
An Overlay-Based Correlated Noise Generation 
Countermeasure against Statistical Power Analysis 

Austin Baylis, Greg Stitt, Ann Gordon-Ross 
Department of Electrical and Computer Engineering 

NSF Center for High-Performance Reconfigurable Computing (CHREC) 
University of Florida, Gainesville, FL, USA 

 
Abstract—Statistical power analysis is an increasing 

hardware-security concern that enables attackers to reverse-
engineer encryption keys for field-programmable gate array 
(FPGA) bitfiles, resulting in intellectual-property (IP) theft and 
tampering. To address this problem, we present a 
countermeasure that integrates correlated noise generation with 
overlays—virtual architectures implemented atop an FPGA—to 
protect application IP, even on vulnerable FPGAs. By extending 
existing overlay benefits (e.g., fast compilation, application 
portability, 1000x smaller bitfiles) with improved hardware 
security, our approach provides an attractive platform for 
Internet of Things, defense, and many embedded applications.  

Keywords—overlay, FPGA, differential power analysis, 
hardware security, virtualization, side-channel attacks 

I. INTRODUCTION 
Field-programmable gate arrays (FPGAs) are increasingly 

used for embedded and data-center applications due to their 
performance, power, and/or energy advantages over other 
technologies [3]. However, FPGAs suffer from hardware-
security concerns that enable attackers to perform side-channel 
attacks that can reverse-engineer encryption keys, extract 
intellectual property (IP), and maliciously tamper with 
functionality. Such attacks are potentially devastating for 
Internet of Things (IoT) applications, where billions of 
deployed units can be maliciously modified. Similarly, attacks 
on safety-critical applications in defense and automotive 
applications can result in loss of human life. 

One increasing concern is statistical power analysis (e.g., 
Differential [9] and Correlation Power Analysis [1] attacks), 
where attackers can reverse-engineer encryption keys via 
statistical analyses of power consumption during operations 
that access a key (e.g., [7][8]). Although previous work has 
introduced numerous countermeasures [10], statistical power 
analysis is still a common concern, even for FPGAs marketed 
as secure [11]. 

One of the main limitations of existing countermeasures is 
a lack of protection for the FPGA’s encryption key that is used 
to decrypt application bitfiles during configuration. Such 
protection is challenging because FPGAs provide no 
mechanisms to control functionality during configuration, 
where the device is in an undefined state. Although there are 
previous countermeasures integrated with AES cores (e.g., [8]), 
existing FPGAs are not manufactured with these cores, making 
existing FPGA bitfiles vulnerable to reverse engineering. 

To address this concern, we present an approach that 
overcomes the lack of protection for the FPGA’s key by using 
a virtual architecture implemented on the FPGA (i.e., an 
overlay) to hide leakage of keys and/or other secret 
information. Overlays have been introduced for a variety of 
purposes including fast placement and routing, application 
portability, simplified debugging, among others [2][4][5]. A 
recent hardware-security study investigated using unique 
overlays to limit damage from tampering [12]. In this paper, 
we complement earlier overlay studies by introducing 
statistical power analysis countermeasures that can potentially 
be integrated into any overlay. 

Figure 1 provides an overview of our approach, which 
implements applications on the overlay as opposed to directly 
on the FPGA. Because of this two-layer approach, the system 
uses two separate bitfiles: 1) a vulnerable FPGA bitfile that 
configures the FPGA with the overlay, and 2) the protected 
overlay bitfile that contains all application IP. Although the 
FPGA’s encryption key is still vulnerable in this approach, if 
an attacker were to discover the FPGA key, reverse 
engineering the bitfile would only provide the architecture of 
the overlay, which provides little application information [12].  

Unlike FPGA configuration, overlay configuration has 
control over the functionality of the FPGA, which we exploit to 
inject power into the FPGA via toggling of nets. By correlating 
this power with an input to be encrypted/decrypted (i.e., 
correlated noise generation), our approach provides the same 

FFT FFT

IFFT

× × × ×

+ + + +

× ×

FPGA

Overlay Bitfile
(for Application)

Virtual Architecture “Overlay”

FPGA Bitfile
(for Overlay)

FPGA 
Configuration

Problem: Key vulnerable to leakage

Overlay 
Configuration

Solution: Key hidden 
via correlated noise 

generation

 
Figure 1: Overview of overlay-based correlated noise generation. In our 
approach, the FPGA provides an application-specialized virtual architecture 
(i.e., an overlay). Whereas FPGA configuration is vulnerable to power-
analysis attacks, overlay configuration protects encryption keys by injecting 
input-correlated power noise into the FPGA. 

