
Reconfigurable Computing Architecture for Accurate

Disparity Map Calculation in Real-Time Stereo Vision

P. Zicari, H. Lam, and A. George

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering, University of Florida

Gainesville FL, USA 32611

Abstract - This paper presents a novel hardware architecture

using FPGA-based reconfigurable computing (RC) for

accurate calculation of dense disparity maps in real-time,

stereo-vision systems. Recent stereo-vision hardware solutions

have proposed local-area approaches. Although parallelism

can be easily exploited using local methods by replicating the

window-based image elaborations, accuracy is limited

because the disparity result is optimized by locally searching

for the minimum value of a cost function. Global methods

improve the quality of the stereo-vision disparity maps at the

expense of increasing computational complexity, thus making

real-time application not viable for conventional computing.

This problem becomes even more evident when stereo vision is

a single step integrated into a more complete image

elaboration flow, where the depth maps are used for further

detection, recognition, stereo reconstruction, or 3D

enhancement processing. Our approach exploits a parallel

and fully pipelined architecture to implement a global method

for the calculation of dense disparity maps based on the

dynamic programming optimization of the Hamming distance

of the Census-transform cost function. The resulting stereo-

vision core produces results that are significantly more

accurate than existing hardware solutions using FPGAs that

are based upon local approaches. The design was

implemented and evaluated on an Altera Stratix-III E260

FPGA in a GiDEL PROCStar-III board. Tests were performed

on 640×480 stereo images, with a Census transform window

size = 3, correlation window size = 5, and disparity ranges of

30 and 50. Our hardware architecture achieved a speedup of

about 319 and 512 respectively for the two disparity ranges,

when compared to an optimized C++ implementation

executed on a 2.26 GHz Xeon E5520 core. High accuracy in

the output disparity map, together with high performance in

terms of frames per second, make the proposed architecture

an ideal solution for 3D robot-assisted medical systems,

tracking, and autonomous navigation systems, where

accuracy and speed constraints are very stringent.

Keywords: Real-time stereo vision; dynamic programming;

FPGA; reconfigurable computing

1 Introduction

 Accurate and real-time 3D reconstruction from stereo

vision is one of the most important research topics for

improving computer-vision systems today and is essential in

applications such as robotics, automated medical systems,

video surveillance, object recognition, people tracking,

obstacle detection, and autonomous navigation. Depth

information in stereo vision is determined by processing the

left and right images acquired by a stereo camera, which is

composed of two calibrated cameras aligned at a baseline

distance b. The stereo-matching problem consists of searching

the correspondent points in the left and right images. A

preprocessing operation, called rectification, simplifies the

matching computation by aligning the acquired left and right

stereo images so that the search can be executed on the

horizontal scan lines. Fig. 1 shows an example of stereo

matching in which the horizontal displacement D of the

matched points, called disparity, is used to calculate the

distance z of the real point in the scene from the stereo camera

using Eq. 1, where f is the focal length.

D

fb
z


 (1)

 Stereo-vision algorithms are widely recognized as

extremely compute-expensive in the image-processing

domain. Moreover, this complexity drastically increases when

improving the quality of the depth maps. In the last several

years, novel algorithmic improvements through software

implementations has greatly extended the list of new entries in

the Middlebury stereo evaluation table [1], which rates the

different matching methods with respect to the accuracy of the

disparity results over a set of benchmark stereo images:

Tsukuba, Venus, Teddy, and Cones. These images, provided

with ground-truth disparity maps, can be used as a common

reference for fair comparisons. Although these algorithms can

be implemented in a straightforward manner in software, their

execution on CPUs is sequential, which does not always

provide a viable solution for real-time applications with

stringent performance requirements.

This work was supported in part by: the European Commission and the

Calabria Region of Italy, through the European Social Fund, Regional

Operational Program 2007/2013, Priority IV – Human Capital; and the

I/UCRC Program of the National Science Foundation under Grant Nos.

EEC-0642422 and IIP-1161022.

Fig. 1. The disparity of the matched points.

 This paper presents a novel, FPGA-based hardware

architecture for accurate calculation of dense disparity maps

in real-time, stereo-vision systems. The elaboration flow

design includes matching cost computation, cost aggregation,

disparity calculation, and consistency-check validation.

