralized manner.

Previous works use dedicated units to calculate 2D convolutions. The problem
is that the method becomes inefficient since the same units have to run different
window sizes and are used only for convolutional layers. Lite-CNN transforms
3D convolutions into a long dot product to become independent of the window
size. Also, this way, both convolutional and FC layers are executed the same way
by the same arithmetic core units.

Pixels of the initial image, activations of feature maps and weights of kernels
are stored in order (z, x, y) (see Fig. 3).
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Fig. 3. Reading mode of images, feature maps and weights

Each neuron of an OFM is calculated as a dot product between the 3D kernel
of size xk×yk×zk and the correspondent activations of the IFM of size xp×yp×zp
(see Fig. 3b), where zp is the number of IFMs. The weights of kernel are all read
sequentially from memory since they are already ordered. The activations are
also read in sequence from memory but after xk × zk activations it has to jump
to the next yk adding an offset to the address of the input feature memory being
read. For a layer without stride nor followed by pooling, the offset is xp × zp.
Formally, the dot product to calculate each step of the convolution is given by:

DPconv =
i=yk−1∑

i=0

j=xkzk−1∑

j=0

Wixkzk+j × PstartAddr+ixpzp+j (1)

where startAddr is the address of the first neuron of the block of the IFM being
convolved. We use this operation to convolve a kernel with the set of IFMs sliding
the 3D kernel along the feature maps. In this process, if a layer is followed by
pooling, the output neurons of the pooling set are calculated in sequence and
only the final neuron is stored in the OFM buffer. The advantage of our method
is that it is independent of the shapes of kernels and weights and layer type. WE
just have to configure the address generator properly for each layer.

LiteCNN also implements a method to reduce the number of multiplications
by half [16] leading to a considerable reduction in the hardware resources required
to implement a convolutional or fully connected layers. Also, the intra-output
parallelism used during convolutional layers can be used to batch IFM to be sent
to FC layers. This version of LiteCNN supports two parallel lines of computation.
Each of these lines can be used to process one of the batched IFM for the FC
layers, that is, it supports a batch of two.

We have extended LiteCNN with two modifications to support data sizes
different from activation × weight = 8 × 8. Since we cannot afford having a
pipelined datapath with dedicated implementations of each layer, due to low
memory resources, we keep the generic layer implementation that is configurable
to support each particular layer and extended it to support different data sizes.
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In those cases where all layers use the same sizes (e.g., 16× 16, 5× 5, 8× 2),
the processing units are configured exactly to execute operations with this size.
We kept the memory data bus with 64 bits and so the number of parallel units
depend on the size of activations and weights (64/size).

When layers have different data sizes, we store data in their original sizes,
but core units are implemented to support the execution of the bigger operands.
Therefore, data with smaller dimension are extended to the size of data with the
biggest dimension. For example, consider two different representations in the
same CNN - 8 × 4 and 8 × 2 - the arithmetic units are implemented for 8 × 4
and 8 × 2 data is extended to 8 × 4 to be executed. In this extended version of
LiteCNN, cores support multiply-accumulations of data with upto two different
data representations whose sizes are configured initially. For example, it can be
configured to execute layers with size 8×4 and 8×2, or 8×8 and 8×2. Extending
LiteCNN to obtain architecture configurations that support the execution of
more than two different data sizes is straightforward but was not considered in
this paper.

With this architectural solution using layers with different data represen-
tations has no computational advantage, since the number of operations is the
same as using the same data sizes, but the data is read and stored from/to mem-
ory in their original sizes. So, the method permits to take advantage of using
reduced weight sizes to reduce the time to transfer activations and weights from
memory. Designing generic arithmetic units was left for future research.

The second modification of the PEs has to do with the method to reduce
the number of multiplications. When both activations and weights have the
same size, the method is used. Otherwise, the method is less efficient since the
multiplications have the size of the bigger parameter (e.g. if 8 × 4, the size of
the multiplications is 9 × 9). In these cases we adopted and extended for other
dimensions the method proposed in [15].

4.2 Performance Model of LiteCNN

The performance model provides an estimate of the inference execution time of
a CNN network on the LiteCNN architecture. The model determines the time
to process each layer.

