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Abstract—Traditionally, FPGA programming has been done
via a hardware description language (HDL). An HDL provides
fine-grained control over reconfigurable hardware but with lim-
ited productivity due to a steep learning curve and tedious design
cycle. Thus, high-level synthesis (HLS) approaches have been a
significant boon to productivity, and in recent years, OpenCL
has emerged as a vendor-agnostic HLS language that offers the
added benefit of interoperation with other OpenCL platforms
(e.g., CPU, GPU, DSP) and existing OpenCL software. However,
OpenCL’s productivity can also suffer from tedious boilerplate
code and the need to manually coordinate the host (i.e., CPU)
and device (i.e., FPGA or other device). So, we present MetaCL,
a compiler-assisted interface that takes OpenCL kernel functions
as input and automatically generates OpenCL host-side code
as output. MetaCL produces more efficient and readable host-
side code, ensures portability, and introduces minimal additional
runtime overhead compared to unassisted OpenCL development.

Index Terms—Code Generation, OpenCL, CPU, FPGA, GPU,
HPC, Programmability, Productivity, Portability, Clang, LLVM,
MetaCL

I. INTRODUCTION

FPGAs are gaining traction in the high-performance com-
puting (HPC) community to accelerate a wide spectrum of
applications via their configurable computing capability and
superior power efficiency. However, poor programmability
impedes the integration of FPGAs into HPC. Using hardware
descriptive languages (HDLs) to customize an FPGA’s config-
urable fabric requires skill and knowledge of the underlying
hardware architecture. While HDLs allow fine-grained control,
they have a steep learning curve that limits their appeal and
accessibility to software developers and domain scientists.

In contrast to programming a (fixed) hardware ASIC, such
as a CPU or GPU, an FPGA programmer needs to optimize not
only for performance (or power) but also for area, as a given
computation must fit logic, routing, and internal storage into a
limited silicon area. This complexity requires additional design
iterations, which follow the laborious and time-consuming
cycle of simulation, testing, functional verification, placement,
and routing. High-level synthesis (HLS) tools partially address
this complexity by allowing developers to write code at a
higher level of abstraction. For example, the vendor-neutral
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OpenCL heterogeneous computing standard [1] has emerged
as a portable C-based HLS approach, supported by FPGA-
native compilers and runtime systems such as Xilinx’s SDAc-
cel [2] and Intel’s FPGA SDK for OpenCL [3],

OpenCL has been used for FPGA acceleration across a
range of applications [4]-[8], thus demonstrating the viability
of such an HLS approach. The benefits of OpenCL to FPGA
developers are multi-fold: (1) FPGA functions (device kernels
in OpenCL terminology) can be written in a variant of C rather
than a low-level HDL; (2) FPGA devices can be transparently
reconfigured with new kernels; and (3) OpenCL applications
are easy to port between supported devices.

However, the abstractions in the OpenCL programming
environment also introduce challenges that limit ease of use.
Specifically, OpenCL separates CPU-side “host” code from
the FPGA’s “device” code and requires manually managing
the interaction between them at run time, which is tedious and
error-prone. Furthermore, to be portable to many architectures
and software domains, the powerful OpenCL C host API
is necessarily verbose, often requiring many lines of API
interaction (commonly known as “boilerplate”) to realize even
a small computation on a device. Fig. 1a provides an example
of this boilerplate code for matrix multiplication in OpenCL,
where after eliding device and kernel source management, 50+
lines of host code are still required to run just eight lines
of code on the device, as shown in Fig. 1b. These OpenCL
API calls are needed to configure the runtime environment
and interact with the device kernels but impose development
overhead to create and maintain.

To complicate matters, part of the OpenCL boilerplate code
scales in size, relative to the number and complexity of device
kernels; other parts must be rewritten for different devices;
and all of this code should be error-checked, which is often
elided for development efficiency. For example, Table I lists
the typical OpenCL calls necessary to run code on a device
and their relative frequency, where D is the number of devices
to utilize in a computation, P is the number of OpenCL kernel
programs (typically a .c1 or .aocx file), K is the number of
kernels, and A is the average number of arguments per kernel.

To simplify OpenCL development and further improve
FPGA productivity, this paper presents MetaCL, a compiler-
assisted code-generating tool that automatically generates the
extensive OpenCL host boilerplate needed (e.g., Fig. 1a) to
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1 /#Code adapted from implementation by Tim Mattson and obtained
< from: https:// github.com/HandsOnOpenCL/Exercises -
< Solutions/blob/master/Solutions/Exercise08/ via Creative
< Commons Attribution 3.0 Unported license x/

2 char = kernelsource;

3 cl_int err;

4 cl_device_id device;

5 cl_context context;

6 cl_command_queue commands;

7 cl_program program;

8 cl_kernel kernel;

9 size = WsW;

(float =)malloc(size=sizeof(float));

