
Application-Specific Processors for Web-Browsing:
An Exploration and Evaluation of the Design Space

Gabriel Yessin, Lubomir Riha, Tarek El-Ghazawi

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Electrical & Computer Engineering, George Washington University, USA

{gyessin, lubomir, tarek}@gwu.edu

David Mayhew
Advanced Micro Devices, Inc.

USA
david.mayhew@amd.com

Abstract— The current trend in computing has been to add

more and more to the CPU; especially bigger and bigger caches
and more cache levels. Based on these observations, we sought to
see if bigger is always better. We test this by performing an
architectural design space exploration of various cache and
frequency configurations for ARM processors. Analyzing the
data, we made the surprising discovery that bigger is not always
better and we should in fact be taking a step back in the
architectural evolutionary roadmap for some applications.

In this study, we performed an analysis of the performance of
web-browsers versus the architectural configuration and related
it to end-user satisfaction. In the end, we were able to determine
that a scaled back modern core would not only be sufficient, but
improve the performance of the web-browser.

In doing this, we have also developed GW-GEM5 a set of
tools for the creation, monitoring and analysis of concurrent
gem5 simulations on computer clusters for use in design space
parameter studies.

Keywords—Simulation, performance, application specific,
web browser, design space exploration, ARM, Android, gem5

I. INTRODUCTION

As we’ve moved into and adapted to the digital age, email,
social media, ecommerce, and the internet as a whole have
become integral parts of our day-to-day lives and a never
ending source of knowledge, but also of frustrations. The most
used application to this end is the computer web-browser [1].
Unfortunately, it has been shown that average webpage load
time experienced by users of the top 2000 websites was 10.0
seconds (median 8.4 seconds), and a recent research study
found that the average computer user is often unwilling to wait
for more than three seconds for a web page to load, with ~57%
of users abandoning a webpage before the 4 second mark [2].
Clearly, there is a disparity between user preferences and
reality, a disparity which causes frustrations for users and could
cost emerging E-businesses new customers and therefore
money [3]. While not possible to redesign all websites, it is
possible to tailor the architecture of the new slew of tablets and
smartphone devices to cater to this gap by designing them to
load webpages faster.

There has been a recent trend in computing with movement
towards heterogeneous multicores, or more specifically,
weakly heterogeneous multicores [4]. They are weakly
heterogeneous in that they are identical in ISA and most major
microarchitectural features, but vary in some key features. A
key example of this architecture is NVIDIA’s Tegra 3 and
upcoming Tegra 4’s variable SMP architecture; their so-called
4-PLUS-1architecture which makes use of four high-power

cores and a separate low-power companion core. The
companion core is used to save on power when the system
does not require the power of all 4 cores, such as for displaying
already-rendered web-pages. The companion core is nearly
identical to the other cores except that it runs at a much lower
frequency and is made using a special low-power process. The
net result is performance equivalent to the high-power quad
cores, but with less net power consumption [5] [6].

There has been a good deal of research performed using
simulators, including design space explorations [4]; but up
until now previous work involving design space exploration
has only looked into the effects of varying one parameter, was
limited to the running of synthetic benchmarks (which are of
little importance to users and user-satisfaction) and/or testing
out one new architectural parameter [7] [8]. This shows a
significant lack in research with regards to leveraging the full
capabilities of performance modeling in these simulators. This
is especially true with regards to gem5 [9], the simulator used
in this study, which has proven to be extremely accurate [10].

It is due to these observations that we decided to conduct
this exploration of the design space for processors in order to
determine and recommend what architectures chip makers
should look into for designing a browser application-specific
core for inclusion in a set of weakly heterogeneous multicores.

As of submitting this paper, we know of no user
satisfaction-oriented design space exploration parameter
studies that make use of highly accurate architectural
simulators.

The structure of the paper is as follows: Section II discusses
the methodology used for the generation of simulations and for
the collection and analysis of their output data; in section III
we show the runtime results collected for the various
architectures as well as an explanation for the variations in
runtimes, and in section IV we conclude by making design
recommendations to chipmakers for use in a browser-oriented
core.