Considering convolutional layers, the time to transfer all kernels depends on
the number of kernels, nKernel, the size of kernels, kernelSize, the number of
bits used to represent weights, nBit and the memory bandwidth, BW. The total
number of bytes, tByte, transferred in each convolutional layer is given by Eq. 2.

tByte = nKernel × kernelSize× nBit

8
(2)

The number of cycles to execute a convolutional layer, conCycle, is given by
Eq. 3.

convCycle =
⌈
nKernel

nCore

⌉
× nConv × kernelSize

nMAC
(3)
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where nCore is the number of processing elements, nConv is the number of 3D
convolutions and nMAC is the number of parallel multiply-accumulations of each
PE (intra-output parallelism). From these two equations, the total execution
time, convExec depends on the local memory capacities. If local memories of PEs
have enough space to store two kernels, than communication and processing of
kernels can overlap, otherwise, they must be serialized. Considering an operating
frequency, freq de execution time is given by Eq. 5.

convExec =
tByte

BW
+

convCycle

freq
without overlap (4)

convExec = max(
tByte

BW
,
convCycle

freq
) with overlap (5)

For the totally connected layers, the equation to determine the number of
bytes to transfer all kernels is the same as Eq. 2. The equation to determine the
number of cycles to process the layer is given by:

fcCycle =
⌈
nKernel

nCore

⌉
× kernelSize

nMAC
× nParallel (6)

Since in the fully connected layers there is no intra-output parallelism, only
one line of parallel MACs of the PE is used. Given the number of intra-output
parallel processing lines, nParallel, the number of processing cycles is multiplied
by this value.

The total execution time of FC layers is similar to 5.

fcExec =
tByte

BW
+

fcCycle

freq
without overlap (7)

fcExec = max(
tByte

BW
,
fcCycle

freq
) with overlap (8)

The total execution of a CNN inference in LiteCNN is the sum of the time
to transfer the image to FPGA ( imageSize(bytes)

BW ) plus the time to process each
layer. Between layers there is configuration time of the architecture done by the
ARM processor of ZYNQ. We have checked the accuracy of the model from the
results of LiteCNN 8 × 8 running AlexNet. The delay obtained with the model
is about 1% lower (17.44 ms) against (17.63 ms) of the implementation.

5 Results

We have tested LiteCNN with data size reduction with one small network -
LeNet5 - one medium size CNN - Cifar10-full - and one large CNN - AlexNet.
Cifar10-full is a network with three convolutional layers and one fully connected
layer used to classify images from the CIFAR-10 dataset containing 32×32 color
images. All LiteCNN architectures were implemented with Vivado 2017.3 in the
ZedBoard with a ZYNQ XC7Z020 and run at 200 MHz.
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Table 1. Area occupation for different data size configurations of Lite-CNN

Layer x 4 × 4 5 × 5 6 × 6 16 × 16 8 × 8 8 × 8 8 × 8 8 × 4 8 × 4 8 × 2 2 × 8

Layer y 4 × 4 5 × 5 6 × 6 16 × 16 8 × 8 8 × 4 8 × 2 8 × 4 8 × 2 8 × 2 2 × 2

PEs 64 64 64 32 64 64 64 43 43 40 38

MACC 32 24 20 16 16 16 16 32 32 64 64

LUT 47477 44922 44895 45098 44418 46624 46832 45824 47842 45641 45430

DSP 220 220 220 220 220 220 220 220 220 220 220

BRAM 130 130 130 132 130 130 130 115 115 111 111

Peak GOPs 819 614 512 205 410 410 410 563 563 1024 972

For each CNN we found the relation between delay and accuracy when imple-
mented in LiteCNN. Since LiteCNN is configurable in terms of processing ele-
ments, to facilitate the comparison of architectures with different data size con-
figurations, we implemented all architectures with similar areas by changing the
number of processing elements (see area results in Table 1).

Table 1 gives the number of PEs and the number of MACC in each PE for
a particular implementation of LiteCNN (layer x and layer y lines indicate the
size of the operands supported in each implementation). A line with the peak
performance was also included. With layers configured with 4× 4 data sizes the
architecture has a peak performance of 819 GOPs and configured with 8 × 2 it
has over 1 TOPs of peak performance.

Considering these implementations (with similar areas), we have determined
the accuracy (top-1) of the networks (LeNet, Cifar10-full, AlexNet) for differ-
ent data size configurations and the delay. To avoid long synthesis times of all
architectures, we used the performance model to determine the delay (the per-
formance model was verified for the original LiteCNN).

LeNet is a small network and is used for simple number recognition. There-
fore, it has high accuracy and executes fast compared to the other larger net-
works. We have considered data of convolutional layers with the same size and
varied the size between convolutional and FC layers (see Fig. 4).

Each architecture configuration is specified by the bitwidth of activations
(the same for all layers, specified as A:size) and the bitwidth of weights (can be
different across all layers, specified as W:size.. if the same for all layers or W:
followed by all sizes of each layer when different).

The fastest solution is obtained with configuration (A:8; W:4442). The reason
is that with 2-bit weights in the FC layers, it reduces the high data communica-
tion delay of weights in FC layers. In fact, we observe that the increase in delay
is related to size of weights in fully connected layers. In terms of accuracy, it
increases with the datawidth of activations and weights but the delay increases
more than linearly with the increase in accuracy.

