
A Scheduling and Binding Heuristic for High-Level
Synthesis of Fault-Tolerant FPGA Applications

Aniruddha Shastri, Greg Stitt, and Eduardo Riccio
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL, USA

aniruddha.shastri@gmail.com, gstitt@ece.ufl.edu, eduardo.riccio@gmail.com

Abstract—Space computing systems commonly use field-
programmable gate arrays to provide fault tolerance by applying
triple modular redundancy (TMR) to existing register-transfer-
level (RTL) code. Although effective, this approach has a 3x
area overhead that can be prohibitive for many designs that
often allocate resources before considering effects of redundancy.
Although a designer could modify existing RTL code to reduce
resource usage, such a process is time consuming and error
prone. Integrating redundancy into high-level synthesis is a more
attractive approach that enables synthesis to rapidly explore
different tradeoffs at no cost to the designer. In this paper,
we introduce a scheduling and binding heuristic for high-level
synthesis that explores tradeoffs between resource usage, latency,
and the amount of redundancy. In many cases, an application
will not require 100% error correction, which enables significant
flexibility for scheduling and binding to reduce resources. Even
for applications that require 100% error correction, our heuristic
is able to explore schedules that sacrifice latency for reduced
resources, and typically save up to 47% when relaxing the latency
up to 2x. When the error constraint is reduced to 70%, our
heuristic achieves typical resource savings ranging from 18% to
49% when relaxing the latency up to 2x, with a maximum of
77%. Even when comparing with optimized RTL designs, our
heuristic uses up to 61% fewer resources than TMR.

I. INTRODUCTION

Space computing systems increasingly rely on field-
programmable gate arrays (FPGAs) to meet performance and
power constraints that cannot be met by other computing
technologies [1]. One unique challenge in such systems is the
requirement for fault tolerance due to radiation-induced single-
event upsets (SEUs). In addition to providing performance and
power advantages, FPGAs also provide a convenient way of
protecting against such upsets by using redundant logic.

One common form of redundancy is triple modular redun-
dancy (TMR), which replicates a register-transfer-level (RTL)
circuit three times and then votes on the outputs to identify and
correct errors. When combined with scrubbing (i.e., reconfig-
uring a faulty resource), TMR provides an effective level of
fault tolerance for many applications.

One key disadvantage of TMR is a 3× increase in re-
sources, which can be prohibitive for some applications, or
can significantly increase cost by requiring a larger FPGA.
One option for reducing TMR overhead is to manually explore
different schedules for an RTL circuit to use fewer resources
at the expense of performance. However, such exploration in
RTL code is time consuming and error prone. For example, in

many situations, designers apply TMR to existing IP [2] that
is difficult to modify.

Alternatively, if designers specify their application using
high-level code, high-level synthesis can perform such explo-
ration without any effort required by the application designer.
Previous work has introduced high-level synthesis techniques
for generating fault-tolerant circuits [3], [4], but those studies
focused largely on ASICs, or where SEUs tend to cause
transient errors [4]–[6]. Because FPGAs are largely SRAM
devices, errors caused by SEUs are often semi-permanent
because the errors will exist indefinitely until after scrubbing.

In this paper, we introduce an FPGA-specialized heuristic
for scheduling and binding that enables high-level synthesis to
identify attractive tradeoffs between latency and area while
also applying redundancy to correct errors. This heuristic
is based on the observation that although detecting errors
is critical, correcting all errors is not always as necessary.
Therefore, the heuristic includes in the exploration an error-
correction percentage that can be specified as a design con-
straint. Although numerous studies have introduced heuristics
for trading off latency and resources during high-level synthe-
sis, our heuristic simultaneously considers latency, resources,
and error-correction percentage. We show that our heuristic is
able to save up to 77% of resources at 2× latency, while still
detecting all errors and correcting over 70% of errors. When
the heuristic is constrained to below 100% error correction
we observe up to an additional 24% savings when relaxing
the latency by up to 2×. Furthermore, the reported results are
pessimistic due to a decreased probability of SEUs for smaller
circuits.

II. RELATED WORK

Although there has been significant work on scheduling and
binding problems for high-level synthesis [7]–[9], those studies
do not consider fault tolerance or error correction. More recent
work has integrated fault tolerance into high-level synthesis,
but focuses on different problems than this paper. For example,
Safari [10] applies fault-tolerance measures after scheduling
and binding, whereas our approach integrates fault-tolerance
considerations into scheduling and binding. Bolchini [11] ex-
plores the design space of scheduling and binding with the goal
of optimizing partial dynamic reconfiguration for designs that
apply TMR, whereas we vary the quality of error correction
to reduce resources. Sengupta [12] leverages bacterial foraging
to perform binding based on power-performance tradeoffs and
targets transient faults, whereas our work focuses on variation

1x 2x

3x

1

2

3

4

1y 2y

3y 1z

2z

3z

Module x Module y Module z
C

y
cl

e

Undetectable

Error

Uncorrectable

Error

Correctable

Error

Fig. 1. An example binding onto three color-coded resources. For this
binding, a single fault can result in an undetectable, uncorrectable (but
detectable), or correctable error, depending on the resource. Each operation is
identified as IDModule.

in error-correction ability while maintaining error-detection
capabilities for semi-permanent faults. Inoue [6] varies the
quality of fault tolerance in ASICs, but considers multi-
cycle transient SEU faults. Although complementary, our work
focuses on semi-permanent faults due to the focus on FPGAs.
Furthermore, some approaches consider only scheduling or
binding, but not both (e.g., [12], [13]).