II. METHODOLOGY

We utilize the simulator gem5 [9], as it allows us to test
different hardware configurations at minimal cost, it provides a
large amount of useful statistical data for run-time analysis, and
because it provides a full-system simulation which can be used
for a true performance assessment [10]. Bbench was chosen
because it is a fully self-contained web-rendering benchmark
that represents many of the popular websites existing today. Of
the sites in Bbench, we chose to run Amazon, Craigslist, eBay,

978-1-4799-0493-8/13/$31.00 © 2013 IEEE ASAP 201387

Google, MSN, and Twitter, which are respectively number 8,
52, 16, 1, 19, and 10 on Alexa.com’s list of the world’s most
popular websites and because they represent a good cross-
section of the type of websites available on the web – E-
commerce, search engines, email, social media, and etc.

Our simulations were run on the ARM CPU architecture
provided by gem5 using Android 2.3 (Gingerbread) and the
native browser provided therein. ARM was chosen due to its
95% dominance in the smartphone market [11] and Android
2.3 because it is currently being run on 45.6% [12] of all
Android phones, and Android currently encompasses 75% of
all smartphones worldwide [13]. There are of course, many
microarchitectural features which can be varied, but we
focused on core frequency, L1 cache size, and L2 cache size.
Frequency was chosen because it is strongly correlated to the
relative processing power of a core. L1 and L2 caches were
chosen because web browsing requires significant amounts of
data to be carried from memory to the CPU, making the
memory hierarchy key to performance, as per the suggestions
in the study of Kim et al [14]. All configurations were chosen
to be representative of common parameters in devices existing
today, since that is what chipmakers can most easily and
cheaply produce. Overall we collected 288 data points
representing the full permutations of the 6 webpages from
Bbench, three L1 cache sizes (32kB, 64kB, 128kB), four L2
cache sizes (none, 512 kB, 1024kB, 2048kB), and four core
frequencies (500MHz, 750MHz, 1.0GHz and 1.5GHz). The
datapath configuration used with L2 caches can be seen in Fig.
1; systems without an L2 cache are identical except that the L1
caches go directly to main memory. It should be noted that L1
cache size was split equally between an L1 instruction cache
and an L1 data cache, as can be seen in the figure.

From the collected data points, we sought to beat the 8.4
second median load time discussed earlier by determining
which architectures were able to render all six websites in less
than 8.1 seconds each, assuming an average consumer’s
network (bandwidth 5 Mbps down / 1Mbmp up, RTT 28ms).

From this we were able to reduce the design space from 36
architectural possibilities to 10 “acceptable” architectures and
from there define a singular optimal architecture.

Simulation was carried out using one of gem5’s ARM CPU
models, specifically the ‘detailed’ model which models a
modern, Out-of-Order processor [15]. Bbench was modified to
run one web page per simulation to efficiently utilize parallel
environment of our computer cluster, which has hundreds of
processors. Each web page was loaded twice so that the effects
of both hardware and browser caching could be better
understood, the first loading being referred to as the “cold
render” and the second as the “warm render.” This led to 6
websites being run with 48 configurations, resulting in 288
simulations overall.

For each website, a delay was then added to simulate
latency due to the transfer of the website across a real-world
network. For this, we used WebPagetest.org, an open-source
webpage rendering test and analysis suite maintained by
Google [16], to determine what typical network utilization and
performance was to be expected for the websites used, so that
the run-time reported is the actual expected time it would take
from a user clicking on a link or launching a web-browser until
the time the web-page is fully loaded and readable. For our
testing, a cable network connection (5 Mpbs down / 1 Mbps
28ms RTT) was chosen, as defined by WebPagetest.org. This
configuration was chosen because according to NetIndex.com,
a results aggregator for speedtest.net, a popular internet
connection speed test tool, the average connection speed
worldwide was 13.09 Mbps over the past 30 days when the
mean distance between the client and the server was less than
300 miles. It should be noted, that while we estimate realistic
networks delays and transfer times, we employed a simplistic
model which attempts to model the intricate dynamics between
network loading and browser rendering, since elements can be
loaded while others have already begun rendering. Therefore
they should be taken as tools used to estimate feasible total
loading times, and not absolute truths.

Next, results were analyzed to determine which
architectural configurations were able to run all six websites in
the allotted time for a real network, respectively

To determine which parameter causes the biggest
performance gain for Bbench websites, we also analyzed the
output by keeping all but one parameter constant, measuring
the percent decrease in run-time per website, per configuration,
then averaging across all websites and then all parameter sets
and then determining which parameter overall, when varied,
cause the largest percent decrease in runtime for the benchmark
(see TABLE I).