Unlike most recent stereo-vision hardware implementations,

which are based solely upon local-area approaches [2-7], the

proposed solution exploits a global method for the calculation

of dense disparity maps based on the dynamic-programming

optimization of the Hamming distance of the Census

transform cost function. As a result, the parallel and fully

pipelined architecture significantly improves the accuracy as

compared to recent hardware solutions. Moreover, when

compared to the more accurate stereo-matching approaches

based on dynamic-programming methods running on CPUs

and GPUs [9-14], the proposed stereo-vision architecture

outperforms them by one to two orders of magnitude in speed.

An implementation of the proposed architecture, running on

an Altera Stratix-III EPSE260 FPGA, achieved speedups of

about 319 and 512 for disparity ranges of 30 and 50,

respectively, when compared to an optimized C++ baseline

executed on a 2.26 GHz Xeon E5520 core.

 The remainder of the paper is organized as follows.

Section II presents the related works. Section III furnishes a

detailed description of the approach and the design of the

hardware stereo architecture. Section IV reports the

experimental results and the comparisons against the most

recent hardware and software solutions found in the literature.

Finally, conclusions and directions for future research are

given in Section V.

2 Related Works

 In order to retrieve depth information, stereo-matching

methods search for correspondences in a pair of right and left

images acquired by a stereo camera. A detailed survey of the

most recent methods for searching correspondences is

presented in [15], where a classification in terms of matching

cost, aggregation, and optimization functions is provided. In

the plethora of methods present in the literature, local

window-based algorithms have been preferred in recent

hardware implementations [2-7] for the parallel execution of

the repetitive operations on multiple windows. One of the first

FPGA implementations of stereo systems is the reconfigurable

PARTS engine [7], consisting of 16 Xilinx 4025 FPGAs, and

16 one-megabyte SRAMs. A frame rate of 42 frames per

second (fps) was achieved when the Census algorithm was

executed on 320×240 stereo images with a disparity range of

24 pixels. In [3], the Local Weighted Phase Correlation

matching algorithm was implemented on four Virtex2000

FPGAs, where 256×360 disparity maps were calculated at a

rate of 30 fps, with a disparity range of 20 pixels. In [5], a

novel stereo-matching algorithm based on the Census

transform of gradient images was proposed. The implemented

version used a Stratix EP1S60 FPGA and a maximum of 60

fps was reached on a disparity range of 60 pixels. The FPGA

stereo-vision system in [2] implemented the Census-based

disparity matching over 640×480 stereo images. The disparity

was computed by selecting the minimum winning cost over a

disparity range of 64 pixels by using 11×11 Census transform

windows and 15×15 correlation windows for the pixel

aggregation. A frame rate of 230 fps was achieved when

implemented on a Xilinx Xc4vlx200 FPGA. In [6], a fast and

low-cost, stereo-vision system based upon SAD (Sum of

Absolute Differences) was presented for real-time

applications. A novel injective consistency check improves

the efficiency by greatly reducing area usage with respect to

the more common cross-checking methods which require the

computation of both left and right disparity maps. In [8], a

very different approach based on fuzzy logic was used to

reach high frame rates and high accuracy in an Altera Stratix

EP1S60 FPGA. Comparison of our proposed architecture

with these hardware solutions will be given in Section IV.

 Several software implementations of global methods

have been presented in the literature, each achieving high-

quality results but poor performance. Most global methods

search for the optimum disparity distribution, which

minimizes a specific global-energy function. Each selected

disparity is not the result of a single independent decision as

in the local methods, but is the result of a global decision that

involves many disparity values considered together. Stereo

matching based upon dynamic programming is a well-known

class of global methods using scan-line optimization.

Different approaches in using dynamic programming in stereo

vision have been proposed in the literature [9-14]. The stereo-

matching system in [14], rated highly in the Middlebury

ranking [1], achieved very high accuracy due to the multi-

direction scan-line optimization based on Hirschmüller’s

semi-global matching method, followed by several refinement

steps systematically executed in order to correct the disparity

errors in occluded and near-depth discontinuity regions.