Previous work has also explored tradeoffs related to fault
tolerance. Morgan et al. [14] compare TMR with other forms
of redundancy and find TMR to be superior both in terms
of reliability and cost, but that study did not evaluate Pareto-
optimal tradeoffs for lower error correction. Studies such as
[3] and [15] consider tradeoffs between cost, latency, and
reliability, but consider fault tolerance tradeoffs using resources
that have different levels of built-in redundancy. The heuristic
presented in this paper explores reduced reliability by sharing
resources across redundant operations. Dynamic reconfigura-
tion techniques using evolutionary algorithms provide some
variation in reliability and cost, but often require high area
and computational overhead [16]. The heuristic presented here
seeks to address this overhead by minimizing area.

Other studies have investigated FPGA resources with built-
in redundancy to combat SEUs [5], [17]. Our work comple-
ments such architectural strategies by enabling reduced fault-
tolerance on resources that lack built-in redundancy.

Many studies have investigated using partial reconfigura-
tion to reconfigure the part of the FPGA affected by a SEU
in [13], [18]–[20], which can be combined with our work to
improve the fault tolerance of the overall design.

Other work has focused on how to prioritize the application
of redundancy to resources that are more important and/or are
more susceptible to faults [21], [22]. Siozios et al. [23] discuss
Adaptive TMR, which uses game theory to prioritize applica-
tion of redundancy measures to critical sections of the design.
Our work can be deployed to provide low fault tolerance to
the less-critical sections identified by these methods, with low
overhead. Previous work has also investigated optimizations
due to voter placement [2]. Our work is complementary and
could potentially integrate those voter placement strategies.

III. PROBLEM DEFINITION

Although there are different optimization goals that could
be explored while varying the amount of error correction, in
this paper we focus on the problem of minimum-resource,
latency- and error-constrained scheduling and binding, which
for brevity we simply refer to as the problem. To explain the
problem, we introduce the following terms:

• Fault: A resource with an SEU-induced error.

• Module: One instance of the dataflow graph (DFG),
analogous to a module in TMR.

• Error: Any fault where one or more of the three
modules outputs an incorrect value.

• Undetectable Error: Any fault where all three modules
output the same incorrect value.

• Detectable Error: Any fault where one or more mod-
ules output different values.

• Uncorrectable Error: Any fault where two or more
modules output incorrect values.

• Correctable Error: Any fault where two or more
modules output a correct value.

• Error Correction % (EC%): The percentage of total
possible errors that are correctable by a given solution.

Fig. 1 illustrates several example error types, where all
operations with the same color are bound to a single resource.
A fault in the black resource results in an undetectable error
because all three modules will produce the same incorrect
value. If there is a fault in the medium-gray resource, this
binding causes an uncorrectable error because two modules (y
and z) will produce incorrect values. A fault in the light-gray
resource results in a correctable error because modules y and
z both produce correct outputs. Note that both gray resources
result in detectable errors because at least one module outputs
a different value than the other modules. We consider the error
correction to be 100% if all errors can be classified in this way
as correctable errors, although failures that occur in other parts
of the system may still cause incorrect outputs.

The input to the problem is a DFG D, a latency constraint
L expressed in number of cycles, and an error constraint E
specified as the minimum acceptable EC%. The output is
a solution X , which is a combination of a schedule S and
binding B for a redundant version of D. Given these inputs
and outputs, we define the problem as:

Minimize NUMRESOURCES(X)
Subject to LATENCY(X.S) ≤ L and

ERRORCORRECTION%(X.B) ≥ E and
ERRORDETECTION%(X.B) = 100%

In other words, the goal of the problem is to find a schedule
and binding that minimizes the number of required resources,
where the schedule does not exceed the latency constraint L,
the binding does not exceed the error constraint E, and all
errors are detectable. We provide an informal proof that this
problem is NP-hard as follows. If we remove both error con-
straints from the problem definition, the problem is equivalent
to minimum-latency, resource-constrained scheduling followed
by binding, which are both NP-hard problems [7], [9]. The

1: function FTA(D,L,E)
2: i← 0
3: Xc ← Xp ← Xb ← ∅
4: DFT ← TRIPLICATE(D)
5: while STOP(Xp, Xb, i) = false do
6: if ISPOW2(i) then
7: Xp ← Xb . Save previous best solution
8: S ← SCHEDULE(DFT , L)
9: B ← BIND(S,E)

10: Xc ← {S,B} . Store current solution
11: if Q(Xc) > Q(Xb) then
12: Xb ← Xc . Update best solution
13: i← i+ 1
14: return Xb . Return best solution found

15: function STOP(Xp, Xb, i) . Check for stopping condition
16: if i ≤ minTests then
17: return false
18: else if ISPOW2(i) and Q(Xb) ≤ Q(Xp)×Z then
19: return true . Stopping condition reached
20: else
21: return false

Fig. 2. Fault-Tolerance-Aware (FTA) Heuristic

correctable and detectable error constraints only make the
problem harder by expanding the solution space with replicated
versions of the input.

Note that a more practical definition of this problem would
minimize FPGA resources (e.g., lookup tables, DSP units),
as opposed to the number of coarse-grained resources (e.g.,
adders, multipliers), due to different operations requiring sig-
nificantly different numbers and types of FPGA resources. The
problem could easily be extended by simply replacing each
coarse-grained resource by the equivalent FPGA resources.
However, for ease of explanation, we present the problem
and heuristic in terms of numbers of coarse-grained resources.
Similarly, we could expand this definition to handle constraints
on initiation interval, performance, etc., but we focus on
latency and number of resources to make our experiments more
comparable to previous work [6], [19]. We plan to investigate
pipelined implementations in future work.

