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Abstract - This paper presents a novel hardware architecture 

using FPGA-based reconfigurable computing (RC) for 

accurate calculation of dense disparity maps in real-time, 

stereo-vision systems. Recent stereo-vision hardware solutions 

have proposed local-area approaches. Although parallelism 

can be easily exploited using local methods by replicating the 

window-based image elaborations, accuracy is limited 

because the disparity result is optimized by locally searching 

for the minimum value of a cost function. Global methods 

improve the quality of the stereo-vision disparity maps at the 

expense of increasing computational complexity, thus making 

real-time application not viable for conventional computing. 

This problem becomes even more evident when stereo vision is 

a single step integrated into a more complete image 

elaboration flow, where the depth maps are used for further 

detection, recognition, stereo reconstruction, or 3D 

enhancement processing. Our approach exploits a parallel 

and fully pipelined architecture to implement a global method 

for the calculation of dense disparity maps based on the 

dynamic programming optimization of the Hamming distance 

of the Census-transform cost function. The resulting stereo-

vision core produces results that are significantly more 

accurate than existing hardware solutions using FPGAs that 

are based upon local approaches. The design was 

implemented and evaluated on an Altera Stratix-III E260 

FPGA in a GiDEL PROCStar-III board. Tests were performed 

on 640×480 stereo images, with a Census transform window 

size = 3, correlation window size = 5, and disparity ranges of 

30 and 50. Our hardware architecture achieved a speedup of 

about 319 and 512 respectively for the two disparity ranges, 

when compared to an optimized C++ implementation 

executed on a 2.26 GHz Xeon E5520 core. High accuracy in 

the output disparity map, together with high performance in 

terms of frames per second, make the proposed architecture 

an ideal solution for 3D robot-assisted medical systems, 

tracking, and autonomous navigation systems, where 

accuracy and speed constraints are very stringent. 

Keywords: Real-time stereo vision; dynamic programming; 

FPGA; reconfigurable computing 

1 Introduction 

  Accurate and real-time 3D reconstruction from stereo 

vision is one of the most important research topics for 

improving computer-vision systems today and is essential in 

applications such as robotics, automated medical systems, 

video surveillance, object recognition, people tracking, 

obstacle detection, and autonomous navigation. Depth 

information in stereo vision is determined by processing the 

left and right images acquired by a stereo camera, which is 

composed of two calibrated cameras aligned at a baseline 

distance b. The stereo-matching problem consists of searching 

the correspondent points in the left and right images. A 

preprocessing operation, called rectification, simplifies the 

matching computation by aligning the acquired left and right 

stereo images so that the search can be executed on the 

horizontal scan lines. Fig. 1 shows an example of stereo 

matching in which the horizontal displacement D of the 

matched points, called disparity, is used to calculate the 

distance z of the real point in the scene from the stereo camera 

using Eq. 1, where f is the focal length.  
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 Stereo-vision algorithms are widely recognized as 

extremely compute-expensive in the image-processing 

domain. Moreover, this complexity drastically increases when 

improving the quality of the depth maps. In the last several 

years, novel algorithmic improvements through software 

implementations has greatly extended the list of new entries in 

the Middlebury stereo evaluation table [1], which rates the 

different matching methods with respect to the accuracy of the 

disparity results over a set of benchmark stereo images: 

Tsukuba, Venus, Teddy, and Cones. These images, provided 

with ground-truth disparity maps, can be used as a common 

reference for fair comparisons. Although these algorithms can 

be implemented in a straightforward manner in software, their 

execution on CPUs is sequential, which does not always 

provide a viable solution for real-time applications with 

stringent performance requirements.  
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Fig. 1. The disparity of the matched points. 

 This paper presents a novel, FPGA-based hardware 

architecture for accurate calculation of dense disparity maps 

in real-time, stereo-vision systems.  The elaboration flow 

design includes matching cost computation, cost aggregation, 

disparity calculation, and consistency-check validation. 