Cifar10-Full has 3 convolutional layers and 1 FC layer. The accuracies of
Cifar10-Full are lower than that of LeNet because the classification problem is
more complex (see Fig. 5).
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The results for Cifar10-Full are slightly different than those for LeNet. The
FC layers of Cifar10 are not the bottleneck since the size and number of kernels
are close to those of the convolutional layers. Therefore, those configurations with
a smaller number of bits for FC weights are not necessarily better; configurations
from A:8 W:4444 to A:8 W:8888 have a small variation in delay (around 3 us)
for 10% variation in accuracy.

AlexNet is larger and requires more bits to represent data in order to maintain
acceptable accuracies. In this case, we considered an hybrid size of weights,
that is, two possible sizes of weights in different layers keeping activations with
the same size for all layers. The results were compared with state of the art
implementations in the ZYNQ board with a low density SoC FPGA - ZYNQ7020.
We have also mapped these different configurations of LiteCNN in a ZYNQ7010.
As far as we know, this is the first attempt to implement a large CNN in the
smallest SoC FPGA of the ZYNQ family from Xilinx (see Table 2).

The results reveal the importance of determining the right bitwidth of data.
Moving from the configuration with the highest accuracy (A:16; W:16..) to a
configuration with almost the same accuracy (A:16; W:8..) the delay improves
43%. The biggest improvements occur when there is a reduction in the size of
the weights. Reducing the activations has a lower impact on the delay with a
higher impact on the accuracy.
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Table 2. Performance comparison of LiteCNN with previous works in low density
FPGAs ZYNQ7020 and ZYNQ7010 SoC FPGAs

Work Format Freq (MHz) Latency (ms) Acc.

ZYNQ 7020

[18] A:16; W:16.. 100 71,75 (a)

[14] A:16; W:16.. 125 52,4 (a)

[4] A:16; W:16.. 200 16,7(b) (a)

LiteCNN A:16; W:16.. 200 33,8 55,6

A:16; W:8.. 19,4 55,5

A:8; W:8.. 17,4 54,4

A:8; W:82222228 7,4 52,7

A:4; W:82222228 6,6 49,5

A:2; W:82222228 5,7 46,5

ZYNQ 7010

LiteCNN A:8; W:8.. 200 24,8 54,4

A:8; W:82222228 14,8 52,7

A:4; W:82222228 12,2 49,5

A:2; W:82222228 8,3 46,5
(a)Authors assume accuracy close to that obtained with floating-
point - 55,9%
(b)With pruning and image batch

Compared to previous works, the proposed architecture improves the delay
in more than 50%, except when compared with [4]. However, in this case, the
proposed solution uses weight pruning and image batch, which are not considered
in our proposal.

With LiteCNN we could map AlexNet in the smallest SoC FPGA from Xilinx
- ZYNQ7010 - in a ZYBO board. As expected, inference delays are higher because
it has much less resources (less PEs) and since the available on-chip RAM is not
enough to hold the image and the first OFM, the image has to be halved and
processed separately. The impact in the delay is higher when we reduce the size
of the weights since in this case the computation times of the convolutional layers
relative to the FC layers increases and the ZINQ7010 implementation has less
PEs to calculate convolutional layers. For example, considering configuration
(A:8; W:8..) the delay increases 1.4×, while for configuration (A:8; W:82222228)
it increases 2×. However, notably, it can run AlexNet in real-time (30 fps).

To better understand the impact of size reduction of activations and weights
on the inference delay, we have determined the time to execute convolutional
layers and the time to execute FC layers (see Fig. 6).

The execution time of FC layers is higher than that of convolutional layers.
The execution time of FC layers is dominated by the communication of weights
from external memory. This fact degrades the average GOPs. Reducing the size of
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FC weights improves the real GOPs of the architecture. The real GOPs improves
when LiteCNN is mapped on ZYNQ7010. In this case, the execution time of FC
layers is about the same (the memory bandwidth is the same in both FPGAs)
and the execution time of convolutional layers increase. So, the implementation
in ZYNQ7010 is more efficient.

6 Conclusions

In this work we have developed a framework to explore the design space of
bitwidth of activations and weights. LiteCNN was extended to support the exe-
cution of layers with different data widths.

The extended LiteCNN with configurable bitwidths improves the perfor-
mance/area efficiency with a small impact over the inference accuracy of the
CNN. This is fundamental for embedded systems with low resources.

We have also observed that weight size reduction has more effect on archi-
tecture optimization than activation size reduction since it not only permits to
increase the performance/area ratio of the architecture but also reduces the time
to transmit FC weights, the performance bottleneck in the execution of CNN
models with large FC layers.