We assume that scrubbing occurs frequently enough so
there cannot be more than one faulty resource at a time, which
is often true for common SEU rates [1]. With this assumption,
based on our definitions, the total number of possible faults
(and errors) is equal to the total number of resources used by
the solution. Due to the likely use of SRAM-based FPGAs,
we assume that all faults persist until scrubbing removes the
fault. This contrasts with earlier work that focuses on transient
faults [4]–[6]. We assume the presence of an implicit voter at
the output of the modules, potentially using strategies from
[2].

One potential challenge with error correction is the possi-
bility of two modules producing incorrect outputs that have the
same value, which we refer to as aliased errors. Although we
could extend the problem definition to require no instances
of aliased errors, this extension is not a requirement for
many use cases [6]. In addition, by treating aliased errors

as uncorrectable errors, good solutions will naturally tend to
favor bindings that have few aliased errors. To further minimize
aliased errors, our presented heuristic favors solutions with the
highest EC% when there are multiple solutions that meet the
error constraint with equivalent resources.

IV. FAULT-TOLERANCE-AWARE (FTA) HEURISTIC

To solve the problem defined in the previous section, we
introduce the Fault-Tolerance-Aware (FTA) Heuristic as shown
in Fig. 2. The heuristic takes as input a DFG D, a latency
constraint L, and an error constraint E and creates a schedule
and binding of D that attempts to minimize resources while
meeting constraints. Note that before running this heuristic,
high-level synthesis would decompose the entire application
into multiple dataflow graphs, consisting of dataflow graphs
from different control states and decomposed dataflow graphs
for efficient voter placement [11], [24]. High-level synthesis
would then run this heuristic on each dataflow graph separately.

The heuristic initially triplicates D and then iteratively ex-
plores potential solutions (lines 5-13) by performing schedul-
ing (Section IV-A) and binding (Section IV-B). During each
iteration, the heuristic compares the quality (i.e., number of
resources returned from function Q(X)) of the current solution
Xc with the best solution so far Xb, and updates Xb when
necessary (lines 11-12). Note that solutions not meeting the
constraints will not be output by the scheduler or binder.

One scheduling challenge that is unique to handling error
correction is that the scheduler is unaware of the EC% until
after binding. Although a scheduler could potentially use a cost
function to estimate the results of binding, such a function is
not obvious. Instead, the heuristic introduces randomness into
each schedule using Random Non-Zero Slack List Scheduling,
which we introduce in Section IV-A, in a way that meets
latency constraints. For each schedule, the heuristic then
performs Singleton-Share Binding, discussed in Section IV-B,
to map operations onto resources in a way that meets error
constraints while also reducing resources.

The heuristic stops exploring new schedules and bindings
when certain stopping conditions, determined by the STOP()
function, become true. The heuristic explores solutions in
multiple phases, where each phase explores 2× more solutions
than the previous phase. Anytime a new phase begins, the
current best solution is saved as the solution from the previous
phase Xp (lines 6-7). As shown in lines 18-19, the stopping
condition occurs at the end of a phase (i.e., when i is a
power of 2) when the quality of the best solution is less than
a user-definable percentage Z better than the solution from
the previous phase. In other words, the heuristic completes a
phase and then checks if there was a significant improvement
compared to the previous phase. If so, the heuristic searches
2× more solutions until no significant improvement is found.
To ensure that noise from small numbers of tests does not
cause the heuristic to end early, the stopping condition includes
a user-configurable minimum numbers of tests (shown as
minTests in line 16).

A. Random Non-Zero Slack List Scheduling

Traditional scheduling methods such as list scheduling [7]
deterministically create a single schedule that specifies the

1: function SCHEDULE(D,L)
2: Sl ← ∅ . Scheduled DFG
3: Sa ← ALAPSCHEDULE(D,L)
4: Lc ← ∅ . List of candidate operations
5: for r ∈ RESOURCETYPES(D) do
6: Usager ← 1

7: while D.Ops− Sl.Ops 6= ∅ do
8: for r ∈ RESOURCETYPES(D) do
9: for c← 1, . . . , L do . Meet latency constraint

10: count← 0
11: Lc ← GETCANDIDATELIST(D,r)
12: for op ∈ Lc s.t. SLACK(op, Sa, c) = 0 do
13: Sl.Ops← Sl.Ops ∪ {op}
14: Sl.Cycle[op]← c
15: count← count+ 1
16: if count > Usager then
17: Usager ← Usager + 1

18: for op ∈ Lc s.t. SLACK(op, Sa, c) 6= 0 do
19: if RANDOM() > 0.5 then
20: if count < Usager then
21: Sl.Ops← Sl.Ops ∪ {op}
22: Sl.Cycle[op]← c
23: count← count+ 1
24: return Sl . Return scheduled DFG

Fig. 3. Random Non-Zero Slack List Scheduling Heuristic

number of required resources independently from binding.
When considering error correction, such an approach does not
work because the EC% is not known until after binding.