Unlike most recent stereo-vision hardware implementations, 

which are based solely upon local-area approaches [2-7], the 

proposed solution exploits a global method for the calculation 

of dense disparity maps based on the dynamic-programming 

optimization of the Hamming distance of the Census 

transform cost function. As a result, the parallel and fully 

pipelined architecture significantly improves the accuracy as 

compared to recent hardware solutions. Moreover, when 

compared to the more accurate stereo-matching approaches 

based on dynamic-programming methods running on CPUs 

and GPUs [9-14], the proposed stereo-vision architecture 

outperforms them by one to two orders of magnitude in speed. 

An implementation of the proposed architecture, running on 

an Altera Stratix-III EPSE260 FPGA, achieved speedups of 

about 319 and 512 for disparity ranges of 30 and 50, 

respectively, when compared to an optimized C++ baseline 

executed on a 2.26 GHz Xeon E5520 core. 

 The remainder of the paper is organized as follows. 

Section II presents the related works. Section III furnishes a 

detailed description of the approach and the design of the 

hardware stereo architecture. Section IV reports the 

experimental results and the comparisons against the most 

recent hardware and software solutions found in the literature. 

Finally, conclusions and directions for future research are 

given in Section V. 

2 Related Works 

 In order to retrieve depth information, stereo-matching 

methods search for correspondences in a pair of right and left 

images acquired by a stereo camera.  A detailed survey of the 

most recent methods for searching correspondences is 

presented in [15], where a classification in terms of matching 

cost, aggregation, and optimization functions is provided. In 

the plethora of methods present in the literature, local 

window-based algorithms have been preferred in recent 

hardware implementations [2-7] for the parallel execution of 

the repetitive operations on multiple windows. One of the first 

FPGA implementations of stereo systems is the reconfigurable 

PARTS engine [7], consisting of 16 Xilinx 4025 FPGAs, and 

16 one-megabyte SRAMs. A frame rate of 42 frames per 

second (fps) was achieved when the Census algorithm was 

executed on 320×240 stereo images with a disparity range of 

24 pixels. In [3], the Local Weighted Phase Correlation 

matching algorithm was implemented on four Virtex2000 

FPGAs, where 256×360 disparity maps were calculated at a 

rate of 30 fps, with a disparity range of 20 pixels. In [5], a 

novel stereo-matching algorithm based on the Census 

transform of gradient images was proposed. The implemented 

version used a Stratix EP1S60 FPGA and a maximum of 60 

fps was reached on a disparity range of 60 pixels. The FPGA 

stereo-vision system in [2] implemented the Census-based 

disparity matching over 640×480 stereo images. The disparity 

was computed by selecting the minimum winning cost over a 

disparity range of 64 pixels by using 11×11 Census transform 

windows and 15×15 correlation windows for the pixel 

aggregation. A frame rate of 230 fps was achieved when 

implemented on a Xilinx Xc4vlx200 FPGA. In [6], a fast and 

low-cost, stereo-vision system based upon SAD (Sum of 

Absolute Differences) was presented for real-time 

applications. A novel injective consistency check improves 

the efficiency by greatly reducing area usage with respect to 

the more common cross-checking methods which require the 

computation of both left and right disparity maps. In [8], a 

very different approach based on fuzzy logic was used to 

reach high frame rates and high accuracy in an Altera Stratix 

EP1S60 FPGA. Comparison of our proposed architecture 

with these hardware solutions will be given in Section IV. 

 Several software implementations of global methods 

have been presented in the literature, each achieving high-

quality results but poor performance. Most global methods 

search for the optimum disparity distribution, which 

minimizes a specific global-energy function. Each selected 

disparity is not the result of a single independent decision as 

in the local methods, but is the result of a global decision that 

involves many disparity values considered together. Stereo 

matching based upon dynamic programming is a well-known 

class of global methods using scan-line optimization. 

Different approaches in using dynamic programming in stereo 

vision have been proposed in the literature [9-14]. The stereo-

matching system in [14], rated highly in the Middlebury 

ranking [1], achieved very high accuracy due to the multi-

direction scan-line optimization based on Hirschmüller’s 

semi-global matching method, followed by several refinement 

steps systematically executed in order to correct the disparity 

errors in occluded and near-depth discontinuity regions. 