Finally, after further analysis, we are able to make some
interesting observations regarding the performance of the
benchmark and the size of the caches.

Fig. 1. Datapath configuration when there is an L2 cache.

88

III. RESULTS AND ANALYSIS

The results we obtained were very instructive. As there are
too many design points to show them all here, two
representative examples can be seen in Fig. 2 and Fig. 3 which
show the render times (excluding network load times) for
Google and Amazon which are a small, simple website with a
few elements and a large, complex site with many elements,
respectively. Labels along the y-axis are in the format “Site-
ID:Frequency:L1-Size:L2-Size;” for example
“G:1.50G:128K:2.0M” represents Google run on a 1.50 GHz
core with a 128kB L1 cache (64kB data and 64kB instruction).
This leads to some interesting performance patterns. In order to
save space, only two frequency configurations are shown, but
the pattern of results is roughly the same for all frequencies. As
can be seen with Google, being so small, speeds up greatly
during its warm run, whereas Amazon experiences little to no
improvement for its warm render. While interesting, warm runs

are of little importance to users and not the direct focus of this
study.

Since the parameters are varied in the order of L2 cache
size, L1 Cache size, core frequency and then website, it can be
seen that the greatest net effect on the core performance is the
frequency parameter. This is further seen in TABLE , where
we see that going from 500MHz to 1.5 GHz speeds up the load
time by 23.98% on average, making it a key performance
indicator.

In the case of Google, its worst-case render time was
612ms and best-case was only 154ms, which represents only
7.7% and 1.9% of the 8 seconds page load time goal,
respectively, whereas Twitter had a worst-case of 5.57 seconds
and a best-case of 2.57 seconds, which are 69.6% and 32.1% of
the goal. Clearly, while all sites can benefit from optimization
it is more critical for some, especially larger ones which
contain many elements, and therefore necessarily have longer
load times.

Fig. 4 shows a cube representing the three-dimensional
design space in which we were working. Squares represent
failed architectures (unable to load in the allotted time). Stars
represent successful architectures and the big, white star
represents an optimal configuration for chipmakers, as it
minimizes both frequency and cache size [17].

It may seem odd that 64kB L1 caches generally fail when
any L2 cache is present, even at 1.5GHz, but upon analysis of
the output statistics files from the gem5 simulations, we
determined that this is due to a “Goldilocks” effect of the
mismatch between L1 and L2 size being just right, so as to
cause a larger relative number of cache misses. In fact, the
existence of high L2 cache miss rate is the main cause of such
high render times for all architectures with an L2 cache. This
can be observed in Fig. 5. L2 cache miss rates for data were
found to be as high as 71.5% in some cases (ave 49.8%, stdev
10.8%). Instructions cached far better, with a 9.9% max miss
rate, (7.8% ave, 0.8% stdev).

The reason behind this is that webpages, data-wise, do not
cache well at all because they are essential a stream of new
data, where little to none of it is reused. On the other hand,
instructions cached reasonably well. Since L1 caches are

Fig. 2. Render times per architectural configuration for a ‘small’
webpage. Y-axis label format: “Site-ID:Frequency:L1-Size:L2-Size.”

Fig. 3. Render times per architectural configuration for a ‘large’
webpage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
:0

.5
0G

:0
32

K:
0.

0M

G
:0

.5
0G

:0
32

K:
0.

5M

G
:0

.5
0G

:0
32

K:
1.

0M

G
:0

.5
0G

:0
32

K:
2.

0M

G
:0

.5
0G

:1
28

K:
0.

0M

G
:0

.5
0G

:1
28

K:
0.

5M

G
:0

.5
0G

:1
28

K:
1.

0M

G
:0

.5
0G

:1
28

K:
2.

0M

G
:1

.5
0G

:0
32

K:
0.

0M

G
:1

.5
0G

:0
32

K:
0.

5M

G
:1

.5
0G

:0
32

K:
1.

0M

G
:1

.5
0G

:0
32

K:
2.

0M

G
:1

.5
0G

:1
28

K:
0.

0M

G
:1

.5
0G

:1
28

K:
0.

5M

G
:1

.5
0G

:1
28

K:
1.