To adapt existing schedulers to better support error cor-
rection, our heuristic uses an extended version of minimum-
resource, latency-constrained list scheduling that we refer to
as Random Non-Zero Slack List Scheduling, which is shown
in Fig. 3. For brevity, we omit a complete explanation of
traditional list scheduling and refer the reader to previous work
[7]. Like traditional list scheduling, our scheduler initially uses
an ALAP schedule to determine the slack of each operation,
which is the remaining number of cycles before the operation
has to be scheduled without violating latency constraints.
Similarly, our heuristic always schedules operations that have
zero slack (lines 12-17).

Our scheduler differs from traditional list scheduling in the
way that non-zero slack candidates are handled. Traditional
list scheduling only schedules non-zero slack candidates when
the number of resources does not increase. As shown in lines
(18-23), our scheduler injects randomness into the schedule
by scheduling non-zero slack candidates with a probability
of 50%. When applied to the triplicated dataflow graph,
this randomness allows for each module to have a different
schedule, further enabling binding to share resources across
modules, which reduces resources compared to TMR.

B. Singleton-Share Binding

Given a schedule and an error constraint, binding is re-
sponsible for mapping operations from the schedule onto a
resource, in a way that minimizes resources while meeting the
error constraint. Traditional binding algorithms typically di-
rectly use the resource requirements specified by the scheduler,

1x 2x

3x

1

2

3

4

1y 2y

3y

1z 2z

3z

Module x Module y Module z

C
y
cl

e

4z4y

4x

(a) Binding after stage 1, with patterned singleton bindings.

1x 2x

3x

1

2

3

4

1y 2y

3y

1z 2z

3z

Module x Module y Module z

C
y
cl

e

4z4y

4x

(b) Stage 2 intermediate binding at line 35 of binding algorithm.

1x 2x

3x

1

2

3

4

1y 2y

3y

1z 2z

3z

Module x Module y Module z

C
y
cl

e

4z4y

4x

(c) Binding after stage 2.

Fig. 4. Sample binding for a latency constraint of 4 cycles and error constraint
of 50%. In the sub-figures, resources are differentiated by the color of the node.
The patterned nodes in (a) and (b) represent singleton bindings. According to
Equation 4, at most 2 resources can be shared across two modules. In (b), 2x,
1y , 3y and 4y are selected to share a resource, resulting in an EC% of 80%.
Merging the singleton bindings of 2y and 1z results in binding (c), with an
EC% of 50%.

without considering reduction in fault tolerance by additional
sharing of resources across modules. To deal with this issue,
we introduce the Singleton-Share Binding Heuristic.

For ease of presentation, the following explanation uses the
simplified problem definition of minimizing the total number
of coarse-grained resources. To handle FPGA resources in-
stead, the heuristic would simply translate each coarse-grained

resource into FPGA resources, and then prioritize sharing of
coarse-grained resources that use the most FPGA resources.

Singleton-Share Binding performs binding in two stages.
The first stage binds resources within each separate module
using a common algorithm based on clique partitioning [8].
At the end of stage 1, the heuristic has bound each operation
onto a minimum number of resources within each module,
while maintaining 100% error detection and error correction
because no operations are shared across modules. Fig. 4(a)
demonstrates an example stage 1 binding, where the six
different colors represent six different resources.

The second stage tries to reduce resources by sharing re-
sources across operations from different modules. The heuristic
selects a singleton, which is a resource that executes a single
operation, and then shares that operation with a resource
used in a different module. After performing this share, the
singleton resource is no longer needed and can be removed.
Fig. 4(b) demonstrates a singleton share of operation 2x onto
the resource used by operations 1y , 3y , and 4y , in which
case the original resource used by 2x is eliminated. However,
this share also reduces the EC% from 100% to 80% because
this binding now has one uncorrectable error out of five total
possible errors from the five remaining resources.

The main challenge of the heuristic is that the sharing can-
not allow the EC% to fall below the error constraint. Because
the number of uncorrectable errors equals the resources that
have been shared across two modules, the condition for the
EC% constraint to be satisfied is as shown in (1),

resourcesused − resourcesmShared

resourcesused
× 100% ≥ E (1)

which can can be reduced to (2):

resourcesmShared ≤ resourcesused × (1− E/100) (2)

Each time the heuristic eliminates a singleton resource by
sharing the corresponding operation, the number of resources
shared across modules increases by one. Hence, for i such
shares performed on a stage 1 initial binding that uses
usagestg1 resources, (2) is equivalent to (3).

i ≤ (usagestg1 − i)× (1− E/100) (3)

Since the limit on the number of singleton shares is an integer,
i from (3) is equivalent to limit in (4). Using (4), the heuristic
can calculate at the outset how many singleton shares can be
performed before the error constraint is no longer satisfied.

limit ≤ busagestg1 × 100−E/200−Ec (4)

The full Singleton-Share Binding Heuristic is shown in
Fig. 5. The heuristic initially performs the stage 1 binding
(line 2) and then passes that binding, along with the schedule
and error constraint to the stage 2 binder. Stage 2 initially
determines the number of resources used by the stage 1 bind-
ing and calculates the maximum amount of sharing without
violating the error constraint (lines 11-12). In the figure, every
b corresponds to a set of operations mapped to a single resource
(i.e., the binding for that resource). B represents a binding for
multiple resources as a set of these b sets. Line 13 creates a set
of all operations that were mapped onto singleton resources in
stage 1. Lines 14-15 initialize the stage 2 binding. The loop

1: function BIND(S,E)
2: Bstg1 ← STAGE1(S)
3: B ← STAGE2(S,E,Bstg1)
4: return B

5: function STAGE1(S) . Bind modules independently
6: Bstg1 ← ∅
7: for Si ∈ INDIVIDUALMODULES(S) do
8: Bstg1 ← Bstg1 ∪ CLIQUEPARTITIONING(Si)
9: return Bstg1