Unfortunately, the performance (about 10fps) was penalized 

by the high computational load in its CPU+GPU 

implementation. In [12], an adaptive aggregation step based 
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upon the color and proximity weighting of the sum of absolute 

difference cost function was adopted in conjunction with a 

dynamic-programming scan-line optimization. Performances 

of 7.63 and 5.46 fps were achieved when 640×480 images are 

processed in the disparity ranges of 32 and 48 pixels, 

respectively, running on a 3GHz PC with an ATI Radeon 

XL1800 GPU.  In [10], a system with a coarse–to-fine 

refinement approach was implemented on a 2.2 GHz AMD 

Athlon XP 2800+ CPU, achieving a frame rate of 12.3 fps 

when processing 640×480 stereo images in a disparity range 

of 50 pixels. In [13], the GPU-based Orthogonal Reliability-

based Dynamic-Programming (GORDP) stereo system used 

two dynamic-programming passes with a local minimum 

searching process. Stereo images of 320×240 pixel sizes were 

processed at 10 fps for disparity ranges of 20 pixels. One of 

the most accurate dynamic-programming methods for stereo 

matching was proposed in [9], where a generalized ground 

control points (GGCP) scheme was introduced together with a 

two-pass optimization technique for reducing the inter-scan 

line inconsistency problem. Unfortunately, real-time is far 

from sustained by their Pentium IV 2.4GHz PC 

implementation, which calculates the disparity of the 

Tsukuba, Saw tooth, Venus and Map benchmark stereo 

images  in 4.4, 11.8, 11.1 and 4.9 seconds, respectively.  

Comparison of our proposed architecture with these software 

solutions will also be given in Section IV. 

3 Proposed Approach and Architecture  

 In order to evaluate the impact of using the dynamic-

programming scan-line optimization when applied to the 

Hamming distance of Census transform cost functions, we 

performed an analysis over the Middlebury stereo-pair 

images. These benchmark images provide truth disparity maps 

as a reference for comparing the algorithmic results. As cited 

in [15], the percentage of bad pixels B is calculated as in Eq. 

2 for the non-occlusion, all and discontinuity regions, where 

N is the total number of pixels, D and Dtruth are the computed 

and the ground truth disparity values, respectively. 
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 Fig. 2 shows the average percentage of bad pixels over 

the Tsukuba, Venus, Teddy, and Cones images, for the 

Census-Hamming, local-area approach and the proposed 

dynamic-programming approach. The cost function for both 

approaches uses an aggregation window size of 3×3, a 

correlation window size of 5×5, and consistency cross check 

is used to select the valid disparity values. The results show 

that the dynamic-programming optimization improves the 

quality of the output maps considerably in the all and non-

occluded regions, while offering similar quality in the 

discontinuity regions. The average error over the benchmark 

stereo pairs is reduced by 51.74%, 48.04% and 1.77% for the 

non-occlusion, all and discontinuity cases, respectively. Note 

that abrupt changes of disparity inside discontinuity regions 

are not significantly improved by the applied global 

optimization method, since it is based on the minimization of 

an energy function aimed to smooth the depth discontinuity 

along the scan lines. 

 Our proposed architecture for dynamic programming in 

stereo vision is shown in Fig. 3. The datapath structure is fully 

pipelined and parallelized in order to enable a continuous 

input flow of left and right pair of pixels and output flow of 

disparity at each clock cycle. The left and right pixels of the 

acquired stereo images are serially inputted to the Matching 

Cost Function module for the Census transform and the 

Hamming distance calculation. The Dynamic Programming 

module searches for the optimum disparity path. Finally, the 

disparity in output is validated by the Consistency Cross 

Check module, which compares results of the left and right 

matching processes.  