We are now studying in more detail the smallest size formats and how to
compensate for the accuracy loss by changing the CNN model. We have also
started to complement data size reduction with data reduction using techniques
like pruning.
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Abstract. Convolutional Neural Networks (CNNs) are achieving
promising results in several computer vision applications. Running these
models is computationally very intensive and needs a large amount of
memory to store weights and activations. Therefore, CNN typically run
on high performance platforms. However, the classification capabilities
of CNNs are very useful in many applications running in embedded plat-
forms close to data production since it avoids data communication for
cloud processing and permits real-time decisions turning these systems
into smart embedded systems. In this paper, we improve the inference
of large CNN in low density FPGAs using pruning. We propose block
pruning and apply it to LiteCNN, an architecture for CNN inference that
achieves high performance in low density FPGAs. With the proposed
LiteCNN optimizations, we have an architecture for CNN inference with
an average performance of 275 GOPs for 8-bit data in a XC7Z020 FPGA.
With our proposal, it is possible to infer an image in AlexNet in 5.1 ms
in a ZYNQ7020 and in 13.2 ms in a ZYNQ7010 with only 2.4% accuracy
degradation.

Keywords: Convolutional Neural Network · FPGA · Block pruning

1 Introduction

A CNN consists of a series of convolutional layers where the output of a layer
is the input of the next. Each layer generates an output feature map (OFM)
with specific characteristics of the input image or of the previous input feature
map (IFM). Each feature map is obtained from the convolution of a filter and
the IFM. The last layers of the CNN are usually the fully connected (FC) lay-
ers that associate a matching probability of the image with one of the classes.
Besides convolutional and fully connected layers there may be other layers, like
the pooling layer and a non-linear layer (e.g. ReLU).

AlexNet [1], a large CNN, won the ImageNet Challenge. It consists of five
convolutional layers plus three FC layers. Different number of kernels with dif-
ferent sizes are applied at each layer with a total of 61M weights requiring a 724
MACC (Multiply-accumulate) operations. Other CNN models have followed, like
VGG-16 [2], GoogleNet [3] and ResNet [4].
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Executing a CNN model (inference) can be done on the same platform used to
train it or in an embedded computing platform with strict performance, memory
and energy constraints. In a vast set of embedded applications, it is advantageous
or necessary to have the inference process near the data input sensor so that
important information can be extracted at the image sensor instead of sending
the information to the cloud and wait for the answer. Also, in systems where
the communication latency and data violations are undesirable, like autonomous
vehicles, local processing at the sensor is also desirable.

A common feature of these CNN models is the high number of weights and
operations. Due to the limited performance and memory of many embedded
platforms it is very important to find architectural solutions to run large CNN
inferences in low hardware density embedded platforms. Recently, a high per-
formance architecture for CNN inference - LiteCNN - was proposed [5]. With
a peak performance of 410 GOPs in a ZYNQ7020 FPGA (Field-Programmable
Gate Array) it does an inference of AlexNet in about 17 ms.

To improve the processing delay of the inference, pruning (weight cut) can
be applied, usually to the FC layers followed by data quantization. The method
permits to reduce the number of operations to be performed as well as the
memory size to store the weights. The problem of the method is that the sparsity
introduced challenges the regular structures of computing datapaths. To reduce
the sparsity problem caused by pruning, we propose a block pruning technique
in which weights are pruned in blocks. We have studied the impact of pruning
and the block size over the performance and area of LiteCNN.

The following has been considered for the optimization of LiteCNN:

– We have implemented a flow based on Caffe [6] and Ristretto [7] to optimize
networks using block pruning followed by quantization;

– LiteCNN was upgraded to support the implementation of block pruned CNN;
– A performance model for pruned LiteCNN was developed to allow design

space exploration;
– Tradeoffs among performance, area and accuracy were obtained allowing the

designer to choose the most appropriate LiteCNN configuration for a partic-
ular CNN model.

The paper is organized as follows. Section 2 describes the state of art on
FPGA implementations of CNNs and optimization methods based on pruning.
Section 3 describes the flow used to explore block pruning and quantization.
Section 4 describes the LiteCNN architecture, the modifications necessary to
support pruning and the performance model. Section 5 describes the results on
inference accuracy and area/performance of LiteCNN running well-known CNNs
and compare them to previous works. Section 6 concludes the paper.

2 Related Work

Common general processing units achieve only a few hundred GFLOPs with low
power efficiency. This performance is scarce for cloud computing and the energy
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consumption is too high for embedded computing. GPUs (Graphics Processing
Units) and dedicated processors (e.g. Tensor Processing Unit - TPU) offer dozens
of TOPs and therefore appropriate for cloud computing.

FPGAs are increasingly being used for CNN inference for its high perfor-
mance/energy efficiency, because it permits to implement a dedicated hardware
architecture for each CNN model. This is an important feature if we want to
apply it to embedded computing.