10: function STAGE2(S,E,Bstg1) . Bind across modules
11: usagestg1 ← TOTALRESOURCEUSAGE(Bstg1)
12: limit← busagestg1 × 100−E/200−Ec . From (4)
13: Bs ← {bs ∈ Bstg1 | |bs| = 1}
14: Bstg2 ← Bstg1 . Initialize binding solution
15: mSharing ← 0 . Resouces shared across modules
16: for {bs} ∈ Bs do . Loop through list of singletons
17: if mSharing = limit then
18: return Bstg2 . EC constraint reached
19: for b ∈ Bstg2 −Bs do . Loop through resources
20: if RESTYPE(b)=RESTYPE(bs) then
21: mb ←MODULES(b)
22: mbs ←MODULE(bs)
23: if |mb| = 1 or mbs ∈ mb then
24: isResourceFound← True
25: for c ∈ CYCLES(b, S) do
26: if c = S.Cycle[bs] then
27: isResourceFound← False
28: if isResourceFound = True then
29: if mbs /∈ mb then
30: mSharing ← mSharing + 1

31: b← b ∪ {bs} . Share singleton
32: Bstg2 ← Bstg2 − {bs}
33: Bs ← Bs − {bs}
34: break . Try next singleton in Bs

35: for {bi}, {bj} ∈ Bs s.t. S.Cycle[bi] 6= S.Cycle[bj] do
36: if RESTYPE(bi)=RESTYPE(bj) then
37: if mSharing = limit then
38: return Bstg2 . EC constraint reached
39: if MODULE(bi)6=MODULE(bj) then
40: mSharing ← mSharing + 1

41: Bstg2 ← Bstg2 ∪ {bi, bj} . Merge singletons
42: Bstg2 ← Bstg2 − {bi} − {bj}
43: Bs ← Bs − {bi} − {bj}
44: return Bstg2 . Return binding solution

Fig. 5. Singleton-Share Binding Heuristic

from line 16 to 34 initially selects an operation bs mapped
onto a singleton resource (line 16). Next, the heuristic checks
to see if more sharing can be done. If so, the loop from line 19
to 34 considers binding bs onto a non-singleton resource used
by a different set of operations b. If all of these operations are
the same type (line 20), and if the b operations are either all
in one module or share the same module as bs (line 23), then
the heuristic considers binding bs to the resource used by b.
The condition in line 23 ensures that error detection capability
is maintained. The loop at line 25 checks to ensure that none

TABLE I. BENCHMARK SUMMARY

Benchmark Description

conv5x5 5x5 convolution kernel.

fft8 8-point radix-2 DIT FFT based on butter-fly architec-
ture.

fft16 16-point radix-2 DIT FFT based on butter-fly archi-
tecture.

fftrad4 4-point radix-4 FFT based on dragon-fly architecture.
Efficiently decomposes complex operations into real
operations [25].

linsor Single iteration kernel to solve a system of linear
equations (Ax = B) in 5 variables, using successive-
over-relaxation (SOR) method [26].

linjacobi Single iteration kernel to solve a system of linear
equations in 5 variables, using Jacobi method [26].

lapsor Single iteration kernel to solve Laplace’s equation
(∇2f = 0), using successive-over-relaxation (SOR)
method [26].

lapjacobi Single iteration kernel to solve Laplace’s equation
using Jacobi method [26].

dfg0-dfg7 Eight randomly generated DFGs.

of the operations in b occur at the same time as bs, otherwise
sharing is not possible. If sharing is possible, the heuristic
moves operation bs onto the resource used by b (lines 28-34)
and updates the amount of sharing across modules if necessary
(lines 29-30).

The heuristic repeats this process until there are no more
non-singleton resources that can share operations from re-
maining singletons. Fig. 4(b) provides an example of this
situation, where the heuristic cannot share 2y and 1z from
their singleton resources with any other resource. At this point,
the heuristic considers combining operations from multiple
singletons (lines 35-43) as long as the operations are scheduled
in different cycles. Fig. 4(c) demonstrates this process by
mapping operation 2y onto the singleton resource used by 1z .

V. EXPERIMENTS

In this section, we evaluate the proposed heuristic by
recording the minimum resource usage observed for a variety
of input DFGs given different latency and error constraints.
Section V-A discusses the experimental setup. Section V-B
evaluates resource savings compared to existing RTL code not
optimized for TMR. Section V-C evaluates similar experiments
but compares to RTL code optimized for TMR.

A. Experimental Setup

To evaluate the heuristic we implemented an analysis tool
in C#, combined with a PowerShell script, to automate the
experiments on a 64-bit Windows 7 Enterprise machine.

We evaluate 16 DFG benchmarks, which are summarized
in Table I. To represent signal-processing applications, we
modeled DFGs for 5 × 5 convolution, 8-point radix-2 butter-
fly FFT, 16-point radix-2 butterfly FFT, and 4-point radix-4
dragonfly FFT. Of these, the radix-4 FFT efficiently expands
the complex arithmetic involved to equivalent real operations
as in [25]. For the radix-2 FFTs, we use resources capable
of directly performing complex operations. To represent fluid-
dynamics and similar applications, we modeled two DFGs
that solve 5-dimensional linear equations (Ax = B) using

the Jacobi iterative method and the successive over-relaxation
(SOR) iterative method [26]. We also modeled two DFGs that
solve Laplace’s equation (∇2f = 0) using the Jacobi and SOR
methods. We also complemented these real benchmarks with
eight synthetic benchmarks (dfg0-dfg7) that we created using
randomly generated DFGs.