3.1 Matching Cost Function Module 

 The matching cost computation produces the Census 

transform over Wc×Wc windows, and then the Hamming 

distance of the Census vectors over Wh×Wh aggregation 

windows. According to [16], each element CV(x,y,k) of the 

Census vector is the sign bit of the subtraction result between 

the generic P(x+i,y+j) pixel and the central pixel P(x,y) of the 

selected Wc×Wc window calculated as in Eq. 3,  with  -(Wc-

1)/2≤i,j≤ (Wc-1)/2 and k= (y+j-1) ×Wc+x+i. 
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 The generic aggregated matching cost C, with respect to 

the disparity value z in the disparity range r, is calculated as in 

Eq. 4, by counting all the bit differences between the right 

CVR and the left CVL Census vectors in the selected Wh×Wh 

window. The matching cost based on the Hamming distance 

of Census transformed images is a non-parametric measure 

that is insensitive to differences in camera gains and bias [16].  
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 The Matching Cost Function module consists of the 

Census Transform component and the Hamming Distance 

component. The high-level model designs of the two 

components are shown in Fig. 4 and Fig. 5, respectively. This 

module for the entire disparity range executes in parallel. 

Thus, two C(x, y, 1: r) cost vectors are simultaneously 

computed for the left and right distinct processing flows at 

each clock cycle. 



 

Fig. 2. The average percentage of bad pixels B over the benchmark Venus, 

Teddy, Cones and Tsukuba stereo images for the Census-Hamming, local-

area approach and the proposed dynamic-programming approach. 

 In order to guarantee the parallel processing of the 

serially inputted Nc×Nr left and right images, two Nc×(Wc-

1)+Wc pixel buffers (implemented as shift registers) are used. 

After a latency of Nc×(Wc-1)+Wc clock cycles, an entire 

Wc×Wc  pixel window is inputted to the Census Transform 

component at each clock cycle. The sign bits outputted from 

the n=Wc×Wc parallel subtraction circuits of the Census 

Transform are then inputted into the Census Buffer, which 

uses Nc×(Wh-1)+r+Wh-1 n-bit registers connected as shown 

in Fig. 5. After Nc×(Wh-1)+r+Wh-1 clock cycles from the 

first Census vector input, one reference window and r 

candidate windows are outputted from each Census Buffer at 

each following clock cycle. The Hamming distance between a 

reference window and each candidate window is calculated in 

parallel by 2×r Hamming Distance (HD) blocks. An HD 

block includes a bank of XOR-gates and a final tree of 

pipelined adders. Tree adders at the first level have multiple 

single-bit operands, while adders at the other levels have two 

operands, with the input precision incremented by one bit at 

each level. 

3.2 Dynamic Programming Module 

 In our design, the Dynamic Programming module 

searches for the minimum cost path on the basis of a scan-line 

optimization. For each row, r different disparity paths are 

calculated by building the energy function matrix E and the 

matrix P of disparity paths. According to [15], each element 

E(x,y,z) of the energy function matrix is calculated iteratively 

as shown in Eq. 5, with 1≤x≤ Nc, 1≤y≤Nr and 0≤z<r; δ(x,y,z), 

taking into account the depth discontinuity through the 

constant term λ as shown in Eq. 6. 

  

Fig. 3. Proposed Stereo-Vision Architecture. 
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 According to [12], each element P(x,y,z) is calculated as 

in Eq. 7 by selecting the minimum arguments calculated in 

Eq. 6 with respect to the index z. 

 

Fig. 4. Census Transform Component. 
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Fig. 5. Hamming Distance Component. 
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 The matrix P keeps track of all the possible r disparity 

paths for each row. The disparity map D is calculated as 

shown in Eq. 8. The last disparity in each scan line is the z 

position of the minimum energy value, while all the previous 

disparity values in each path are retrieved by back-tracking 

through the matrix P. 
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 The design of the Dynamic Programming module is 

shown in Fig. 6. The optimal disparity path is calculated by 

iteratively processing the cost vector c=C(x, y, 0: r-1) and the 

energy vector e=E(x, y, 0: r-1) in a row-scanning order. At 

each clock cycle, a cost vector c is inputted to the Dynamic 

Programming module. The EF Block calculates the energy 

function as in Eq. 5. The Disparity Path Storage Block is used 

to store the r possible disparity paths. The Min Tree Block 

selects the best path which minimizes the energy function of 

the entire path, furnishing in the output the last disparity 

value. All of the previous disparity values in the optimum path 

are retrieved by the back-tracker BT Block in an inverted 

order. The disparity values are then queued in the Disparity 

Storage Block to be outputted in the right order by the 

forward tracker FT Block. As the energy of an entire path 

represents the energy accumulated in each single step, the 

energy function block is realized as a bank of r special 

accumulators as shown in Fig. 6. The aggregated matching 

costs are accumulated at each clock cycle. To take into 

account the depth discontinuity, the minimum value among 

the adjacent energy values is selected and appropriately 

corrected by the constant λ. 