A few authors considered low density FPGAs as the target device. In [8] small
CNNs are implemented in a ZYNQ XC7Z020 with a performance of 13 GOPs
with 16 bit fixed-point data. In [9] the same FPGA is used to implemented big
CNN models, like VGG16, with data represented with 8 bits achieving perfor-
mances of 84 GOPs. In [10] the authors implemented a pipelined architecture in a
ZYNQ XC7Z020 with data represented with 16-bit fixed point. The architecture
achieves 76 GOPs with high energy efficiency.

Previous works [11] show that dynamic fixed-point with 8 bits guarantee sim-
ilar accuracies compared to those obtained with 32-bit floating point represen-
tations. This reduction is essential to implement CNN in target platforms with
low on-chip memory and low resources. LiteCNN is a configurable architecture
that can be implemented in small density FPGAs. The architecture has a peak
performance of 410 GOPs in a ZYNQ XC7Z020 with 8-bit dynamic fixed-point
data representation for activations and weights. This was a great performance
improvement over previous implementations in the same FPGA.

In [12] deep neural networks are compressed using pruning, trained quan-
tization and huffman coding. The techniques are applied on CPU and GPU
implementations. Results show that pruning on, e.g., AlexNet results in 91%
weight cut without sacrificing accuracy. In [13] pruning is considered to improve
CNN execution implemented in FPGA, similar to what is done in [14]. The
architecture dynamically skips computations with zeros. The problem is that
they keep a dense format to store the matrix requiring to be all loaded from
memory. Also, they target high density FPGAs. In [15] the authors use a large
FPGA with enough capacity to store all weights on-chip after pruning. This is
not possible in low FPGAs with scarce internal memory.

In [16] the pruning is adapted to the underlying hardware matching the
pruning structure to the data-parallel hardware arithmetic unit. The method is
applied to CPU and GPU. In this paper we propose a similar approach with block
pruning. The best block pruning is found and then the hardware architecture is
adapted to its size.

We have improved CNN inference in LiteCNN by exploring block pruning
in the fully connected layers followed by dynamic fixed-point quantization of all
layers. The new LiteCNN architecture keeps the peak performance since we do
not skip zero values, but the inference delay was reduced by more than 70% since
we have reduced the number of fully connected weights to be transmitted from
external memory to LiteCNN, the major performance bottleneck at FC layers.
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3 Framework for Data Reduction

A framework to explore the block pruning of weights in fully connected weights
followed by data quantization was developed based on Caffe [6] as the main
framework and Ristretto for data quantization. The Framework trains the net-
work and generates a file of trained weights.

Pruning can be implemented with different metrics and methods to reduce
the number of weights. In this work we have considered the weights magnitude.
A percentage of weights whose magnitude is closer to zero is iteratively removed
according to the flow in Fig. 1.

Check magnitude of weights

Remove a percentage of 
weights with low magnitude 

Train CNN

Check Precision

Cut more?
yes

no

Datawidth Reduction

Done

Train CNN

Fig. 1. Network pruning flow

In the first step we train the network or start with a pre-trained network.
Then, a percentage of weights with low magnitude (below a predefined threshold)
is pruned. The network is trained again with single precision floating-point. We
check if the precision allows more pruning. When no more pruning is allowed,
we apply Ristretto to reduce the data size. From the results, we extract the
fixed-point quantifications for each layer.

Pruning introduces sparsity in the kernels of weights which degrades the
performance. Also, introduces an overhead associated with the index information
of the sparse vector of weights. To improve the hardware implementation and the
performance of pruned networks we introduce the block pruning which performs
a coarse pruning with blocks of weights. The method reduces the index overhead
data and permits to efficiently use the parallel MACs of the processing units.

The technique permits to prune blocks of weights (similar to what is done in
[16]) instead of single weights (see example in Fig. 2).
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Fig. 2. Pruning method for blocks of four weights

The proposed method determines the average magnitude of a block of
weights, sort them and then the blocks with the lowest average magnitude are
pruned limited by a pruned percentage. The remaining blocks are stored as a
sparse vector where each position contains the block of weights and the index of
the next block.

4 LiteCNN Architecture

4.1 LiteCNN Architecture

The Lite-CNN architecture consists of a cluster of processing elements (PE) to
calculate dot-products, a memory buffer to store on-chip the initial image and
the OFMs, one module to send activations and two modules to send and to
receive weights to/from the PEs (see Fig. 3).