We use two baselines for different usage scenarios:

1) TMR Applied to Existing RTL (Section V-B): Designers
commonly achieve fault tolerance by applying TMR to existing
RTL code. As a result, that RTL code might use a number of
resources that is acceptable without redundancy, but results in
significant overhead after applying TMR. To approximate this
usage, we assume that the RTL uses an ASAP schedule, which
we have observed to be common in RTL implementations.

2) TMR Applied to Optimized RTL (Section V-C): For
usage scenarios where a designer is willing to optimize an RTL
implementation to reduce resources before applying TMR, we
approximate that optimized RTL by using a schedule from
minimum-resource, latency-constrained list scheduling [7].

To simplify discussion of results, we present overall re-
source savings instead of savings of each type of resource,
which varies for each example. Resource savings of 0% corre-
sponds to no improvement, whereas resource savings of 75%
corresponds to resource usage being a quarter of the baseline’s
total number of resources. Note that by this definition, the the-
oretical maximum resource savings achievable is always less
than 100%. We consider four types of operations - addition,
subtraction, multiplication and division - mapped to three types
of resources - adder, multiplier, and divider. Each addition or
subtraction operation is mapped to an adder resource, each
multiplication operation is mapped to a multiplier resource,
and each division operation is mapped to a divider resource.
The heuristic could be extended to optimize for a particular
type of FPGA resource (e.g. LUTs) by considering FPGA
requirements of each type of resource, and could be integrated
with glue logic estimation approaches [27].

B. Comparison with TMR applied to existing RTL

Table II presents resources savings of the FTA heuristic
compared to existing RTL code using TMR. The rows of the
table correspond to different benchmarks, and the columns cor-
respond to different latency constraints up to 2× the minimum
possible latency. The latency constraint is normalized by each
DFG’s minimum possible latency. Each table entry shows two
interpolated savings results for an error correction constraint
of 100% and 70+% respectively, where the latter refers to the
average of the savings observed for error-correction values
varying between 70% and 99%. Interpolation is required
because for DFGs of different depths, variation in latency
in steps of 1 cycle does not correspond to variation in the
normalized latency constraint in steps of exactly 0.1×.

Even for the minimum-latency schedule, the FTA heuristic
was able to save between 16% and 18% on average for the two
different error constraints. As the latency constraint increased
to 2× the minimum latency, the heuristic saved up to an aver-
age of 47% and 49% for each error correction constraint. The
difference in savings with the two error correction constraints
reached a maximum value of 24% for the dfg1 benchmark at
1.5× latency relaxation.

TABLE II. % RESOURCE SAVINGS OF FTA HEURISTIC COMPARED TO EXISTING RTL USING TMR FOR 100% AND 70+% EC

Normalized Latency Constraint (×)

Benchmark 1.0× 1.1× 1.2× 1.3× 1.4× 1.5× 1.6× 1.7× 1.8× 1.9× 2.0×

100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+% 100% 70+%

conv5x5 19% 19% 33% 34% 45% 46% 51% 57% 53% 53% 52% 60% 55% 61% 58% 62% 59% 63% 60% 64% 59% 64%

fft8 6% 9% 9% 13% 11% 17% 14% 22% 17% 27% 24% 33% 31% 38% 37% 40% 42% 42% 41% 45% 39% 48%

fft16 8% 10% 9% 11% 11% 14% 13% 19% 20% 23% 25% 28% 28% 32% 29% 36% 37% 43% 44% 48% 47% 52%

fftrad4 0% 0% 7% 9% 13% 18% 16% 21% 18% 24% 21% 26% 23% 28% 23% 31% 23% 33% 30% 35% 36% 37%

linsor 67% 69% 69% 72% 71% 74% 73% 75% 72% 75% 74% 76% 73% 76% 75% 77% 74% 77% 75% 77% 75% 77%

linjacobi 28% 28% 34% 37% 39% 43% 42% 47% 46% 50% 50% 51% 52% 52% 50% 55% 54% 56% 55% 57% 54% 57%

lapsor 0% 0% 0% 11% 0% 22% 17% 25% 33% 29% 33% 30% 33% 31% 33% 32% 33% 33% 33% 32% 33% 31%

lapjacobi 0% 0% 9% 10% 18% 19% 22% 25% 22% 28% 22% 30% 26% 34% 31% 37% 33% 37% 33% 35% 33% 33%

dfg0 10% 13% 16% 18% 22% 24% 27% 29% 32% 34% 36% 39% 40% 44% 43% 47% 45% 47% 46% 47% 48% 48%

dfg1 0% 9% 0% 12% 0% 15% 0% 18% 0% 21% 0% 24% 2% 24% 4% 24% 7% 25% 9% 25% 11% 25%

dfg2 0% 16% 6% 0% 12% 8% 18% 23% 23% 29% 27% 33% 30% 37% 35% 40% 41% 38% 47% 37% 53% 36%

dfg3 27% 27% 34% 37% 41% 47% 46% 53% 49% 55% 52% 57% 53% 58% 54% 59% 56% 59% 57% 59% 58% 59%

dfg4 39% 41% 37% 42% 34% 44% 35% 45% 40% 47% 44% 49% 44% 51% 44% 53% 44% 53% 44% 52% 44% 52%

dfg5 28% 40% 34% 41% 39% 42% 42% 44% 44% 46% 47% 47% 50% 49% 50% 49% 50% 50% 50% 50% 50% 50%

dfg6 25% 26% 30% 35% 35% 43% 41% 49% 48% 51% 54% 54% 52% 55% 51% 56% 51% 57% 52% 58% 54% 59%

dfg7 0% 0% 13% 15% 26% 30% 36% 40% 43% 46% 50% 52% 50% 53% 50% 55% 51% 56% 54% 57% 56% 58%