(float =)malloc(size=sizeof(float));

(float =x)malloc(sizexsizeof(float));

13 ¢cI_uint devicelndex = 0;

14 ... //Traverse all cl _platforms

15 ... //Traverse all cl_devices per platform

16 device = devices[devicelndex ];

17 context = clCreateContext(0, 1, &device,

18 checkError(err, ”Creating context”);

19 commands = chrcutcCommandQucuc(contcxl ;

20 checkError(err, ”Creating command queue”);

21 d_a = clCreateBuffer (context, CL_.MEM_READ_ONLY |
< CL_MEM_COPY_] HOSTPTR snzeol(float) * size ,

22 checkError(err, Creatmg buffer d_a”);

23d_b = clCreateBuffer (context, CL_MEM_READ_ONLY |
— CL_MEM_COPY_HOST_PTR, blZCOf(flO‘lt) * size ,

24 checkError(err, ”Creating buffer d_b”);

25d c = chreateButler(contexl, CL_MEM_WRITE_ONLY,

* size , NULL &err);

26 chcckError(crr, Crcatlng buffer d_c”);

27 ... //Read program source

28 program = clCreateProgramWithSource (context, 1,
<~ %) &kernelsource , NULL, &err);

29 checkError(err, ”Creating program with matmul.cl”);

30 free (kernelsource);

31 err = clBulldPrngram(program 0, NULL, NULL, NULL, NULL);

32 if (err != CL_SUCCESS)

=
w
S

NULL, NULL, &err);

device , 0, &err);

h_A, &err);
h_B, &err);

sizeof (float)

(const char

33 {

34  //Read and report error

35

36 kernel = LlCreateKernel(proéram
37 checkError(err, ”Creating kernel
38

MatMul , &err);
with matmul.cl”);

39 err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
40 err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
41 err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);
42 err |= clSetKernelArg(kernel, 3, sizeof(int), &V);

43 checkError(err ,
44 const size_t global[2]

”Setting kernel args”);
= {W, W};

45 err = clEnqueueNDRangeKernel (commands, kernel, 2, NULL,
46 global , NULL, 0, NULL, )
47 checkError (err, "Enqueueing kernel”);

48 err = chinish(command%)

49 checkError(err, ”Waiting for kernel to finish”);

50 err = clEnqueueReadBuffer (commands, d_c, CL_TRUE, O,
< float) = size, h_C , NULL) ;

”Reading i)ack d_c”);

sizeof (

51 checkError(err,

(a) OpenCL Host Code for Matrix Multiplication.

1 __kernel void MatMul(global floats A, float= B,
< floatx C, int W)

global global

2 int tx=get_global_id(0); int ty=get_global_id(1);
3 float value = 0.0f;

4 for(int k=0; k<W; ++k) {

5 value+—A[ty*W+k]*B[k*W+tx];

6

7 Clty sW+tx ]=value;

8}

(b) OpenCL Kernel for Matrix Multiplication.
Fig. 1: Matrix Multiplication in OpenCL.

initialize and run a kernel on an FPGA or other device, directly
from the OpenCL kernel implementation (e.g., Fig. 1b). The
lines highlighted in gray in Table I correspond to the O(P +
K x A) lines of boilerplate code that MetaCL auto-generates.
Using MetaCL’s auto-generated code eliinates human error
and saves time by removing the burden of creating and man-
aging boilerplate as kernels evolve. Moreover, by capturing
boilerplate in auto-generated functions, MetaCL significantly
reduces the total code that must be manually written, while
increasing robustness with integrated error checking.
The contributions of this paper are summarized below.
o An automated “meta” OpenCL (MetaCL) code generator
for host-side boilerplate code.
o A rigorous characterization of how MetaCL significantly
improves developer productivity on two OpenCL applica-
tions: BabelStream (streaming memory benchmark) and

TABLE I: Typical Required OpenCL Boilerplate

Type Typical API Calls Frequency
Device clGetPlatformIDs, clGetDevicelDs,
Memt clCreateContext, clCreateCommandQueue, O(D)
gmt. clReleaseCommandQueue, clReleaseContext
clCreateProgramWithBinary, o(P)
e ; clCreateProgram, clReleaseProgram
Mer:i clCreateKernel, clEnqueueNDRangeKernel, O(K)
gmt. clEnqueueTask, clReleaseKernel
clSetKernelArg O(K x A)
Data clCreateBuffer, clEnqueueReadBuffer, application-
Mgmt. clEnqueueWriteBuffer, clReleaseMemObject specific

SNAP (particle-transport proxy application).

e A quantitative comparison that shows that the improved
developer productivity via automated code generation of
MetaCL delivers comparable performace to manually-
written OpenCL host-side code.

II. RELATED WORK

The two major producers of FPGAs, Xilinx and Intel, now
have their own respective OpenCL toolchains for FPGA [2],
[3]. However, these vendor tools do not go much beyond the
OpenCL standard and leave the burden of managing OpenCL
state or invoking OpenCL kernels to the FPGA developer.

