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1. INTRODUCTION 
With the continuing and escalating demands from big data and 

extreme-scale computation as we head towards the Exascale realm, 

memory technology with higher bandwidth and power efficiency 

have become major considerations in the design of HPC 

architectures. The emergence of 3D stacked-memory technologies 

such as hybrid memory cube (HMC) [6] is driving new research on 

processor-in-memory (PIM), processor-near-memory (PNM), and 

computational RAM (C-RAM) [2][4][8] for modern data-intensive 

computing architectures. In HMC architecture, a base logic layer 

controls multiple layers of DRAM arrays, which can provide much 

higher memory bandwidth and power efficiency than existing 

memory modules. Custom memory cube (CMC) is a novel and 

promising extension to HMC, in which customized data-processing 

capabilities can be embedded in the logic layer of the HMC to take 

advantage of the high bandwidth and low latency in the package, 

enabling new forms of PIM, PNM, and C-RAM. 

The concept of CMC has already been studied in several recent 

works [1][3][7]. Ahn et al. [1] presented a CMC-like architecture 

to facilitate large-scale, graph-processing apps, which has shown 

an order of magnitude performance improvement and 87% average 

energy savings over conventional systems. DRAMA [3] and AMC 

[7] are two forms of research on CMC, both of which reported 

much higher performance and power efficiency over conventional 

systems across multiple high-performance computing kernels and 

apps. Since CMC devices do not exist, the aforementioned work 

relied upon simulators to evaluate performance and power 

consumption of their notional CMC architectures. However, as new 

HMC parts become available, a cost-effective hardware-based 

platform becomes an attractive alternative to simulators for CMC 

researchers and designers to explore and evaluate the design space 

of CMC architectures and apps.  

In this extended abstract, we present the design, implementation, 

and evaluation of a research platform for the emulation and study 

of CMC architectures and apps based on an FPGA-HMC board 

(MA-100 board developed by Micron). Details on this platform are 

presented in Section 2, with operations of the Data-Rearrangement 

Engine (DRE) [5] kernel from LLNL as an initial CMC prototype. 

In Section 3, we report progress and preliminary results from a 

page-rank app running on a DRE on the research platform and 

discuss future plans. 

2. RESEARCH PLATFORM FOR CMC  
For hardware-based, design-space exploration of CMC 

architectures, the research platform is required to support (1) 

development of custom data-processing logic, (2) design and 

execution of apps on CMC, (3) performance and power 

measurement of the execution, and (4) customization of key 

platform parameters (e.g., frequency, HMC packet size, etc.) for 

accurate emulation of CMC architectures. In this section, we 

describe key aspects of the CMC research platform that fulfill these 

requirements.   

Architecture and programming. The architecture of the research 

platform with the DRE example is shown in Fig. 1. The host is 

connected to the MA-100 board through an 8-lane PCIe (gen 3) 

interface. On the board resides an Altera Arria-10 GX1150 FPGA 

connected to a 4GB HMC device through two serial 16-lane links. 

Infrastructure logic components (gray blocks in Fig. 1) are provided 

by Micron within the FPGA to enable communication among the 

host, FPGA, and HMC. The FPGA can be programmed by 

designers to house data-processing logic of the CMC, conceptually 

serving as an extension to the logic layer of the HMC. For example, 

we implemented DRE logic on the FPGA, with the DRE view 

buffer in the HMC for a CMC prototype. 

The research platform supports a high-level programming language 

and toolset (i.e., hybrid-threading (HT) toolset) for efficient 

implementation of the CMC data-processing logic onto the FPGA. 

HT has a C/C++ form of syntax and a thread-based programming 

model with intrinsic support from the infrastructure components. 

Using HT, we were able to implement DRE as a CMC prototype 

on the platform more quickly than using the traditional HDL-based 

design flow. 

Further customization of the platform parameters is possible by 

modifying the infrastructure components on the FPGA. Micron 

provided us with access to the source code (in Verilog) of these 

components. With their help, we are actively building new features 

for the platform while enhancing existing ones. 