Unfortunately, the performance (about 10fps) was penalized

by the high computational load in its CPU+GPU

implementation. In [12], an adaptive aggregation step based

Right image

Left image

Disparity

Matched

points

upon the color and proximity weighting of the sum of absolute

difference cost function was adopted in conjunction with a

dynamic-programming scan-line optimization. Performances

of 7.63 and 5.46 fps were achieved when 640×480 images are

processed in the disparity ranges of 32 and 48 pixels,

respectively, running on a 3GHz PC with an ATI Radeon

XL1800 GPU. In [10], a system with a coarse–to-fine

refinement approach was implemented on a 2.2 GHz AMD

Athlon XP 2800+ CPU, achieving a frame rate of 12.3 fps

when processing 640×480 stereo images in a disparity range

of 50 pixels. In [13], the GPU-based Orthogonal Reliability-

based Dynamic-Programming (GORDP) stereo system used

two dynamic-programming passes with a local minimum

searching process. Stereo images of 320×240 pixel sizes were

processed at 10 fps for disparity ranges of 20 pixels. One of

the most accurate dynamic-programming methods for stereo

matching was proposed in [9], where a generalized ground

control points (GGCP) scheme was introduced together with a

two-pass optimization technique for reducing the inter-scan

line inconsistency problem. Unfortunately, real-time is far

from sustained by their Pentium IV 2.4GHz PC

implementation, which calculates the disparity of the

Tsukuba, Saw tooth, Venus and Map benchmark stereo

images in 4.4, 11.8, 11.1 and 4.9 seconds, respectively.

Comparison of our proposed architecture with these software

solutions will also be given in Section IV.

3 Proposed Approach and Architecture

 In order to evaluate the impact of using the dynamic-

programming scan-line optimization when applied to the

Hamming distance of Census transform cost functions, we

performed an analysis over the Middlebury stereo-pair

images. These benchmark images provide truth disparity maps

as a reference for comparing the algorithmic results. As cited

in [15], the percentage of bad pixels B is calculated as in Eq.

2 for the non-occlusion, all and discontinuity regions, where

N is the total number of pixels, D and Dtruth are the computed

and the ground truth disparity values, respectively.






gionyx

truth
yxDyxD

N
B

Re),(

1),(),(
1

 (2)

 Fig. 2 shows the average percentage of bad pixels over

the Tsukuba, Venus, Teddy, and Cones images, for the

Census-Hamming, local-area approach and the proposed

dynamic-programming approach. The cost function for both

approaches uses an aggregation window size of 3×3, a

correlation window size of 5×5, and consistency cross check

is used to select the valid disparity values. The results show

that the dynamic-programming optimization improves the

quality of the output maps considerably in the all and non-

occluded regions, while offering similar quality in the

discontinuity regions. The average error over the benchmark

stereo pairs is reduced by 51.74%, 48.04% and 1.77% for the

non-occlusion, all and discontinuity cases, respectively. Note

that abrupt changes of disparity inside discontinuity regions

are not significantly improved by the applied global

optimization method, since it is based on the minimization of

an energy function aimed to smooth the depth discontinuity

along the scan lines.

 Our proposed architecture for dynamic programming in

stereo vision is shown in Fig. 3. The datapath structure is fully

pipelined and parallelized in order to enable a continuous

input flow of left and right pair of pixels and output flow of

disparity at each clock cycle. The left and right pixels of the

acquired stereo images are serially inputted to the Matching

Cost Function module for the Census transform and the

Hamming distance calculation. The Dynamic Programming

module searches for the optimum disparity path. Finally, the

disparity in output is validated by the Consistency Cross

Check module, which compares results of the left and right

matching processes.

3.1 Matching Cost Function Module

 The matching cost computation produces the Census

transform over Wc×Wc windows, and then the Hamming

distance of the Census vectors over Wh×Wh aggregation

windows. According to [16], each element CV(x,y,k) of the

Census vector is the sign bit of the subtraction result between

the generic P(x+i,y+j) pixel and the central pixel P(x,y) of the

selected Wc×Wc window calculated as in Eq. 3, with -(Wc-

1)/2≤i,j≤ (Wc-1)/2 and k= (y+j-1) ×Wc+x+i.

)),(),((),,(yxPjyixPsignkyxCV 
 (3)

 The generic aggregated matching cost C, with respect to

the disparity value z in the disparity range r, is calculated as in

Eq. 4, by counting all the bit differences between the right

CVR and the left CVL Census vectors in the selected Wh×Wh

window. The matching cost based on the Hamming distance

of Census transformed images is a non-parametric measure

that is insensitive to differences in camera gains and bias [16].