This work was supported in part by the I/UCRC Program of the National 
Science Foundation under Grant No. EEC- 0642422 and IIP-1161022. 



noise for repeated attacks using the same input, and different 
noise for different inputs, which prevents Differential and 
Correlation Power Analysis by yielding correlations with an 
incorrect key. We evaluate the countermeasure against 
Correlation Power Analysis attacks on DES using publicly 
available power traces [6] and show that such attacks yield 
incorrect keys. 

Although we present the countermeasure in the context of 
overlays, we could similarly apply the approach to protect 
FPGA bitfiles by using partial reconfiguration, where one 
region performs correlated noise generation to protect the 
bitfiles in other regions.  

II. STATISTICAL POWER ANALYSIS COUNTERMEASURE 
This section presents the details of our statistical power 

analysis countermeasure. The approach consists of two parts: 
1) correlated noise generation to determine the type of noise to 
be injected to hide leakage (Section II.A), and 2) a power 
injector core that can increase and decrease power by specific 
amounts each cycle (Section II.B). 

A. Correlated Noise Generator  
Statistical power analysis attacks create a statistical 

relationship between changes that occur during an operation 
and the measured power to extract leaked information. The 
classical statistic power analysis is Differential Power Analysis 
(DPA) [9] where the attacker guesses input values for a model 
of the operation they wish to attack to generate potential output 
values. The values are used to sort the power traces into two 
sets. The attacker then takes the difference of the mean of each 
set. Incorrect guesses average to be similar, resulting in a small 
difference, while a correct guess results in a large peak at the 
location the operation occurs. An improvement on this attack is 
to approximate power consumption using the Hamming weight 
of the output value generated by the input guess. The Hamming 
weight can then be used to build a correlation between the 
guess and the power traces. The correct guess would be 
associated with the highest correlation.  Both previously 

mentioned methods of DPA, however, are limited due to 
unrealistic modeling of power. Therefore, the attack we used to 
test the effectiveness of our correlated noise generator is 
Correlation Power Analysis (CPA), as described in [1]. It is 
worth noting that while we explore CPA in this paper, CPA 
countermeasures tend to provide the same defensive efficiency 
against the other statistical analysis attacks [1].  

CPA is a model-based attack, much like DPA using 
Hamming weight. The fundamental difference, however, is that 
while DPA uses the model to generate a value based on a 
guessed state and then takes the Hamming weight of that value, 
CPA takes the Hamming distance. The reason for using 
Hamming distance is because data leakage depends on the 
number of bits that flip from one state to another. The model 
we use assumes that a bit flipping from 1 to 0 requires the same 
amount of energy as a bit flipping from 0 to 1. We also assume 
that there is a linear relationship between current, and in turn 
power consumption, and the Hamming distance between the 
reference state and the variable output of our model. This 
relationship is shown in Figure 2(a), which shows the average 
peak voltage during round one of DES versus the Hamming 
distance between the 32-bit right half at the start of the round 
and the 32-bit right half after the round. It is this concept of 
Hamming distance versus the amount of power generated that 
allows CPA to build its correlations and extract the secret 
information. 

The basic idea behind a CPA attack is that an attacker 
would first identify an operation that would potentially leak 
secret information. They would then create a model of how that 
operation would function. The attacker would then guess the 
secret information, and create Hamming distances between a 
reference state and the output of their model. A linear 
correlation factor between Hamming distance and the power 
traces would then be produced. For this paper, we applied CPA 
to publicly available DES traces supplied by [6]. The operation 
we attacked was the Feistel function in round one, specifically 
the individual substitution boxes (S-boxes). Using the known 
plain text, we used the right-side values that are fed into the 
Feistel function as the known state and the right-side values 

 
(a)                                                                                                               (b) 

Figure 2: Correlation Power Analysis relies on (a) a relationship between Hamming distance and voltage, which we (b) obfuscate using correlated noise 
generation to prevent leakage. 



after the round as the output of our model. The correlation 
factor is produced using a Pearson Correlation factor as 
described in [1]. 

Since the key idea of CPA is for the attacker to build a 
correlation between Hamming distance and power, we 
designed the correlated noise generator to obfuscate that 
relationship by creating additional bit transitions 
simultaneously with the encryption. This obfuscation is 
demonstrated in Figure 2(b). While similar to Figure 2(a) in 
that it relates peak power during round one to the Hamming 
distance produced by the model, we added correlated noise to 
the power traces. 