Average 16% 18% 21% 25% 26% 32% 31% 37% 35% 40% 38% 43% 40% 45% 42% 47% 44% 48% 46% 49% 47% 49%

0

20

40

60

80

1 1.2 1.4 1.6 1.8 2

R
es

o
u

rc
e

S
av

in
g

s
(%

)

Normalized Latency Constraint (×)

conv5x5 100% EC

conv5x5 70+% EC

fft8 100% EC

fft8 70+% EC

linsor 100% EC

linsor 70+% EC

Fig. 6. Trends and exceptions observed on comparison with TMR applied
to existing RTL. A common trend seen is diminishing returns with increase
in latency (e.g., conv5x5 benchmark). An exception to this is observed
for the linsor benchmark, where dependencies in the DFG enable large
resource savings that are not apparent to an RTL design. Consistent resource
savings improvement with relaxation in the error correction constraint is also
commonly observed, as seen in the fft8 benchmark results.

One clear trend was that resource savings experienced
diminishing returns with increased latency constraints. Fig. 6
demonstrates an example for 5×5 convolution benchmark
(conv5x5), where improvements became much less significant
after an increased latency constraint of 1.5×. For designs that
are not tightly latency constrained, this result provides an
attractive tradeoff where designers may be able to sacrifice
latency to achieve reduction in resources, while still meeting
error constraints. The majority of other benchmarks also
exhibit this trend. An exception is observed in the resource
savings for the SOR linear equation solver benchmark (linsor),
seen in Fig. 6. These increased savings were due to the
dependencies between sections of the DFG, which enabled
large amounts of resource sharing that may not be immediately
apparent to an RTL design. Averaged over latencies of 1×

0

10

20

30

40

50

60

1 1.2 1.4 1.6 1.8 2

R
es

o
u

rc
e

S
av

in
g

s
(%

)

Normalized Latency Constraint (×)

100% EC
70+% EC
100% EC Trend
70+% EC Trend

Fig. 7. Summary of FTA Heuristic’s resource savings with respect to the
optimized RTL w/ TMR. The lighter lines represent results where the error
correction was 100%. The darker lines represent the average of results where
the error correction was varied between 70% and 99%. The dashed lines
represent the average observed for all the benchmarks combined, while the
solid lines represent trend-lines approximated as 2nd order polynomials.

to 2×, the linsor benchmark experienced a significant 73%
average resource savings for an error constraint of 100% and
75% average resource savings when the error constraint was
lowered between 70% and 99%.

Another interesting trend was that in most cases, there
was a consistent increase in the resource savings when the
error constraint was slightly lowered. For example, the fft8
benchmark shown in Fig. 6 achieved average resource savings
for an error constraint ranging between 70% and 99% that
were up to 9.8% higher than an error constraint of 100%.

C. Comparison with RTL optimized for TMR

This section compares the FTA heuristic with RTL that a
designer optimizes for TMR. Due to space constraints, we omit
a table with all the benchmarks and instead provide the sum-

mary shown in Fig. 7. Although the average resource savings
here were lower than the previous experiments, these results
represent the minimum savings that the heuristic will be able to
achieve compared to an RTL implementation. Even though the
heuristic showed 0% savings for 100% error correction under
some latency constraints, in some cases the heuristic achieved
an improvement of up to 58% for 100% error correction. For an
error constraint above 70%, the heuristic achieved savings up
to 61%. Moreover, even when decreasing the error constraint to
as low as 50%, the heuristic still found results with minimum
resource usage but with a much higher EC% of up to 98%.

VI. CONCLUSIONS

In this paper, we introduced the Fault-Tolerance-Aware
Heuristic to solve the minimum-resource, latency- and error-
constrained scheduling and binding problem. This heuristic
provides attractive tradeoffs compared to TMR by perform-
ing redundant operations on shared resources. Unlike TMR,
which triplicates all resources, our approach enables a designer
to specify a desired amount of error correction, which the
heuristic meets while using the minimum number of resources.
Experimental results show typical resource savings ranging
from 16% to 49% when compared to TMR applied to existing
RTL code. When compared to RTL that is optimized for fault
tolerance before performing TMR, the heuristic was able to
save more than 30% of resources for some examples. Future
work includes support for pipelined circuits, optimizations
that minimize glue logic introduced by resource sharing, and
optimizations to minimize FPGA resources as opposed to the
total number of arithmetic resources.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022.

REFERENCES

[1] H. Quinn, D. Roussel-Dupre, M. Caffrey, P. Graham, M. Wirthlin,
K. Morgan, A. Salazar, T. Nelson, W. Howes, E. Johnson, J. Johnson,
B. Pratt, N. Rollins, and J. Krone, “The cibola flight experiment,” ACM
Trans. Reconfigurable Technol. Syst., vol. 8, no. 1, pp. 3:1–3:22, Mar.
2015.