DDR Send Weights PE Cluster

Bias Memory

Memory Buffer
Send 

Neurons

Receive 
Neurons
Address 

Generator

Address 
Generator

Fig. 3. Block diagram of the Lite-CNN architecture
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The architecture executes layers one at a time. The execution of layers work
as follows:

– Before starting the execution of a layer, the architecture is configured for the
specific characteristics of the layer. It also specifies if there is a pooling layer
at the output of the feature maps being calculated;

– The input image and the intermediate feature maps are stored on-chip. Since
the layers are executed one at a time, the on-chip only has to be enough to
store the IFM and OFM of any layer;

– For the first convolutional layer, the image is loaded from external memory.
For the others, the IFM is already in on-chip memory. At the same time,
kernels are read from external memory and sent to the PEs. Besides the
weights, the kernel includes the bias value which is stored in the bias memory.
Each PE receives one kernel. So, each PE calculates the activations associated
with one OFM;

– The initial image or intermediate feature maps in the on-chip memory are
broadcasted to all PEs;

– After each calculation of a complete dot product associated with a kernel, all
PEs send the output activations back to the receive neurons module that adds
the bias and stores the result in the on-chip memory to be used by the next
layer. If the layer is followed by pooling, this module saves the activations in
a local memory and wait for the other members of the pooling window;

– The process repeats until finishing the convolution between the image and
the kernels. After that, the next kernels are loaded from memory and the
process repeats until running all kernels of a layer.

The process allows overlapping of kernel transfer and kernel processing. While
the PEs process their kernels, in case the local memory is enough to store two
different kernels, the next kernels are loaded at the same time. This is funda-
mental in the fully connected layers where the number of computations is the
same as the number of weights.

Also, in case the on-chip memory is not enough to store the whole image and
the OFM (usually the first layer is the one that requires more on-chip memory),
the image is cut into pieces which are convolved separately.

The PE cluster contains a set of PEs. Each PE (see Fig. 4) has a local memory
to store kernels and arithmetic units to calculate the dot product in parallel.

Each PE stores a different kernel and so it is responsible for calculating the
activations of the output feature map associated with the kernel. This way mul-
tiple output feature maps are calculated in parallel. Also, in convolutional layers,
the same kernel is applied to different blocks of the IFM and produce different
neurons of its OFM. The number of output neurons to be processed in parallel
in each PE is configurable. For example, to calculate two activations in paral-
lel it receives two input activations from the feature memory in parallel. This
mechanism permits to explore the intra-output parallelism. Finally, weights and
activations are stored in groups, that is, multiple weights and activations are
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Fig. 4. Architecture of the processing elements

read in parallel in a single memory access (e.g., with 8-bit data, a 64 mem-
ory word contains eight neurons or weights) permitting to explore dot-product
parallelism.

The block sendWeights is configured to send kernels to the PE cluster. The
block receives data from direct memory access (DMA) units that retrieve data
from external memory and send it to the PEs in order. It includes a bias memory
to store the bias associated with each kernel.

The sendNeurons and receiveNeurons blocks are responsible for broadcast-
ing activations from the feature memory to the PEs and receive dot products
from the PEs, respectively. The send neurons module includes a configurable
address generator. The receive neurons module implements the pooling layer in
a centralized manner.

Most of the previous approaches use dedicated units to calculate 2D convolu-
tions. The problem is that the method becomes inefficient when the same units
have to run different window sizes. Lite-CNN transforms 3D convolutions into a
long dot product to become independent of the window size. Pixels of the initial
image, activations of feature maps and weights of kernels are stored in order (z,
x, y) (see Fig. 5).

Each neuron of an OFM is calculated as a dot product between the 3D kernel
of size xk×yk×zk and the correspondent neurons of the IFM of size xp×yp×zp
(see Fig. 5b), where zp is the number of IFMs. The weights of kernel are all read
sequentially from memory since they are already ordered. The neurons are also
read in sequence from memory but after xk × zk neurons it has to jump to the
next yk adding an offset to the address of the input feature memory being read.
For a layer without stride nor followed by pooling, the offset is xp × zp.

LiteCNN also implements a method to reduce the number of multiplications
by half [5] leading to a considerable reduction in the hardware resources required
to implement a convolutional or fully connected layers.
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Fig. 5. Reading mode of images, feature maps and weights

We have extended LiteCNN to support pruned FC layers as follows:

– The sparse vectors of weights are sent to the local memory of PEs. The next
address index is stored in the parity bits of the BRAMs which were not used
in the original LiteCNN. When the size of the index is not enough, we consider
extra zero blocks in the middle;

– Activations are sent to the processing elements keeping its dense format and
multiply-accumulated by the respective weights. If the activation index cor-
responds to a zero weight block then its is multiplied by zero keeping the
pipeline full.

This solution has no computational advantage, since the number of opera-
tions is the same as the case without pruning, but the weight data to be read from
memory is considerably reduced. Since the data reduction method is applied in
the fully connected layers where the data access is the bottleneck and not the
computations, the method permits to achieve high performance improvements,
as will been seen in the results. Also, it simplifies the implementation of the
PEs permitting to keep the operating frequency and only a small increase in the
required hardware resources.