Our approach does not use random noise, which would not 
obscure any correlations because the attacker could simply 
filter the noise. Instead, the correlated noise generator uses the 
plain- or cipher-text as a seed to correlate the bit-switching to 
the encryption/decryption of the same data. This strategy 
makes the noise repeatable and harder to filter out. That seed is 
fed into a hash function that performs an exclusive OR with a 
random number generated at synthesis, referred to as the salt. 
The salted hash output is then used as the input to the power 
injector. At the same time, the salted hash output is fed back 
into the hash function to be used in the next clock cycle. This 
system may be reset at any time to return to its initial state. 

Although we evaluate correlated noise in defending the 
encryption key used for DES, the technique potentially applies 
to other statistical power analysis attacks. Such attacks rely on 
the ability to model and relate potential power consumption o 
actual measured power. Because our method targets that 
relationship, it can obscure the leakage of other applications. 

B. Power Injector 
Whereas the correlated noise generator determines how 

power should be varied to obscure leakage, the power injector 
is responsible for generating that power. To accomplish this 
goal, we created a register-transfer-level power-injector core 
that can be integrated into any overlay to toggle any number of 
nets every cycle. In addition to increasing power by specified 
amounts, the injector can also decrease power by using a 
baseline that includes some amount of toggling every cycle that 
can be increased or decreased each cycle.    

Figure 3 demonstrates the architecture of the power 
injector. The injector takes as input an n-bit power setting p 
that specifies how many nets should be toggled. The value of n 
is specified pre-synthesis based on the application-specific 
required range of power, but p can change every cycle using 
power values from the correlated noise generator. To 
implement the toggling, the architecture uses 2n-1 flip-flops 

with invertors. The enable for each flip flop is controlled by p, 
where bit i of p enables 2i different flip flops. With this 
architecture, an overlay can change the number of toggled nets 
from 0 to 2n-1 every cycle. 

III. EXPERIMENTS 
In this section, we present a DES case study on the 

effectiveness of correlated noise against statistical power 
analysis. Although this case study demonstrates CPA against 
the first round of DES, our approach could be applied to both 
other forms of statistical analysis and to other applications 
requiring protection against such an attack. 

To perform CPA, we used publicly available DES power 
traces [6]. Each trace consists of 20,000 data points that have 
been pre-processed such that all rounds occur at the same time 
across traces. The experiments were performed using CPA 
with 500 traces. 

The experiment was done in two stages. The first stage 
involved performing a CPA attack on the provided traces to act 
as a baseline, showing the effectiveness of the attack in general 
at breaking a single S-box. The second stage performed the 
same attack on power traces that we augmented to simulate the 
effects of correlated noise as described in Section II.A. The 
goal was to demonstrate how correlated noise can obfuscate the 
correlation between Hamming distance and measured voltage. 
Only one S-box was broken, as the concept is equivalent across 
all S-boxes.  

To perform the attack, we developed a Matlab function that 
modeled a round of DES and returned the Hamming distance 
for the 4-bits affected by the specified S-box. We then used a 
wrapper function that tested all 64 possible partial subkey 
combinations and collected the respective Hamming distances. 
After we generated the Pearson coefficients correlating the 
Hamming distance and power traces, we observed the peak 
values that occurred during round one for each key guess. The 
highest coefficient was returned as the best guess. The peak 
coefficients for each guess can be seen in Figure 4(a). Notice 
that the correct guess, 56, has a distinctively high correlation 
compared to the other points. 

To evaluate our countermeasure, we generated augmented 
traces to mimic correlated noise generation by first creating a 
new trace that averaged 3,000 of the original traces. Then, we 
divided the traces into three equally sized sets. The first set was 
used as a base trace value. Next, the average trace was 
subtracted from the ith trace in both the second and third set, 
creating traces that represent the additional power contributions 
of each respective trace. Those were combined, then added to 
the ith trace from the first set to create an augmented trace that 
had some amount of power added to it. Although the correlated 
noise generator generates noise differently than these 
augmented traces, this experiment demonstrates a proof-of-
concept that adding additional power to a trace can break the 
correlation between power usage and Hamming distance. 

Figure 4(b) demonstrates that when performing CPA on the 
augmented traces, our countermeasure obfuscates the 
correlation between Hamming distance and power 
consumption. The figure shows the peak correlation value for 

FF FF FF FF FF FFFF

p(0)p(1)p(2)

…..