Performance and power measurement. Performance and power 

monitoring logic is available on the research platform for detailed 

inspection of the CMC architecture. As shown in Fig. 1, there are 

three types of performance monitors: clock-cycle counters for the 

CMC logic (ClkCount); performance monitors for CMC memory 

accesses (CMC_PERFMON); and performance monitors for the 

memory controllers (MC_PERFMON). The latter two types of 

monitors can produce a statistical summary of the total and average 

clock cycles associated with memory loads and stores. These 

monitors have a separate clock signal and control path and thus can 

be accessed independently from the CMC logic. 

Power consumption of the FPGA and HMC devices is measured 

and recorded periodically by an on-board device. The measurement 

data can be read back through the system driver of the MA-100 

board, using a pre-installed utility executable or programmatically 

within the app code.  

Execution modes. Two execution modes of apps on the emulated 

CMC platform are supported: the baseline mode and the CMC 

mode. The former has the app running on the host, accessing the 

data structures allocated in the HMC, which is allowed by the 

unique capability of the MA-100 board for direct HMC memory 

accesses from the CPU (marked by blue arrows in Fig. 1). The latter 

has the data-intensive part of the app running on the emulated CMC 

platform (in the FPGA) and the other part on the host. For an app, 

designers can evaluate the benefits of running on the CMC 

architecture by comparing the measured performance and/or power 
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between the CMC execution mode and the baseline mode. 

Moreover, various CMC designs can be evaluated by executing the 

app with each design in CMC mode and comparing the measured 

performance and/or power.  

Using this research platform, we can quickly implement CMC 

architecture ideas, develop and execute test apps in hardware, and 

evaluate the ideas through in-hardware performance and power 

measurements. We have implemented DRE as a CMC prototype on 

the platform and gathered some preliminary runtime results for 

both execution modes. 

3. PROGRESS & FUTURE WORK 
This work is still in its early stages. The progress we have made 

includes: (1) development and tests of performance and power 

measurement methods for the research platform; (2) development 

of a CMC prototype for DRE on the platform; and (3) initial 

validation and tests of the DRE. Our tests with the performance 

monitors have shown inconsistent results, which are being 

inspected and validated. Initial test results of our DRE 

implementation using a page-rank app running on the research 

platform is shown in Table 1. The app is first executed in baseline 

mode, in which the DRE is bypassed and the host directly reads 

data from the HMC device. Then, the app is run in CMC mode with 

the DRE activated. The results show that the app runs nearly two 

times faster in CMC mode than baseline mode. Further breakdown 

of the CMC-mode runtime shows that the DRE runtime (including 

runtime of DRE commands: setup and fill) takes less than 1% of 

the total app runtime.  

Currently, we are conducting experiments to validate the 

performance monitors using established memory benchmarks. 

Next, we will use DRE for further testing of the research platform: 

(1) applying the validated performance monitors to the DRE to 

gather and study the results; and (2) optimizing our DRE 

implementation then checking if the platform shows expected 

performance improvement. Based on the results and lessons 

learned, we will continue to enhance the platform and explore how 

best to use it. For example, we plan to add the following features: 

(1) enabling access to internal FPGA buffers using virtual 

addresses from the host that can reduce the latency for CMC apps 

to get access to the computed results of the processing logic (e.g., 

lower latency to access DRE view buffer as shown in Fig. 1); (2) 

creating a software library that allows CMC designers to use the 

research platform without extensive expertise in FPGA 

programming; and (3) calibrating the research platform for timing-

accurate emulation of CMC using the statistical latency data 

gathered by the validated performance monitors.  
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Table 1: Runtime results of DRE app (page rank) running in 

baseline and CMC modes on the research platform 
Graph scale 2^19 2^20 2^21 2^22 2^23 2^24

33.08 72.62 148.60 280.20 617.04 1274.39

19.14 41.57 81.84 156.32 357.40 666.50

DRE time 1.36 2.86 6.50 7.23 23.84 33.18

non-DRE time 17.78 38.71 75.34 149.09 333.56 633.32

CMC mode

Baseline mode

Fig. 1: Concept diagram of the CMC research platform based on MA-100 board with DRE as an example 
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