The main modification of the LiteCNN datapath was in the arithmetic core
of the PE (see Fig. 6).

Two different datapath modifications are considered. One in which the block
size times the quantized datawidth (8 bits) equals 64 (Fig. 6a). In this case, each
block has 8 weights the same number of activations received in parallel by the
core. The second datapath is when the block size times the quantized datawidth
(8 bits) equals 32. In this case, the blocks have only 4 weights and so are read
in words of 32 bits. Since the core receives 8 activations in parallel, we read two
independent groups of weights from two independent local memories (Fig. 6b).

4.2 Performance Model of LiteCNN

The performance model provides an estimate of the inference execution time of
a CNN network on the LiteCNN architecture with block pruning. The model
determines the time to process each layer.
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Fig. 6. Modified datapath of the PE to support weight pruning

Considering convolutional layers, the time to transfer all kernels depends on
the number of kernels, nKernel, the size of kernels, kernelSize, the number of
bits used to represent weights, nBit and the memory bandwidth, BW. The total
number of bytes, tConvByte, transferred in each convolutional layer is given by
Eq. 1.

tConvByte = nKernel × kernelSize× nBit

8
(1)

The number of cycles to execute a convolutional layer, conCycle, is

convCycle =
⌈
nKernel

nCore

⌉
× nConv × kernelSize

nMAC
(2)

where nCore is the number of processing elements, nConv is the number of 3D
convolutions and nMAC is the number of parallel multiply-accumulations of each
PE (intra-output parallelism). From these two equations, the total execution
time, convExec depends on the local memory capacities. If local memories of PEs
have enough space to store two kernels, than communication and processing of
kernels can overlap, otherwise, they must be serialized. Considering an operating
frequency, freq de execution time is given by Eq. 4.

convExec =
tByte

BW
+

convCycle

freq
without overlap (3)

convExec = max(
tByte

BW
,
convCycle

freq
) with overlap (4)

For the totally connected layers, the equation to determine the number of
bytes to transfer all kernels, tFCByte, must consider the size of the pruning
blocks, bSize, and the pruning percentage, prune, (see Eq. 5).
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tFCByte = nKernel × kernelSize× nBit

8
× 100 − prune

100
× 1 + bSize

bSize
(5)

The equation to determine the number of cycles to process the FC layer is
given by:

fcCycle =
⌈
nKernel

nCore

⌉
× kernelSize

nMAC
× nParallel (6)

Since in the fully connected layers there is no intra-output parallelism, only
one line of parallel MACs of the PE is used. Given the number of intra-output
parallel processing lines, nParallel, the number of processing cycles is multiplied
by this value.

The total execution time of FC layers is similar to 4.

fcExec =
tFCByte

BW
+

fcCycle

freq
without overlap (7)

fcExec = max(
tFCByte

BW
,
fcCycle

freq
) with overlap (8)

The total execution of a CNN inference in LiteCNN is the sum of the time to
transfer the image to FPGA and the result from FPGA ( imageSize+result(bytes)

BW )
plus the time to process each layer. Between layers there is negligible configura-
tion time of the architecture to adapt to the layer done by the ARM processor
of ZYNQ.

We have checked the accuracy of the model from the results of LiteCNN 8×8
running AlexNet. The delay obtained with the model without pruning is about
1% lower (16.94 ms) against (17.1 ms) of the implementation.

5 Results

We describe the results of the pruning methodology with LeNet, Cifar10-full and
AlexNet. All LiteCNN architectures were implemented with Vivado 2017.3 in the
ZedBoard with a ZYNQ XC7Z020 and in a ZYBO board with a ZYNQ7010 and
run at 200 MHz.

For each CNN we found the relation between block pruning and accuracy. For
AlexNet (the larger and most demanding CNN) we have determined the relation
between pruning and delay. All results of accuracy are for top-1 classification,
since the state-of-the-art works we are comparing also use this metric. Similar
tradeoffs were obtained when the top-5 accuracy is used as the metric.

LiteCNN was configured and implemented with 4, 8 and 16 bit dynamic fixed-
point (fixed-point numbers in different layers may have different scaling factors),
with different block pruning sizes and for each configuration the number of cores
was adjusted to obtain a similar area (see the area results in Table 1).
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Table 1. Area occupation for different block size configurations of LiteCNN

Activation×Weight 4 × 4 8 × 8 16 × 16

Block size 8 16 4 8 2 4

PEs 60 64 64 64 38 38

MACC/PE 32 32 16 16 16 16

LUT 47661 47477 47830 43378 45232 43614

DSP 220 220 220 220 220 220

BRAM (36 Kbits) 130 130 130 130 132 132

Peak GOPs 768 819 410 410 243 243
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Fig. 7. Variation of accuracy with pruning percentage and block size

The table gives the number of processing elements and the number of MACC
in each PE. A line with the peak performance was also included (The peak
performance takes into consideration that the architecture reduces the number
of multiplications to half).

