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Abstract - This paper presents a framework that improves
the portability and ease-of-use issues of current Reconfig-
urable Computers (RCs). These two drawbacks should be
solved in order for RC to become a mainstream solution.
Portability across platforms is difficult to achieve because
RC systems have diverse hardware architectures and ser-
vices. This lack of portability hinders reuse, and thus, ease-
of-use. The framework proposed in this work is able to hide
the architectural details of the systems, simplify the IP in-
tegration, and provide the portability across different RC
platforms. User specifies IP requirements such as memory
configuration, sequential or random access to the memory,
or I/O registers using a graphical-user-interface (GUI) tool,
which generates a hardware interface specification for the
IP and the logic necessary to target the selected platform.
The hardware interface remains the same regardless the tar-
geted architecture. In addition, the tool generates a soft-
ware library that includes services such as bitstream man-
agement and data exchange between microprocessor and
IP. This framework has been demonstrated on two repre-
sentative RCs: Cray XD1 and SGI RASC RC100.

Keywords: Reconfigurable computing, FPGA, Portable
Framework Interface.

1. Introduction

Numerous efforts have proved that Reconfigurable Com-
puters are able to achieve remarkable performance im-
provements in comparison to traditional microprocessor-
based solutions [1, 2, 3]. However, RCs are not reach-
ing a great popularity because reconfigurable hardware de-
vices present two relevant disadvantages when compared to
general-purpose processors: ease-of-use and portability.
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Figure 1. Generic Diagram of Reconfigurable
Computer Architecture.

Reconfigurable computers can be defined as general-
purpose computers with added FPGA devices working as
co-processors [3], see Figure 1. Programming on these
systems has two major differences compared to general-
purpose microprocessor-based computers. Firstly, gener-
ating the FPGA configuration bitstream brings the biggest
challenge. The FPGA development flow is completely dif-
ferent from writing software subroutines. New program-
ming languages and tools as well as hardware skills are nec-
essary to accelerate computation applications using FPGA
devices. Original algorithms that run on a microprocessor
have to be tailored to be able to benefit from FPGA im-
plementation. Secondly, FPGAs are only good for certain
categories of computations. Because of this limitation, it is
very important to identify the parts of an application that
can get significant performance improvement from hard-
ware implementation. Moreover, there is an implicit cost to
invoke the FPGA due to the device configuration and com-
munication overhead [4].

Recently, Hardware Description Languages (HDLs)
have been challenged by High Level Languages (HLLs)
[5, 6, 7] to solve the ease-of-use issue. These HLLs offer
a similar syntax as software programming languages such
as C. Examples of available HLL languages are Handel-C,
Impulse-C, Mitrion-C, Carte-C and so on [8]. However,
most of these C-like languages set many restrictions and
are not powerful enough to explore the parallelism in hard-
ware and, hence, can not produce highly efficient hardware
design for the end users. Furthermore, most of these lan-



Table 1. Comparison between Cray XD1 and SGI RC100.

Cray XD1 SGI RC100
FPGA Device Xilinx Virtex-II Pro-50 FF1152-7 Xilinx Virtex-4 LX200 FF1513-10

Local Memory Architecture Four 64-bit SRAM modules, 4 MB each Two 128-bit and one 64-bit SRAM mod-
ules, 40 MB in total

I/O Bus Width: 64-bit Bus Width: 128-bit
(between µP & FPGA) Bandwidth(both directions): 1.6GB/s Bandwidth(both directions): 3.2GB/s

Vendor Services

Hardware perspective: provide means to
drive local memory modules and intercon-
nect, through which to access host memory.
Software perspective: FPGA is mapped into
the IO space of OS and µP is able to issue
read and write requests to user logic directly.

Hardware perspective: provide means to
access data through register, local mem-
ory modules and streaming channels.
Software perspective: exchange data be-
tween microprocessor and FPGA device
automatically.

Execution Model
Interactive: programmer needs to synchronize
microprocessor and FPGA device explicitly
and manually to perform a task.

Non-interactive: programmer treats the
bitstream as software subroutine.

guages do not include support for system integration, there-
fore, the portability issue between RC systems is not solved
by HLLs.

In this paper, we propose a Portable Framework Interface
(PFIF) in order to provide the portability and ease-of-use on
RC platforms. The remaining text is organized as follows.
In Section 2, the motivation for designing PFIF is described.
In Section 3, PFIF itself is presented in detail. The exper-
imental result using DES encryption application is demon-
strated in Section 4. Finally, we give the conclusion marks
and future work in Section 5.

2. Motivation

Since RCs do not share the same hardware architec-
ture model, users have to cope with different FPGA de-
vices, memory configurations, vendor services and execu-
tion models when they program on different platforms. Ta-
ble 1 highlights the main differences between Cray XD1 [9]
and SGI RC100 [10] as an example to demonstrate the gaps
among different RC systems.