[2] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for fpga
designs using triple modular redundancy,” in Proceedings of the 18th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’10. New York, NY, USA: ACM, 2010, pp.
249–258.

[3] A. Orailoglu and R. Karri, “A design methodology for the high-level
synthesis of fault-tolerant asics,” in VLSI Signal Processing, V, 1992.,
[Workshop on], Oct 1992, pp. 417–426.

[4] ——, “Automatic synthesis of self-recovering VLSI systems,” Comput-
ers, IEEE Transactions on, vol. 45, no. 2, pp. 131–142, 1996.

[5] K. Kyriakoulakos and D. Pnevmatikatos, “A novel sram-based fpga
architecture for efficient tmr fault tolerance support,” in Field Pro-
grammable Logic and Applications, 2009. FPL 2009. International
Conference on, Aug 2009, pp. 193–198.

[6] T. Inoue, H. Henmi, Y. Yoshikawa, and H. Ichihara, “High-level
synthesis for multi-cycle transient fault tolerant datapaths,” in On-Line
Testing Symposium (IOLTS), 2011 IEEE 17th International. IEEE,
2011, pp. 13–18.

[7] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the
scheduling problem in high level synthesis,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 10, no. 4,
pp. 464–475, 1991.

[8] C.-J. Tseng and D. P. Siewiorek, “Automated synthesis of data paths
in digital systems,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 5, no. 3, pp. 379–395, 1986.

[9] P. G. Paulin and J. P. Knight, “Scheduling and binding algorithms for
high-level synthesis,” in Design Automation, 1989. 26th Conference on.
IEEE, 1989, pp. 1–6.

[10] S. Safari, “Co-evolutionary reliability-oriented high-level synthesis,” in
Circuits and Systems, 2008. ISCAS 2008. IEEE International Sympo-
sium on, May 2008, pp. 2026–2029.

[11] C. Bolchini and A. Miele, “Design space exploration for the design
of reliable sram-based fpga systems,” in Defect and Fault Tolerance
of VLSI Systems, 2008. DFTVS’08. IEEE International Symposium on.
IEEE, 2008, pp. 332–340.

[12] A. Sengupta and S. Bhadauria, “Bacterial foraging driven exploration of
multi cycle fault tolerant datapath based on power-performance tradeoff
in high level synthesis,” Expert Systems with Applications, 2015.

[13] G. Buonanno, M. Pugassi, and M. Sami, “A high-level synthesis
approach to design of fault-tolerant systems,” in VLSI Test Symposium,
1997., 15th IEEE. IEEE, 1997, pp. 356–361.

[14] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A comparison of
tmr with alternative fault-tolerant design techniques for fpgas,” Nuclear
Science, IEEE Transactions on, vol. 54, no. 6, pp. 2065–2072, Dec
2007.

[15] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie, “Reliability-
centric high-level synthesis,” in Design, Automation and Test in Europe,
2005. Proceedings, March 2005, pp. 1258–1263 Vol. 2.

[16] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods for
reliability in fpgas,” in Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on, Sept 2008, pp. 415–420.

[17] A. Ben Dhia, L. Naviner, and P. Matherat, “A new fault-tolerant
architecture for clbs in sram-based fpgas,” in Electronics, Circuits and
Systems (ICECS), 2012 19th IEEE International Conference on, Dec
2012, pp. 761–764.

[18] C. Bolchini, D. Quarta, and M. D. Santambrogio, “Seu mitigation for
sram-based fpgas through dynamic partial reconfiguration,” in Proceed-
ings of the 17th ACM Great Lakes Symposium on VLSI, ser. GLSVLSI
’07. New York, NY, USA: ACM, 2007, pp. 55–60.

[19] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Low overhead fault-
tolerant fpga systems,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 6, no. 2, pp. 212–221, June 1998.

[20] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-tolerant techniques for
nanocomputers,” Nanotechnology, vol. 13, no. 3, p. 357, 2002.

[21] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improv-
ing fpga design robustness with partial tmr,” in Reliability Physics Sym-
posium Proceedings, 2006. 44th Annual., IEEE International, March
2006, pp. 226–232.

[22] B. Pratt, M. Caffrey, J. Carroll, P. Graham, K. Morgan, and M. Wirthlin,
“Fine-grain seu mitigation for fpgas using partial tmr,” in Radiation
and Its Effects on Components and Systems, 2007. RADECS 2007. 9th
European Conference on, Sept 2007, pp. 1–8.

[23] K. Siozios, D. Soudris, and M. Hübner, “A framework for supporting
adaptive fault-tolerant solutions,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 5s, pp. 169:1–169:22, Dec. 2014.

[24] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, “On
the optimal design of triple modular redundancy logic for sram-based
fpgas,” in Proceedings of the conference on Design, Automation and
Test in Europe-Volume 2. IEEE Computer Society, 2005, pp. 1290–
1295.

[25] J. Vite-Frias, R. Romero-Troncoso, and A. Ordaz-Moreno, “Vhdl core
for 1024-point radix-4 fft computation,” in Reconfigurable Computing
and FPGAs, 2005. ReConFig 2005. International Conference on, Sept
2005, pp. 4 pp.–24.

[26] J. Hu, “Solution of partial differential equations using reconfigurable
computing,” Ph.D. dissertation, The University of Birmingham, 2010.

[27] C. Brandolese, W. Fornaciari, and F. Salice, “An area estimation
methodology for fpga based designs at systemc-level,” in Design
Automation Conference, 2004. Proceedings. 41st, July 2004, pp. 129–
132.