)],,(

),,([

),,(

2/)1(

2

)1(

2/)1(

2

)1(

*

1

kjyizxCVL

kjyixCVR

zyxC

Wh

Wh
i

Wh

Wh
j

WcWc

k







  











 (4)

 The Matching Cost Function module consists of the

Census Transform component and the Hamming Distance

component. The high-level model designs of the two

components are shown in Fig. 4 and Fig. 5, respectively. This

module for the entire disparity range executes in parallel.

Thus, two C(x, y, 1: r) cost vectors are simultaneously

computed for the left and right distinct processing flows at

each clock cycle.

Fig. 2. The average percentage of bad pixels B over the benchmark Venus,

Teddy, Cones and Tsukuba stereo images for the Census-Hamming, local-

area approach and the proposed dynamic-programming approach.

 In order to guarantee the parallel processing of the

serially inputted Nc×Nr left and right images, two Nc×(Wc-

1)+Wc pixel buffers (implemented as shift registers) are used.

After a latency of Nc×(Wc-1)+Wc clock cycles, an entire

Wc×Wc pixel window is inputted to the Census Transform

component at each clock cycle. The sign bits outputted from

the n=Wc×Wc parallel subtraction circuits of the Census

Transform are then inputted into the Census Buffer, which

uses Nc×(Wh-1)+r+Wh-1 n-bit registers connected as shown

in Fig. 5. After Nc×(Wh-1)+r+Wh-1 clock cycles from the

first Census vector input, one reference window and r

candidate windows are outputted from each Census Buffer at

each following clock cycle. The Hamming distance between a

reference window and each candidate window is calculated in

parallel by 2×r Hamming Distance (HD) blocks. An HD

block includes a bank of XOR-gates and a final tree of

pipelined adders. Tree adders at the first level have multiple

single-bit operands, while adders at the other levels have two

operands, with the input precision incremented by one bit at

each level.

3.2 Dynamic Programming Module

 In our design, the Dynamic Programming module

searches for the minimum cost path on the basis of a scan-line

optimization. For each row, r different disparity paths are

calculated by building the energy function matrix E and the

matrix P of disparity paths. According to [15], each element

E(x,y,z) of the energy function matrix is calculated iteratively

as shown in Eq. 5, with 1≤x≤ Nc, 1≤y≤Nr and 0≤z<r; δ(x,y,z),

taking into account the depth discontinuity through the

constant term λ as shown in Eq. 6.

Fig. 3. Proposed Stereo-Vision Architecture.

),,(),,(),,(zyxzyxCzyxE 
 (5)

})1,,1(

),,,1(,)1,,1(min{),,(









zyxC

zyxCzyxCzyx

 (6)

 According to [12], each element P(x,y,z) is calculated as

in Eq. 7 by selecting the minimum arguments calculated in

Eq. 6 with respect to the index z.

Fig. 4. Census Transform Component.

Wc×Wc window

Pixel Buffer

+ - + - + - + - + -

Sign Bits

Census Transformed Pixel

Input Pixel

Pixel Buffer

Census Transform

Census Buffer

Hamming Distance

Left Pixel Right Pixel

Census Transform

Energy Calculator

Back Tracking

Energy Calculator

Back Tracking

Consistency Cross Check

Disparity

M
a

tc
h

in
g

 C
o

st F
u

n
c
tio

n

D
y

n
a

m
ic

 P
r
o

g
r
a

m
m

in
g

Pixel Buffer

Census Buffer

Fig. 5. Hamming Distance Component.























)1,,1(),,(when1

),,1(),,(n whe

)1,,1(),,(when1

),,(

zyxCzyxz

zyxCzyxz

zyxCzyxz

zyxP

 (7)

 The matrix P keeps track of all the possible r disparity

paths for each row. The disparity map D is calculated as

shown in Eq. 8. The last disparity in each scan line is the z

position of the minimum energy value, while all the previous

disparity values in each path are retrieved by back-tracking

through the matrix P.