Firstly, RCs have different local memory architectures.
The number, size and data width of individual local mem-
ory banks are very important for hardware designers and
may impact the parallelism of the user logic. Due to the dif-
ferent memory configurations, the supporting logic for data
access has to be rewritten when the IP core is ported to a
new system. Secondly, vendors generally provide specific
services that help access memories and simplify the com-
munication between the microprocessor and hardware cores
on their particular platform. These services provide the ba-
sic infrastructure to implement data exchange through reg-
isters, local memory, host memory, etc. In addition to the

service logic for integrating user logic in FPGA device, ven-
dors provide software APIs to configure the FPGA device
and to interact with hardware accelerator core. Thirdly, the
execution model of FPGA bitstreams varies from one plat-
form to another. On SGI RC100 platform, bitstreams can be
considered as software subroutines, i.e., the main program
calls the accelerator core and waits until it returns the con-
trol back. Alternatively, on Cray XD1, the main program
can interactively synchronize with the accelerator core to
perform a task. This interactive option provides more flexi-
bility, however, at the cost of a more challenging hardware
design.

To summarize, designing hardware-accelerated applica-
tions in RC systems is a tedious process. Designers have
to study the hardware platform to understand the memory
configuration (number of banks, data width and size, etc.),
communication interface with the host, vendor services, etc.
Then, they maximize the parallelism and performance of
the hardware design based on the specification of the tar-
get platform. Whenever designers move to a new platform,
which has different hardware architecture and vendor ser-
vices, they have to repeat the same process again.

Wirthlin, Poznanovic and et al. from OpenFPGA [11]
proposed a solution to address this issue. Basically, they
define a standard interface and operating characteristics for
designing and integrating IP cores in HLLs and try to push
core designers, HLL tool vendors and compiler developers
to follow this standard. If RC vendors were able to follow
the same specification to design FPGA subsystems and to
provide the same services, the portability issue would be
perfectly solved. Hence, this solution should be the future
trend of RC system development. However, it requires huge
effort from both the RC community and vendors to achieve
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Figure 2. Portable Framework Interface.

this goal.

In this paper, we propose a solution that is more afford-
able and feasible. The main approach is to hide the differ-
ence among the system architectures and services of differ-
ent RC platforms, and provide a standard layer to reduce the
IP integration effort. This standard layer is built on top of
vendor’s hardware architecture and services, and it is able
to generate the user interface (hardware part and software
part) based on the application requirements. In the mean-
time, the design is portable due to the fact that this layer of-
fers the same interface on different platforms even if these
platforms do not share the same architecture.

3. PFIF: A Portable Framework Interface

The solution proposed in this work is the Portable
Framework Interface (PFIF), which is inspired by Xilinx
IPIF approach [12]. Figure 2 shows the PFIF layered ar-
chitecture and how it is built on top of vendor services and
interfaces. Compared to our previous work in [13], which
provided a fixed memory access interface across different
platforms, PFIF is able to deliver an IP-specific interface on
diverse RCs.

3.1. PFIF Overview

At the software side, PFIF provides a set of common
functions in order to allow the user to exchange data be-
tween the microprocessor and FPGA cores. The IP-specific
API is customized to fit the interface configuration used by
the IP. These functions will call the specific vendor API,
which is provided by the target RC system, to carry out the
data exchange. On the hardware side, PFIF appears as a
highly parameterizable block between vendor services and
the IP. PFIF provides a connection interface that is auto-
matically generated to fit the hardware resources required
by the IP. Additionally, PFIF helps the IP development by
providing additional services that are ready to use, such as
FIFOs, DMA data transfer, registers, etc.

In order to describe the hardware architecture of PFIF,
see the right side of Figure 2, we follow a bottom-up ap-
proach. The first layer in the PFIF block is called Portable
Framework Control Logic (PFCL), which acts as a wrap-
per of the vendor services and includes the local memory
controllers and communication services. This PFCL wrap-
per is specific for any target system and standardizes the
vendor services by means of the Portable Framework Con-
trol Interface (PFC Interface). At this point, the portability
is achieved because PFC is exactly the same regardless of
the target system. PFC is used as the standard interface for
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Figure 4. PFIF GUI: RC systems currently
supported.

the next layer in PFIF, the Services Logic (SL). This layer
provides the diverse services that can be used by the IP, in-
cluding logical memory banks, registers, FIFOs, and also
some direct memory access (DMA) capabilities to access
the microprocessor memory. Finally, after this layer PFIF
provides the IP-specific interface signals for IP integration
and design.