 One of the main disadvantages of the dynamic-

programming approach is the considerable amount of 

resources needed to store all of the possible disparity paths 

during the scan-line optimization. In fact, the optimum among 

all the disparity paths can be selected only at the end of the 

scan line after that the global energy is computed. If the 

optimization is performed on an entire image row, r paths of 

the row length need to be saved until the energy function for 

the entire row is calculated, thus requiring the storage of Nc×r 

disparity values. In our design, in order to reduce resource 

usage, instead of saving the disparity values, 2 bits of  

information are stored for tracking each s=+1, 0, -1 variation 

step with respect to the previous disparity value in the path, as 

shown in Eq. 9. 
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 The variation step s is calculated by the Min block inside 

the energy accumulator of the EF Block. In this way, after the 

Min Tree Block calculates the last disparity value of the path, 

all of the previous disparity values in the optimum path are 

back-tracked by the BT Block, by appropriately incrementing, 

disabling, or decrementing a counter register initially loaded 

with the last disparity value. The BT Block uses a multiplexer 

to select the next disparity step in the optimum path. After 

back-tracking, the disparity flow is inverted with respect to 

the left-to-right input order; thus a further step is required. 

The disparity variation steps of the optimum path are queued 

in the Disparity Storage Block. The FT Block then forward-

tracks the disparity values starting from the first disparity 

value of the current row, outputted by the BT Block at the end 

of the back-tracking phase. The counter in the FT Block is 

controlled by the disparity variation step s outputted from the 

Disparity Storage Block. The Disparity Path Storage Block 

and the Disparity Storage Block are two shift-register 

bidirectional buffers storing the disparity steps in a LIFO 

(Last Input First Output) order. While the former stores all the 

possible paths into r stack lines, the latter stores only the 

optimum path in just one stack line. In order to use the same 

structure for contemporary pushing and pulling the disparity 

steps of two consecutive paths without stopping the pipelined 

processing flow, in each stack line the registers are interleaved 

by multiplexers. The select signals of the multiplexers are 

used to control the direction of the push-pull operation like a 

piston moving a cylinder back and forth in an engine. As the 

result of this design, the amount of resources for storage was 

reduced by 80% in the Dynamic Programming module, thus 

reducing by 60% the total amount of storage for the entire 

design.   
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Fig. 6. Dynamic Programming Module.

3.3 Consistency Cross Check 

 Post-processing is adopted in order to reduce the 

matching errors that could be caused by occlusions and false 

matching. The cross check validates the consistency of the 

right and left results. The matching is considered valid by the 

cross check method when the right Dr and the left Dl disparity 

values satisfy the condition shown in Eq. 10. Only if this is the 

case, the disparity is flagged as a correct result. 
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 The stereo-vision system executes the right and left 

matching processes in parallel. Thus, one right and one left 

disparity value are simultaneously ready at the output from the 

Dynamic Programming module at each clock cycle. As shown 

in Fig. 7, the disparity values are appropriately buffered in r 

registers, which are left-shifted at each clock cycle. A bank of 

XNOR logic gates inside the Comparator block are used to 

compare each right disparity with its matched left disparity, 

selected by a multiplexer. An active-high valid signal is 

outputted when the disparity passes the consistency check. 