Ncx0 when)),1(,,1(

Ncx when)),,(arg(min
),(

0

yxDyxP

zyxE
yxD

rz

 (8)

 The design of the Dynamic Programming module is

shown in Fig. 6. The optimal disparity path is calculated by

iteratively processing the cost vector c=C(x, y, 0: r-1) and the

energy vector e=E(x, y, 0: r-1) in a row-scanning order. At

each clock cycle, a cost vector c is inputted to the Dynamic

Programming module. The EF Block calculates the energy

function as in Eq. 5. The Disparity Path Storage Block is used

to store the r possible disparity paths. The Min Tree Block

selects the best path which minimizes the energy function of

the entire path, furnishing in the output the last disparity

value. All of the previous disparity values in the optimum path

are retrieved by the back-tracker BT Block in an inverted

order. The disparity values are then queued in the Disparity

Storage Block to be outputted in the right order by the

forward tracker FT Block. As the energy of an entire path

represents the energy accumulated in each single step, the

energy function block is realized as a bank of r special

accumulators as shown in Fig. 6. The aggregated matching

costs are accumulated at each clock cycle. To take into

account the depth discontinuity, the minimum value among

the adjacent energy values is selected and appropriately

corrected by the constant λ.

 One of the main disadvantages of the dynamic-

programming approach is the considerable amount of

resources needed to store all of the possible disparity paths

during the scan-line optimization. In fact, the optimum among

all the disparity paths can be selected only at the end of the

scan line after that the global energy is computed. If the

optimization is performed on an entire image row, r paths of

the row length need to be saved until the energy function for

the entire row is calculated, thus requiring the storage of Nc×r

disparity values. In our design, in order to reduce resource

usage, instead of saving the disparity values, 2 bits of

information are stored for tracking each s=+1, 0, -1 variation

step with respect to the previous disparity value in the path, as

shown in Eq. 9.























)1,,1(),,(if 1

),,1(),,(if 0

)1,,1(),,(if 1

),,(

zyxCzyx

zyxCzyx

zyxCzyx

zyxs

 (9)

 The variation step s is calculated by the Min block inside

the energy accumulator of the EF Block. In this way, after the

Min Tree Block calculates the last disparity value of the path,

all of the previous disparity values in the optimum path are

back-tracked by the BT Block, by appropriately incrementing,

disabling, or decrementing a counter register initially loaded

with the last disparity value. The BT Block uses a multiplexer

to select the next disparity step in the optimum path. After

back-tracking, the disparity flow is inverted with respect to

the left-to-right input order; thus a further step is required.

The disparity variation steps of the optimum path are queued

in the Disparity Storage Block. The FT Block then forward-

tracks the disparity values starting from the first disparity

value of the current row, outputted by the BT Block at the end

of the back-tracking phase. The counter in the FT Block is

controlled by the disparity variation step s outputted from the

Disparity Storage Block. The Disparity Path Storage Block

and the Disparity Storage Block are two shift-register

bidirectional buffers storing the disparity steps in a LIFO

(Last Input First Output) order. While the former stores all the

possible paths into r stack lines, the latter stores only the

optimum path in just one stack line. In order to use the same

structure for contemporary pushing and pulling the disparity

steps of two consecutive paths without stopping the pipelined

processing flow, in each stack line the registers are interleaved

by multiplexers. The select signals of the multiplexers are

used to control the direction of the push-pull operation like a

piston moving a cylinder back and forth in an engine. As the

result of this design, the amount of resources for storage was

reduced by 80% in the Dynamic Programming module, thus

reducing by 60% the total amount of storage for the entire

design.

R
ig

h
t

C
e
n

su
s

B
u

ff
e
r

L
e
ft

 C
e
n

su
s

B
u

ff
e
r

Candidate Windows

HD

Reference Window

HD

HD
+ +

+ +

+

Right Census

Transformed Pixel

Left Census

Transformed Pixel

C
o

st
 V

e
c
to

r
s

Fig. 6. Dynamic Programming Module.

3.3 Consistency Cross Check

 Post-processing is adopted in order to reduce the

matching errors that could be caused by occlusions and false

matching. The cross check validates the consistency of the

right and left results. The matching is considered valid by the

cross check method when the right Dr and the left Dl disparity

values satisfy the condition shown in Eq. 10. Only if this is the

case, the disparity is flagged as a correct result.

)),,((),(yyxDrxDlyxDr  (10)

 The stereo-vision system executes the right and left

matching processes in parallel. Thus, one right and one left

disparity value are simultaneously ready at the output from the

Dynamic Programming module at each clock cycle. As shown

in Fig. 7, the disparity values are appropriately buffered in r

registers, which are left-shifted at each clock cycle. A bank of

XNOR logic gates inside the Comparator block are used to

compare each right disparity with its matched left disparity,

selected by a multiplexer. An active-high valid signal is

outputted when the disparity passes the consistency check.