The user’s point of view of PFIF can be described using
a top-down approach, see Figure 3. A GUI tool has been
developed to take the input from the user regarding the IP
requirements (Figure 4-7): target system, requested services
(memory banks, registers, DMA, etc.) and the parameters
about these services. After this information is collected, the
tool generates a set of HDL files (for hardware integration)
and a set of software files (APIs for software integration).
The HDL files consist of the user logic file, including the
requested IP interface, and the PFIF file, including the in-
stantiation of the required components from the vendor, the
additional components to support the selected services and
the control logic to interconnect all these components to-
gether to fit the IP requirements.

Figure 5. PFIF GUI: Interfaces.

Figure 6. PFIF GUI: Register interface.

3.2. PFIF Services Interface

The more challenging part of PFIF design is to provide
a portable and simple data access interface for user logic.
Being portable means the same user logic faces identical
interface on different platforms. Being simple means the
interface should be configurable, i.e., it should only include
the necessary ports for the required functionality.

In general, vendor provides several different techniques
for user logic to access data, such as local memory mod-
ules, DMA to host memory, and registers. Registers are
used for transferring small amount of data, for example, pa-
rameters. Local memory modules and direct access to host
memory through DMA engines are generally used for trans-
ferring huge amount of data in order to optimize through-
put. Furthermore, the access to memory contents can be



Table 2. Types of logical memory configurations

Type Access Direction Usage Access Mode Implemented byIP µP (by IP)
Shared IN Read only Write only Source data Random Local Memory
Shared OUT Write only Read only Result data Random Local Memory
Shared IN/OUT Read & write Read & write Source & result data Random Local Memory
Local Read & write NA Intermediate data Random Local Memory
Sequential IN Read Write Source data Sequential DMA
Sequential OUT Write Read Result data Sequential DMA

Figure 7. PFIF GUI: Memory interface.

sequential or random. In order to make the data access in-
terface portable and simple, these hardware resources are
abstracted and user logic can specify the interface based on
its characteristics.

The data access interface comprises a set of registers and
a set of logical memory banks. Firstly, there are read-only
registers for input data and write-only ones for output data.
User logic can specify the number of input registers and
output registers as necessary, see Figure 6. Because mul-
tiple registers can be accessed concurrently, they are good
candidates for storing parameters. Secondly, there are two
types of logical memory banks, random access memory and
sequential access memory, see Figure 7. For random ac-
cess memory, user can specify the number of access ports,
the direction of each port, the data width and the size of
each logical memory bank. For sequential access memory,
user can specify the access direction (either read or write),
and the data width of each bank. For both cases, the user
logic only sees the signals of requested access ports. For
example, if the user asks for one read-only logical memory
bank (the microprocessor will write the content to this log-

ical memory bank), only reading signals are available for
the user logic, whereas writing signals are hidden by the
services logic.

In addition to the data access interface, PFIF has to gen-
erate the logical memory banks requested by the IP using
the available local memory modules or the host memory in
the selected system. When the user asks for random access
memory space, either shared memory space (to exchange
data between microprocessor and FPGA) or local memory
space (to store intermediate data by the IP), PFIF automati-
cally selects local memory banks. How many local memory
modules are sufficient and how they are grouped together to
form a logical memory bank is decided based on the data
width and size of the requested logical memory banks. For
example, if the user asks for one 6MB and 128-bit wide log-
ical memory bank on Cray XD1, two local memory mod-
ules are combined. If the user wants one 10MB and 64-bit
wide logical memory bank on the same platform, three local
memory modules are concatenated together. The data width
of the logical memory bank can be less than the physical
data width of the local memory module; however, it should
avoid generating holes in the physical data storage. For ex-
ample, the data width of logical memory banks can be 32,
16 or 8, but not 56 or 24. Moreover, user can request data
width (of logical memory banks) that is the combination of
multiple individual local memory modules, e.g., 128, 192 or
320 bits on SGI RC100. In order to support concurrent ac-
cess to logical memory banks, a single local memory bank
can not be occupied by multiple logical memory banks. For
example, if the user asks for two 64-bit wide logical mem-
ory banks on Cray XD1, 1MB and 2MB respectively, two
local memory banks are used although the combined size of
those two logical ones is only 3MB, which is less than the
4MB available in each local memory bank. Another limita-
tion for user is that the total number of local memory banks
for implementing logical memory can not surpass the avail-
able physical resources. Some of these limitations may be
lifted as this research advances, however, the implementa-
tion complexity will grow as well. Finally, if sequential ac-
cess memory is requested, PFIF uses DMA engines inside



Table 3. Resource Utilization and Perfor-
mance Comparison of DES Encryption on
Two Reconfigurable Computers.

Resource Utilization (slices)
Cray XD1 SGI RC100

W/o Fr W/ Fr W/o Fr W/ Fr
14,645(62%) 14,546(61%) 22,300(25%) 22,300(25%)

End-to-end Throughput (GB/s)
0.57 0.57 1.14 1.14

the FPGA devices to read and write remote host memory
directly. Similar rules of specifying random access memory
apply as well. However, in this case, there is no address sig-
nal for accessing sequential memory spaces. Reading and
writing sequential access memory space always starts from
the very first location and in order.