4 Experimental Results and Comparisons 

 In order to support different image-processing 

requirements and FPGA platforms, the proposed stereo-vision 

architecture for the disparity-map calculation was designed in 

VHDL as an IP core that can be parameterized in terms of 

image size, Census-transform size, aggregation-window size, 

and disparity range. Two versions of the proposed architecture 

have been implemented on an Altera Stratix-III E260 FPGA, 

the results of which are shown in the first row of Table I, 

calculating the disparity in the 30 and 50 pixel ranges, 

respectively. The Census transform is executed over 3×3 

windows; the Hamming distance is calculated for aggregation 

windows of size 5×5; the input image size is 640×480 with 8-

bit gray level pixels; and the depth discontinuity constant λ is 

fixed to 7.  For the r=30 version, the complete circuit occupies 

33,881 combinational ALUTs, 949 memory ALUTs, 101,802 

dedicated logic registers, 102,288 total registers, and 493,683 

total block-memory bits.  For the r=50 version, it occupies 

50,402 combinational ALUTs, 320 memory ALUTs, 157,005 

dedicated logic registers, 157,491 total registers, and 505,355 

total block-memory bits. The remainder of Table I is used to 

compare our solution with other works available in the 

literature. Comparison is made with both hardware solutions 

and CPU/GPU solutions.  

 

Fig. 7. Consistency Cross Check. 
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Fig. 8. Performance vs. Accuracy graph. 

 As shown in Table I, our solution significantly 

outperformed the cited hardware implementations [2, 5 and 6] 

in result quality, as indicated by the percentages of bad pixels 

of the validated disparity maps over Tsukuba, Venus, Teddy, 

and Cones stereo images in the last column. For the non-

occlusion cases, the improvement ranges from 32% to 84%. 

For the all cases, the improvement ranges from 43% to 78%. 

These results are expected because of our use of a global 

method for the calculation of dense disparity maps based upon 

the dynamic-programming optimization, as compared to the 

local-area approaches used by other hardware solutions. For 

the discontinuity cases, except for one result in [6] which is 

even better than the proposed one, the rest of the results show 

improvement from 16% to 63%. As noted previously, the 

improvement in this case is expected to be less because the 

abrupt changes of disparity inside discontinuity regions are 

not significantly improved by the applied global-optimization 

method since it is based on the minimization of an energy 

function aimed to smooth the depth discontinuity along the 

scan lines. The design was compiled and downloaded into a 

GiDEL PROCStar-III board for testing. As the proposed 

architecture exploits massive parallelism, an increase in the 

disparity range improves the speedup performance with 

respect to a software baseline implementation. Performance 

was measured with speedups of about 319 and 512, for the 30 

and 50 disparity ranges respectively, as compared to 

optimized C++ code executed on a 2.26 GHz Xeon E5520 

core. The maximum frame rate of 406 fps was achieved for 

both IP cores. Compared to the cited software 

implementations in the literature [10, 12, 13, 14, and 17], our 

proposed stereo-vision architecture outperformed them by one 

to two orders of magnitude in terms of frame rate.  

TABLE I. COMPARISON OF PERFORMACE RESULTS 

System Image Size 

[Pixel] 

Device Disparity 

Range 

[Pixel] 

Resources 

 

Frame 

Rate 

[fps] 

B [%] 