4 Experimental Results and Comparisons

 In order to support different image-processing

requirements and FPGA platforms, the proposed stereo-vision

architecture for the disparity-map calculation was designed in

VHDL as an IP core that can be parameterized in terms of

image size, Census-transform size, aggregation-window size,

and disparity range. Two versions of the proposed architecture

have been implemented on an Altera Stratix-III E260 FPGA,

the results of which are shown in the first row of Table I,

calculating the disparity in the 30 and 50 pixel ranges,

respectively. The Census transform is executed over 3×3

windows; the Hamming distance is calculated for aggregation

windows of size 5×5; the input image size is 640×480 with 8-

bit gray level pixels; and the depth discontinuity constant λ is

fixed to 7. For the r=30 version, the complete circuit occupies

33,881 combinational ALUTs, 949 memory ALUTs, 101,802

dedicated logic registers, 102,288 total registers, and 493,683

total block-memory bits. For the r=50 version, it occupies

50,402 combinational ALUTs, 320 memory ALUTs, 157,005

dedicated logic registers, 157,491 total registers, and 505,355

total block-memory bits. The remainder of Table I is used to

compare our solution with other works available in the

literature. Comparison is made with both hardware solutions

and CPU/GPU solutions.

Fig. 7. Consistency Cross Check.

Right Disparity Buffer

Right Disparity

Checked

Disparity

Left Disparity

Left Disparity Buffer

Comparator
Valid

Mux

Min

+

Register

c(0) δ(0)

e(0)

Min

+

Register

c(d) δ(d)

s(0)

+

λ

+

λ

c(r-1)
Min

+

Register

δ(r-1)

+

λ

s(d) e(d) s(r-1) e(r-1)

Min Min

Min Min

Min

EF

Block

Min Tree

Block

Disparity Path Storage

Block

Disparity Storage

Block

BT

Block

FT

Block

Cost Vector Energy Vector Last Disparity

of the Path
First Disparity

of the Path
Disparity

Pushed Optimum

Path Disparity Step
Pulled Disparity

Step Vector

ce

Counter

Load

Up/down

Last Disparity

Register

First disparity

Step(0) Step(r-1)

ce

Counter

Load

Up/down

First Disparity

Step

Disparity

Register Register Register Register
Step Out

Step In

Sel Stack Line

Pushed Disparity

Step Vector

Pulled optimum path

disparity step

Energy Function Accumulator

Fig. 8. Performance vs. Accuracy graph.

 As shown in Table I, our solution significantly

outperformed the cited hardware implementations [2, 5 and 6]

in result quality, as indicated by the percentages of bad pixels

of the validated disparity maps over Tsukuba, Venus, Teddy,

and Cones stereo images in the last column. For the non-

occlusion cases, the improvement ranges from 32% to 84%.

For the all cases, the improvement ranges from 43% to 78%.

These results are expected because of our use of a global

method for the calculation of dense disparity maps based upon

the dynamic-programming optimization, as compared to the

local-area approaches used by other hardware solutions. For

the discontinuity cases, except for one result in [6] which is

even better than the proposed one, the rest of the results show

improvement from 16% to 63%. As noted previously, the

improvement in this case is expected to be less because the

abrupt changes of disparity inside discontinuity regions are

not significantly improved by the applied global-optimization

method since it is based on the minimization of an energy

function aimed to smooth the depth discontinuity along the

scan lines. The design was compiled and downloaded into a

GiDEL PROCStar-III board for testing. As the proposed

architecture exploits massive parallelism, an increase in the

disparity range improves the speedup performance with

respect to a software baseline implementation. Performance

was measured with speedups of about 319 and 512, for the 30

and 50 disparity ranges respectively, as compared to

optimized C++ code executed on a 2.26 GHz Xeon E5520

core. The maximum frame rate of 406 fps was achieved for

both IP cores. Compared to the cited software

implementations in the literature [10, 12, 13, 14, and 17], our

proposed stereo-vision architecture outperformed them by one

to two orders of magnitude in terms of frame rate.