. . . . . . . . . . . . . . . . . . . .p(n-1)

 
Figure 3: Power injector architecture that can toggle up to 2n-1 nets each cycle 
by varying the power input p.  



each of the 64 guesses using the augmented traces. As before, 
the highest correlation should occur at a guess of 56. However, 
the figures clearly shows two peaks: one occurring at guess 39 
and another at guess 30. These peaks render the attack 
inconclusive, protecting the secret key and power consumption.  

Although space constraints prohibit a detailed analysis of 
the power injector core, we provide a summary of area 
requirements and power-injection granularity. Because most 
FPGAs provide lookup tables (LUTs) with two flip-flops, and 
because the input to the flip-flop is just a one-input invertor, 
each LUT can implement two toggling flip-flops. For an n-bit 
power input, most FPGAs will require 2n-1 LUTs. The value of 
n will vary for different applications, but will generally not be 
larger than log2 of the maximum Hamming distance used in an 
attack because this value of n can often double (or cut in half) 
the original power. Therefore, the number of LUTs required to 
implement the countermeasure will generally be similar to the 
maximum Hamming distance, which is a minor overhead for 
most envisioned use cases.  

IV. CONCLUSIONS 
Statistical power analysis is a significant hardware security 

concern for FPGA applications. Whereas previous work has 
focused on encryption cores that protect against such analysis, 
our approach complements those studies by providing an 
overlay-based countermeasure that can protect widely used 
vulnerable cores and devices. Our approach integrates 
correlated noise generation and power injection into FPGA 
overlays to obscure leakage of secret information by 
obfuscating the relationship between Hamming distance and 
voltage. We demonstrated a proof of concept by performing a 
Correlation Power Analysis attack on publicly available DES 
power traces, and then demonstrated that our countermeasure 
prevents the attack by yielding an incorrect encryption keys. 
Future work includes integrating this countermeasure into 
existing FPGA overlays and extending the approach to protect 

FPGA bitfiles by implementing the correlated noise generator 
in a partially reconfigurable region. 

ACKNOWLEDGMENTS 
We gratefully acknowledge help from Draper, Swarup 

Bhunia, and Kai Yang. 

REFERENCES 
[1] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a 

Leakage Model, pages 16–29. Springer Berlin Heidelberg, 2004. 
[2] D. Capalija and T. S. Abdelrahman. A high-performance overlay 

architecture for pipelined execution of data flow graphs. In 2013 23rd 
International Conference on Field programmable Logic and 
Applications, pages 1–8. IEEE, 2013. 

[3] P. Cooke, J. Fowers, G. Brown, and G. Stitt. A tradeoff analysis of 
fpgas, gpus, and multicores for sliding-window applications. ACM 
Transactions on Reconfigurable Technology and Systems (TRETS), 
8(1):2:1–2:24, Mar 2015. 

[4] J. Coole and G. Stitt. Fast, flexible high-level synthesis from opencl 
using reconfiguration contexts. IEEE Micro, 34(1):42–53, Jan 2014. 

[5] J. Coole and G. Stitt. Adjustable-cost overlays for runtime compilation. 
In Field-Programmable Custom Computing Machines (FCCM), pages 
21–24, May 2015. 

[6] DPA Contest. http://www.dpacontest.org/home/. 
[7] W. Hnath. Differential power analysis side-channel attacks in 

cryptography. Worcester Polytechnic Institute, 2010. 
[8] N. Kamoun, L. Bossuet, and A. Ghazel. Correlated power noise 

generator as a low cost dpa countermeasures to secure hardware aes 
cipher. In 2009 3rd International Conference on Signals, Circuits and 
Systems (SCS), pages 1–6, Nov 2009. 

[9] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In 
Proceedings of the International Cryptology Conference on Advances in 
Cryptology, CRYPTO ’99, pages 388–397, London, UK, 1999. 

[10] W. Luis, G. R. Newell, and K. Alexander. Differential power analysis 
countermeasures for the configuration of sram fpgas. In Military 
Communications Conference, MILCOM 2015 -2015 IEEE, pages 1276–
1283, Oct 2015.  

[11] S. Skorobogatov and C. Woods. In the blink of an eye: There goes your 
aes key. IACR Cryptology ePrint Archive, 2012:296, 2012. 

[12] G. Stitt, R. Karam, K. Yang, and S. Bhunia. A uniquified virtualization 
approach to hardware security. IEEE Embedded Systems Letters, 
PP(99):1–1, 2017. 

 
(a)                                                                                                                 (b) 

Figure 4: A successful CPA attack on a DES S-box (a) will produce a distinctively high correlation with the correct guess. However, when the correlation between 
the model used in the attack and the power traces is obfuscated (b), there is no longer a distinctive correlation with any guess, let alone the correct one. 