Table 2 summarizes these different types of logical mem-
ory banks, their corresponding reading and writing ports
with respect to IP core and microprocessor, and other in-
formation. PFIF GUI allows the user to choose the desired
memory interface among these different types during the
PFIF configuration process (see Figure 7).

4. Experimental Result

In order to test the correctness and efficiency of the pro-
posed framework, a DES (Data Encryption Standard) core
at ECB mode [14] has been used. The user logic consists
of two fully pipelined DES block-ciphers. The parameters
of the core, including the encryption key and the amount of
plaintext data, are transferred to the user logic through reg-
isters. Two DES cores can consume 128-bit data block per
clock cycle; hence, two 8MB 128-bit wide logic memory
banks are allocated, one for raw data and the other for result
data respectively. On Cray XD1, each logical memory bank
is implemented by two physical local memory modules. On
SGI RC100, every logical memory bank is mapped to one
physical local memory module. However, the user logic
faces exactly the same interface on both platforms.

Conceptually, the DES encryption application can di-
vided into three steps. Firstly, the plaintext data are trans-
ferred from main memory and stored in the local memory of
FPGA. After the data transfer is done, the user logic starts
reading the raw data from one local memory bank, encrypt-
ing them through two DES cores, and writing the result data
to another local memory bank in a pipelined way. Finally,
the ciphertext data are transferred back to main memory.

Figure 8. IP Interface Example.

Without the help of PFIF, the user has to deal with these
three steps and the synchronization between the software
program and hardware logic by himself. If the user designs
the application under PFIF, he only needs to focus on the
second step, data processing step. PFIF provides the ser-
vice to automatically exchange data before and after the
data processing step, and gives the corresponding signals
for the synchronization between PFIF and the user logic.
Figure 8 shows the user logic interface in hardware for the
DES encryption application. Two registers are allocated
for passing the encryption key and the amount of plaintext
data. One 8 MB logical memory bank, mem 0, is allocated
for storing plaintext data. Because the user logic is going
to read mem 0 only, the writing port of mem 0 is hidden.
Correspondingly, the reading port of mem 1 is not shown
to the user either. Another two signals, user logic go and
user logic done, are provided for the synchronization pur-
pose. After PFIF finishes the raw data transfer from main
memory to local memory, it asserts the user logic go sig-
nal; then, the user logic can start functioning. After the
user logic completes its processing and writes the last result
data block to mem 1, it notifies the PFIF by asserting the
user logic done signal so that PFIF can start the result data
transfer from local memory to main memory.

The resource utilization and application performance on



both platforms are listed in Table 3. The current imple-
mentation of portable programming framework does not in-
troduce resources and performance penalty on both plat-
forms due to two reasons. Firstly, although PFIF may in-
troduce some extra latency delay for reading and writing
external local memory, the PFIF implementation itself is
fully pipelined so that it is able to accept reading or writing
request every clock cycle. Secondly, PFIF does the some
work as a hardware engineer would do if the data width and
depth are different from default ones in the target platform.
This is the reason why the resource utilization is the same
with and without the framework.

Although the interface signals, such as mem x rd cmd
and mem x rd data vld for reading data, are same on both
systems, the latency may vary when IP core tries to run
at the highest possible frequency. For example, on Cray
XD1, the default reading latency is 10 clock cycles @ 200
MHz and the default memory data size is 64-bit. In order
to implement the 32-bit wide memory, the last digit of read
address signal is used for selecting either the upper or the
lower 32-bit of a 64-bit word. This arbitration introduces
an extra clock cycle delay for reading latency. More latency
delay has to be added when a logical memory bank cov-
ers multiple local memory banks because a more complex
arbitration process is necessary. Although the current im-
plementation of portable programming framework does not
introduce resources and performance penalty, as we keep
investigating the portability issue and bring more features
for improving the flexibility of this framework, costs will
eventually appear.

5. Conclusions

A framework to improve the portability and ease-of-use
problems on Reconfigurable Computing platforms is pre-
sented. The framework provides an abstraction layer to
hide the hardware resources of a specific system, simplify
the IP integration, and provide portability across different
RC systems. Additionally, the framework offers some ex-
tra services like registers, logical memory modules, DMA
engines, etc. to facilitate hardware design. A GUI tool has
been developed to generate a particular interface based on
user’s IP requirements and characteristics. In addition to the
hardware design, a software API, which can be used in the
software application, is provided for data transfer between
microprocessor and IP core.

Future work will focus on HLL support, which makes it
possible for HLL IP developers to use the proposed frame-
work. In addition, new efforts will include more sophis-
ticated mechanisms to optimize memory resources, logic
resources and performance when the complexity of PFIF
increases due to HLL suport and additional features.
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