Tsukuba Venus Teddy Cones 

Nocc       Nocc     Nocc    Nocc 

All          All         All      All 

Disc        Disc        Disc     Disc 

Our proposed 

stereo-vision 

architecture 
640×480 

FPGA 

Altera 

Stratix-III 

E260 

30 

33,881 Comb. ALUTs       949 Mem. ALUTs 

101,802 Logic registers 102,288 Tot registers 

493,683 Mem. Bits 
406 

4.39      2.41      5.13      3.30 

5.21      2.96      6,54      4.75 

15.54    13.81    15.76     8.63 
50 

50,402 Comb. ALUTs   320 Mem. ALUTs 

157,005 Logic registers   157,491 Tot registers 

505,355 Mem. Bits 

[2] 640×480 
FPGA 

Xilinx Xc4vlx200 
64 

12  DSP 

322 18Kb-BRAM 

51,191 Slices 

230 

9.79    3.59    12.50    7.34 

11.56    5.27    21.50    17.58 

20.29    36.82    30.57    21.01 

[5] 750×400 

FPGA 

Altera Stratix 

EP1S60 

60 
38,944 Logic Elements 

557,056 Mem. Bits 
60 

22.7    15.1    13.9    5.96 

23.7    15.9    20.7    12.7 

26.2    25.3    29.0    15.5 

[6] 
640×480 FPGA 

Xilinx XC4VLX60 
30 

63 DSP    64 BRAM    12,974 Slices 358 9.99   11.42   17.19  17.12 

10.64   12.28   19.38   20.18 

12.88   16.61   25.75   23.61 1280×720 63 DSP  128 BRAM    15,728 Slices 97 

[10] 640×480 CPU 
32 

AMD Athlon XP 2800+ 
15.2 n.a.*     n.a.*    n.a.*   n.a.* 

4.12    10.10     n.a.*    n.a.* 

n.a.*     n.a.*    n.a.*   n.a.* 50 12.3 

[12] 640×480 CPU + GPU 
32 3GHz PC +  

ATI Radeon XL1800 

7.63 2.05    1.92    7.23    6.41 

4.22    2.98    14.4    13.7 

10.6    20.3     17.6    16.5 48 5.46 

[13] 320×240 CPU + GPU 20 

3 GHz P4 CPU 

512 MB RAM 

ATI Radeon X800 

10 

1.34    2.73    9.03    13.1 

3.36    3.81    16.8    20.1 

7.10    10.1    18.4    20.1 

[14] 512×384 CPU + GPU 60 
Core2, 2.20GHz 

NVIDIA GeForce GTX 480 
10 

1.07     0.09     4.10     2.42 

1.48     0.25     6.22     7.25 

5.73     1.15     10.9     6.95 

[17] 640×480 
MIMD many-core 

architecture 
48 Tilera TILEPro64 71.5 

n.a.* 

 
*
 n.a. = not available 

HW 

CPU/GPU 



Compared to a CPU-only implementation [10] of a stereo-

matching system based upon a coarse to fine approach of the 

dynamic programming on a 2.2 GHz AMD Athlon XP 2800+ 

CPU, our speedup in terms of fps is almost 33 times faster. 

Compared to an MIMD (Multiple Instruction, Multiple Data) 

many-core implementation [17], in which the disparity map 

calculation of the SSD (Sum of Squared Differences) 

correlation metric was executed on the Tilera TILEPro64 

architecture, consisting of 64 32-bit processing cores, our 

speedup is almost 6 times faster. Compared to works that 

include CPU and GPU [12, 13, 14], our speedup ranges from 

about 40 to 74. In summary, a performance vs. accuracy graph 

of the systems reported in Table I is shown in Fig. 8, where 

performances are reported in terms of frames per second, and 

accuracy is the average of the percentage of good pixels 

calculated as (100-B) over the Nocc, All and Disc regions. As 

shown in this figure, our solution provides the highest speed 

performances while approaching the level of accuracy of the 

software CPU/GPU global-methods implementations.  

5 Conclusions 

 This paper presents a novel hardware architecture using 

FPGA-based reconfigurable computing (RC) to calculate 

dense disparity maps by exploiting a global method based on 

the dynamic-programming optimization of the Hamming 

distance of the Census-transform cost function. Recent stereo-

vision hardware solutions exploit parallelism by replicating 

the window-based image elaborations in local-area 

approaches, but accuracy is limited because the disparity 

result is optimized by locally searching for the minimum value 

of a cost function. Our proposed solution, based on global 

methods and a parallel and fully pipelined architecture, 

significantly improves the accuracy as compared to recent 

hardware solutions. Moreover, when compared to the more 

accurate stereo-matching approaches based on dynamic-

programming methods executing on CPUs and GPUs, the 

proposed stereo-vision architecture outperforms them by one 

to two orders of magnitude in speed. As a result, our solution 

provides the best performance while approaching the level of 

accuracy of the software CPU/GPU global-methods 

implementations. High accuracy together with high 

performance make the proposed stereo-vision architecture an 

ideal solution for 3D robot-assisted medical systems, tracking, 

and autonomous navigation systems, where accuracy and 

speed constraints are very stringent.  
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