0M

G
:1

.5
0G

:1
28

K:
2.

0M

Re
nd

er
 T

im
e

(s
ec

on
ds

)

Cold Render Time

Warm Render Time

0
1
2
3
4
5

A
:0

.5
0G

:0
32

K:
0.

0M

A
:0

.5
0G

:0
32

K:
0.

5M

A
:0

.5
0G

:0
32

K:
1.

0M

A
:0

.5
0G

:0
32

K:
2.

0M

A
:0

.5
0G

:1
28

K:
0.

0M

A
:0

.5
0G

:1
28

K:
0.

5M

A
:0

.5
0G

:1
28

K:
1.

0M

A
:0

.5
0G

:1
28

K:
2.

0M

A
:1

.5
0G

:0
32

K:
0.

0M

A
:1

.5
0G

:0
32

K:
0.

5M

A
:1

.5
0G

:0
32

K:
1.

0M

A
:1

.5
0G

:0
32

K:
2.

0M

A
:1

.5
0G

:1
28

K:
0.

0M

A
:1

.5
0G

:1
28

K:
0.

5M

A
:1

.5
0G

:1
28

K:
1.

0M

A
:1

.5
0G

:1
28

K:
2.

0M

Re
nd

er
 T

im
e

(S
ec

) Cold Render Time

Warm Render Time

Fig. 4. 3-D Visualization of the results

500 MHz
750 MHz

1 GHz
1.5 GH

128 kB
64 kB

32 kB
0 kB

512 kB

1 MB

2 MB

Frequency
L1 Total Cache Size

L2
 T

ot
al

 C
ac

he
 S

iz
e

TABLE I. AVERAGE PERCENT CHANGE IN RENDER TIME FOR EACH
PARAMETER

Parameter Average Speedup Standard Deviation
Core Frequency 23.98% 8.65%
L1 Cache Size 5.43% 2.45%
L2 Cache Size 10.69% 6.86%

89

distinct, data does not affect the caching of instructions; but the
L2 cache is unified and this allows the browser to pollute the
cache with data, affecting the fast caching of instructions. It
also adds additional delay to the data path, and with L2 miss
rates greater than 70%, greatly adds to the total run time. It is
for this reason that we recommend “upgrading” core designs
by removing the L2 cache altogether.

IV. CONCLUSION
In conclusion, we have gleaned some very interesting

details about the design space for web browser applications.
We found that core frequency is still the key parameter in
terms of determining performance, as one would expect. It was
also proven that if the number of levels in the memory
hierarchy is kept the same, but the cache sizes are increased,
performance does in fact improve, especially for warm render
times for smaller websites.

Most interestingly, we found that web browsers have poor
data caching, since their memory accesses are essentially a
stream of new data with little reuse, L2 caches are actually a
large detriment to the performance of web browsers. We
recommend its removal for a web-browser-oriented core
design. From this, we were able to recommend a unique
architecture which is performance optimal. We found that a
lower-frequency core with an appropriately-sized L1 cache and
no L2 cache can outperform a higher frequency chip with
large, 2-level caches. We have also developed a rich set of
tools, referred to as GW-GEM, for working with gem5 design
space explorations and parameter studies on very large clusters.

ACKNOWLEDGMENT
This work was supported in part by Advanced Micro

Devices, Inc. and the I/UCRC Program of the National Science
Foundation under Grant Nos. IIP-0706352 and IIP-1161014.

REFERENCES
[1] Bureau of Labor Statistics, U.S. Department of Labor, "Most common

uses for computers at work," 2 September 2005. [Online]. Available:
http://www.bls.gov/opub/ted/2005/aug/wk5/art05.htm. [Accessed 15
February 2013].

[2] C. Rheem, "Consumer Response to Travel Site Performance,"
PhoCusWright, 2010.

[3] Strangeloop Networks, Inc., "2012 Annual State of the Union: E-
Commerce Page Speed and Website Performance," January 2012.
[Online]. Available:
http://www.strangeloopnetworks.com/assets/PDF/downloads/2012-
Annual-State-of-the-Union-Report.pdf. [Accessed 15 February 2013].

[4] E. Tomusk and M. O'Boyle, "Weak Heterogeneity as a way of
Adapting Multicores to Real," in 3rd International Workshop on
Adaptive Self-tuning Computing Systems, Edinburgh, 2013.