For each CNN, we have determined the accuracy of the network for different
pruning percentages with different block sizes and 8 bit dynamic fixed-point
quantization (see Fig. 7, where Bx is the configuration with block size x ).

From the results, we observe that the size of the pruning block has a small
influence over the accuracy, except for a block of 16. In this worst case, the lost
in accuracy is about 4%. Similar results were obtained with 16 bit quantization
since the accuracy difference between 8 bit and 16 bit quantizations is small
(around 1.5%).
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In order to keep a fair comparison with previous works, we have determined
the delay of configurations B8 (activation×weight = 8×8) and B4 (activation×
weight = 16 × 16) for AlexNet for different pruning percentages (see Fig. 8).

Pruning has a big impact in the inference delay of AlexNet in LiteCNN since
the execution bottleneck of AlexNet is in the fully connected layers because of
the huge number of weights to be transferred from external memory. Pruning
FC layers reduces the communication time and consequently the whole inference
process.

We have also tested with LeNet and Cifar10-Full. With LeNet the delay
reduces from 0.1 ms to 0.01 ms when we increase pruning from 10% to 90%. In
the case of Cifar10-Full the impact is negligible since the only FC layer of the
network has only 2.2% of the total number of weights of the CNN.

We have compared configuration B4 with 16 bit quantization and 8 bit quan-
tization, both with 90% of pruning (1% accuracy loss) with previous works run-
ning AlexNet. The overall results are shown in Table 2.

Compared to previous works implemented in the ZYNQ xc7z020, in partic-
ular the best implementation from [19], the peak performance and the ratios
GOPs/kLUT and GOPs/DSP of LiteCNN are about 2× better and the latency
is about 5× better. LiteCNN (8 × 8 configuration) reduces the latency of the
original implementation of LiteCNN without pruning (17 ms) to only 5.1 ms
with only 1% accuracy loss. This delay allows an inference performance of 196
images/s in a ZYNQ xc7z020.

With LiteCNN we could map AlexNet in the smallest SoC FPGA from Xilinx
- ZYNQ7010 - in a ZYBO board. As expected, inference delays are higher because
it has less resources (less PEs) and since the available on-chip RAM is not enough
to hold the image and the first OFM, the image has to be halved and processed
separately. However, notably, it can run AlexNet in real-time (30 fps).

To better understand the impact of pruning of FC weights on the inference
delay, we have determined the time to execute convolutional layers and the time
to execute FC layers (see Fig. 9). The graph indicates the observed GOPs (and
the percentage of peak performance).

Without pruning, the execution time of FC layers is higher than that of
convolutional layers. The execution time of FC layers is dominated by the com-
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Table 2. Performance comparison of Lite-CNN with other works in low density
ZYNQ7020 and ZYNQ7010 SoC FPGAs

Work Format Freq (MHz) GOPs GOPs/LUT GOPs/DSP Latency (ms) Acc.

ZYNQ 7020

[17] 16× 16 100 19 0.35 0.08 71.75 (a)

[18] 16× 16 150 20 0.38 0.09 — (a)

[19] 16× 16 125 38 0.73 0.17 52.4 (a)

[10] 16× 16 200 80 1.5 0.36 16.7(b) (a)

[9] 8× 8 214 84 1.6 0.38 — 53.9

LiteCNN 16× 16 200 139 3.2 0.63 10.1 53.7

LiteCNN 8× 8 200 275 6.3 1.25 5.1 53.5

ZYNQ 7010

LiteCNN 8× 8 200 275 6.3 1.25 13.2 53.5
(a)Authors assume accuracy close to that obtained with floating-point - 55.9%
(b)With pruning and image batch
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Fig. 9. Execution time of convolutional and FC layers for LiteCNN with and without
pruning running AlexNet

munication of weights from external memory. This fact degrades the average
GOPs. Pruning FC weights improves the real GOPs of the architecture. The
real GOPs improves when LiteCNN is mapped on ZYNQ7010. In this case, the
execution time of FC layers is about the same (the memory bandwidth is the
same in both FPGAs) and the execution time of convolutional layers increase.
So, the implementation in ZYNQ7010 is more efficient.

6 Conclusions

In this work we have proposed block pruning and modified the LiteCNN archi-
tecture to support pruned regular networks. The extended LiteCNN with con-
figurable pruning datapath proposed in this work permits to improve the per-
formance/area efficiency while keeping the inference accuracy of the CNN. This
is fundamental for embedded systems with low resources.
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The results show that block pruning achieves very good accuracies and at
the same time simplifies the hardware implementation for regular CNN.

We are now studying the relation between pruning and data size reduction.
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