TABLE I. COMPARISON OF PERFORMACE RESULTS

System Image Size

[Pixel]

Device Disparity

Range

[Pixel]

Resources

Frame

Rate

[fps]

B [%]

Tsukuba Venus Teddy Cones

Nocc Nocc Nocc Nocc

All All All All

Disc Disc Disc Disc

Our proposed

stereo-vision

architecture
640×480

FPGA

Altera

Stratix-III

E260

30

33,881 Comb. ALUTs 949 Mem. ALUTs

101,802 Logic registers 102,288 Tot registers

493,683 Mem. Bits
406

4.39 2.41 5.13 3.30

5.21 2.96 6,54 4.75

15.54 13.81 15.76 8.63
50

50,402 Comb. ALUTs 320 Mem. ALUTs

157,005 Logic registers 157,491 Tot registers

505,355 Mem. Bits

[2] 640×480
FPGA

Xilinx Xc4vlx200
64

12 DSP

322 18Kb-BRAM

51,191 Slices

230

9.79 3.59 12.50 7.34

11.56 5.27 21.50 17.58

20.29 36.82 30.57 21.01

[5] 750×400

FPGA

Altera Stratix

EP1S60

60
38,944 Logic Elements

557,056 Mem. Bits
60

22.7 15.1 13.9 5.96

23.7 15.9 20.7 12.7

26.2 25.3 29.0 15.5

[6]
640×480 FPGA

Xilinx XC4VLX60
30

63 DSP 64 BRAM 12,974 Slices 358 9.99 11.42 17.19 17.12

10.64 12.28 19.38 20.18

12.88 16.61 25.75 23.61 1280×720 63 DSP 128 BRAM 15,728 Slices 97

[10] 640×480 CPU
32

AMD Athlon XP 2800+
15.2 n.a.* n.a.* n.a.* n.a.*

4.12 10.10 n.a.* n.a.*

n.a.* n.a.* n.a.* n.a.* 50 12.3

[12] 640×480 CPU + GPU
32 3GHz PC +

ATI Radeon XL1800

7.63 2.05 1.92 7.23 6.41

4.22 2.98 14.4 13.7

10.6 20.3 17.6 16.5 48 5.46

[13] 320×240 CPU + GPU 20

3 GHz P4 CPU

512 MB RAM

ATI Radeon X800

10

1.34 2.73 9.03 13.1

3.36 3.81 16.8 20.1

7.10 10.1 18.4 20.1

[14] 512×384 CPU + GPU 60
Core2, 2.20GHz

NVIDIA GeForce GTX 480
10

1.07 0.09 4.10 2.42

1.48 0.25 6.22 7.25

5.73 1.15 10.9 6.95

[17] 640×480
MIMD many-core

architecture
48 Tilera TILEPro64 71.5

n.a.*

*
 n.a. = not available

HW

CPU/GPU

Compared to a CPU-only implementation [10] of a stereo-

matching system based upon a coarse to fine approach of the

dynamic programming on a 2.2 GHz AMD Athlon XP 2800+

CPU, our speedup in terms of fps is almost 33 times faster.

Compared to an MIMD (Multiple Instruction, Multiple Data)

many-core implementation [17], in which the disparity map

calculation of the SSD (Sum of Squared Differences)

correlation metric was executed on the Tilera TILEPro64

architecture, consisting of 64 32-bit processing cores, our

speedup is almost 6 times faster. Compared to works that

include CPU and GPU [12, 13, 14], our speedup ranges from

about 40 to 74. In summary, a performance vs. accuracy graph

of the systems reported in Table I is shown in Fig. 8, where

performances are reported in terms of frames per second, and

accuracy is the average of the percentage of good pixels

calculated as (100-B) over the Nocc, All and Disc regions. As

shown in this figure, our solution provides the highest speed

performances while approaching the level of accuracy of the

software CPU/GPU global-methods implementations.

5 Conclusions

 This paper presents a novel hardware architecture using

FPGA-based reconfigurable computing (RC) to calculate

dense disparity maps by exploiting a global method based on

the dynamic-programming optimization of the Hamming

distance of the Census-transform cost function. Recent stereo-

vision hardware solutions exploit parallelism by replicating

the window-based image elaborations in local-area

approaches, but accuracy is limited because the disparity

result is optimized by locally searching for the minimum value

of a cost function. Our proposed solution, based on global

methods and a parallel and fully pipelined architecture,

significantly improves the accuracy as compared to recent

hardware solutions. Moreover, when compared to the more

accurate stereo-matching approaches based on dynamic-

programming methods executing on CPUs and GPUs, the

proposed stereo-vision architecture outperforms them by one

to two orders of magnitude in speed. As a result, our solution

provides the best performance while approaching the level of

accuracy of the software CPU/GPU global-methods

implementations. High accuracy together with high

performance make the proposed stereo-vision architecture an

ideal solution for 3D robot-assisted medical systems, tracking,

and autonomous navigation systems, where accuracy and

speed constraints are very stringent.