[5] NVIDIA Corporation, "Variable SMP (4-PLUS-1 (TM)) - A Multi-
Core CPU Architecture for Low Power and High Performance,"
NVIDIA Corporation, 2011.

[6] A. Kingsley-Hughes, "Nvidia Tegra 4 processor details leaked |
ZDNet," 18 December 2018. [Online]. Available:
http://www.zdnet.com/nvidia-tegra-4-processor-details-leaked-
7000008961/. [Accessed 15 February 2013].

[7] A. Basu, M. D. Hill and M. M. Switch, "Reducing Memory Reference
Energy with Opportunistic Virtual Caching," in Proceedings of the
39th Annual International Symposium on Computer Architecture,
Portland, 2012.

[8] D. Zoni, S. Corbetta and W. Fornaciari, "HANDS: Heterogeneous
Architectures and Networks-on-Chip Design and Simulation," in
Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design, Redondo Beach, 2012.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood,
"The gem5 simulator," SIGARCH Comput. Archit. News, vol. 39, pp. 1-
7, May 2011.

[10] A. Butko, R. Garibotti, L. Ost and G. Sassatelli, "Accuracy evaluation
of GEM5 simulator system," in 7th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip, York, 2012.

[11] T. P. Morgan, "ARM Holdings eager for PC and server expansion,"
The Register, 1 February 2011. [Online]. Available:
http://www.theregister.co.uk/2011/02/01/arm_holdings_q4_2010_num
bers/. [Accessed 15 February 2013].

[12] Android Developers, "Dashboards," 4 Febrary 2013. [Online].
Available: http://developer.android.com/about/dashboards/index.html.
[Accessed 15 February 2013].

[13] R. Llamas, K. Restivo and M. Shirer, "Android Marks Fourth
Anniversary Since Launch with 75.0% Market Share in Third Quarter,
According to IDC," International Data Corporation, 1 November 2012.
[Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UR3XBa
XBOSo. [Accessed 15 February 2013].

[14] H. Kim, N. Agrawal and C. Ungureanu, "Revisiting Storage for
Smartphones," in Proceedings of the 10th USENIX conference on File
and Storage Technologies, Berkeley, 2012.

[15] A. Saidi, "ARM Implementation - gem5," gem5, 10 May 2011.
[Online]. Available: http://www.m5sim.org/ARM_Implementation.
[Accessed 15 February 2013].

[16] Google, "WebPagetest - About," [Online]. Available:
http://www.webpagetest.org/about. [Accessed 15 February 2013].

[17] A. Das, B. Ozisikyilmaz, S. Ozdemir, G. Memik, J. Zambreno and A.
Choudhary, "Evaluating the Effects of Cache Redundancy on Profit,"
in 41st IEEE/ACM International Symposium on Microarchitecture,
Lake Como, 2008.

Fig. 5. Comparison of render times to L1and L2 data cache misses for
Amazon.

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

3.5

4

A:
0.

50
G:

03
2K

:0
.0

M

A:
1.

00
G:

03
2K

:0
.0

M

A:
1.

50
G:

03
2K

:0
.0

M

A:
0.

50
G:

06
4K

:0
.0

M

A:
1.

00
G:

06
4K

:0
.0

M

A:
1.

50
G:

06
4K

:0
.0

M

A:
0.

50
G:

12
8K

:0
.0

M

A:
1.

00
G:

12
8K

:0
.0

M

A:
1.

50
G:

12
8K

:0
.0

M

A:
0.

50
G:

03
2K

:0
.5

M

A:
1.

00
G:

03
2K

:0
.5

M

A:
1.

50
G:

03
2K

:0
.5

M

A:
0.

50
G:

06
4K

:0
.5

M

A:
1.

00
G:

06
4K

:0
.5

M

A:
1.

50
G:

06
4K

:0
.5

M

A:
0.

50
G:

12
8K

:0
.5

M

A:
1.

00
G:

12
8K

:0
.5

M

A:
1.

50
G:

12
8K

:0
.5

M

M
iss

 R
at

e
(%

)

Re
nd

er
 Ti

m
e

(S
ec

on
ds

)

L2 Data Miss Rate

L1 Data Miss Rate

Cold Render Time

90

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