6 References

[1] Middlebury Stereo-Vision page, available at

http://vision.middlebury.edu/stereo/

[2] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M.

Kim, and J. W. Jeon, “FPGA Design and Implementation of a

Real-time Stereo Vision System”, IEEE Trans. on Circuits

and Systems for Video Technology, vol. 20, pp.15 – 26, 2010.

[3] A. Darabiha, J. Rose, and W. J. Maclean, “Video-rate

stereo depth measurement on programmable hardware,” in

Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern

Recognit., Madison, WI, vol. 1. Jun. 2003, pp. 203–210.

[4] Masrani, D.K.; MacLean, W.J.; "A Real-Time Large

Disparity Range Stereo-System using FPGAs", Computer

Vision Systems, 2006 ICVS '06. IEEE International

Conference on, pp. 13- 13, 04-07 Jan. 2006.

[5] K. Ambrosch, W. Kubinger, "Accurate hardware-based

stereo vision", Computer Vision and Image Understanding,

Vol.114, pp.1303-1316, 2010.

[6] P. Zicari, S. Perri, P. Corsonello, G. Cocorullo, “Low-

cost FPGA stereo vision system for real-time disparity maps

calculation”, Microprocessors and Microsystems, Vol. 36, pp.

281-288, February 2012, Elsevier.

[7] J. Woodfill and B. V. Herzen. “Real-Time Stereo Vision

on the PARTS Reconfigurable Computer”, IEEE Symposium

on FPGAs for Custom Computing Machines, pp. 201–210,

Napa Valley, CA, USA 1997.

[8] C. Georgoulas, I. Andreadis, "A real-time fuzzy

hardware structure for disparity map computation", Journal of

Real-Time Image Processing, DOI 10.1007/s11554-010-

0157-6, 2010.

[9] J. C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee., “A

dense stereo matching using two-pass dynamic programming

with generalized ground control points”, Proceedings of

Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1075–1082, 2005.

[10] S. Forstmann, J. Ohya, Y. Kanou, A. Schmitt, and S.

Thuering, “Real-time stereo by using dynamic programming”,

Proc. of CVPR Workshop on Real-time 3D Sensors and Their

Use, 2004.

[11] M. Gong and Y.-H. Yang, “Near real-time reliable

stereo matching using programmable graphics hardware”,

Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 924–931, 2005.

[12] L. Wang, M. Liao, M. Gong, R. Yang, D. Nister, “High-

quality Real-time Stereo using Adaptive Cost Aggregation”,

3D Data Processing, Visualization, and Transmission, Third

International Symposium on, pp. 798 – 805, 14-16 June 2006.

[13] M. Gong and Y.H. Yang, “Real-Time Stereo Matching

using Orthogonal Reliability-Based Dynamic Programming

Algorithm,” IEEE Trans. on Image Processing,

Correspondence, Vol. 16, 2007, pp. 879-884.

[14] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang and X.

Zhang, “On Building an Accurate Stereo Matching System on

Graphics Hardware”, GPUCV'11: ICCV Workshop on GPU

in Computer Vision Applications, 2011.

[15] D. Scharstein and R. Szeliski. “A taxonomy and

evaluation of dense two-frame stereo correspondence

algorithms”, International Journal of Computer Vision,

47(1/2/3): 7-42, April-June 2002.

[16] R. Zabih, J. Woodfill. “A non-parametric approach to

visual correspondence”, IEEE Transaction on Pattern

Analysis and Machine Intelligence, 1996.

[17] Safari, S.; Fijany, A.; Diotalevi, F.; Hosseini, F.; "Highly

parallel and fast implementation of stereo vision algorithms

on MIMD many-core Tilera architecture", Aerospace

Conference, 2012 IEEE, pp.1-11, 3-10 March 2012.

http://vision.middlebury.edu/stereo/