Another prominent HLS tool, available as a software IDE
for programming FPGAs, is LegUp [9]. Like MetaCL, LegUp
targets efficient HLS for the FPGA, but it does so without
regard to the complexity of host-code programming.

MetaCL stands apart from existing OpenCL for FPGA work
by minimizing the distance between manually-written code
and the standards-compliant OpenCL it produces. Developers
write pure OpenCL kernels and interact with the generated
static code via OpenCL data types. Our approach retains porta-
bility to compliant OpenCL implementations, thus supporting
interoperation with other OpenCL tools and libraries. This
interoperation is crucial to utilizing advanced features, such as
primitives for CPU-staged transfers of OpenCL device buffers
over a Message Passing Interface (MPI), like those provided
by the MetaMorph OpenCL backend [10].

III. AUTOMATED CODE GENERATION VIA METACL

MetaCL’s automated generation of code supports productive
OpenCL development in three ways. First, to reduce develop-
ers’ manual effort, the O(P+ K x A) lines of boilerplate asso-
ciated with OpenCL program/kernel management and invoca-
tions are hidden behind a robust host-to-device interface. This
interface automatically utilizes the refined device management
provided by the open-source MetaMorph OpenCL backend to
further hide the O(D) device-management boilerplate. Fig-
ure 2 shows how the manual effort of OpenCL development is
offloaded in a MetaCL-driven development approach. Second,
by abstracting away this boilerplate code, a MetaCL-generated
interface improves the clarity (and thus maintainability) of
the host application. Finally, by using the device kernel
specification to statically enforce the host-to-device kernel
interface at host compile time (i.e., via make automation
of MetaCL), runtime errors due to interface inconsistency
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(like missing or mistyped arguments) are eliminated. For
example, scalar kernel parameters are exposed directly to the
host wrapper’s prototype to utilize pass-by-value semantics.
This in turn supports static-compile time type checking of
arguments provided to those parameters that the void* pass-
by-reference semantics of c1SetKernelArg do not.

Manual Effort

OpenCL
Device(s)

N
Host
Application
Logic

Kernel
Management

(a) Traditional OpenCL development requires users to manually
manage device and kernel boilerplate, which can be substantial, in
addition to the actual application logic and kernel implementations.
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(b) MetaCL allows OpenCL application developers to focus on
kernels and application logic by abstracting away kernel and device
mangement. MetaCL generates simple-to-use kernel wrappers and
robust initializers.

New Contributions

Fig. 2: A MetaCL-driven approach to OpenCL development
offers an alternative which typically no longer requires man-
ually managing the OpenCL runtime’s devices and kernels.

MetaCL is implemented as a “compiler-like” tool that
ingests kernel source files written in OpenCL C and relies
on the robust parsing and semantic analysis of a complier to
produce the corresponding host-callable interface, which the
host code can then reference. By leveraging the compiler’s
semantic analysis, MetaCL ensures all elements of the kernel
interface are faithfully represented on the host. For example
when a user-defined type is used as a kernel parameter,
MetaCL recursively identifies all other user-defined data types
and imports them to the host code, mapping OpenCL data
types to their host API equivalents in the process (Fig. 3).

1 /+ myKernel.cl =/
2 struct foo { 1 /+ myKernel.h
3 Floatd pos: 2 AUTOGENERATED s/
4 char? ids: 3 struct foo
51 ’ 4 cl_float4 pos;
6 struct bar { 5 cl_char2 ids;
7 foo data; 6}
8 unsigned int flags; 7 struct bar {
9 }; 8 struct foo data;
9 cl_uint flags;
. 10 };
(a) Device structs that use

OpenCL device types must be (b) Equivalent structs with host
mapped to the host types are autogenerated

Fig. 3: MetaCL automatically imports user-defined data types
to ensure consistency.

A. Clang/LLVM

MetaCL is realized as a ClangTool, leveraging the source
analysis and manipulation components of the Clang/LLVM

compiler project [11], [12]. MetaCL is a standalone binary
that uses Clang as a library, requiring no modifications, which
makes MetaCL easy to package and deploy alongside Clang
installations. MetaCL heavily leverages the semantic infor-
mation that Clang/LLVM provides about the parsed OpenCL
kernel code to create a reliable and concise host interface.

B. MetaCL Kernel Parsing and Traversal

Like a compiler, MetaCL is invoked from the command line
and must be provided a set of kernel implementation files and
any typical preprocessor arguments they need. Clang prepro-
cesses, parses, and semantically analyzes the input file(s) to
generate abstract syntax trees (ASTs), which MetaCL traverses
to produce the host interface. MetaCL identifies all OpenCL
kernel functions via Clang’s ASTMatchers interface. For
each match, the kernel AST nodes are inspected for their
parameter lists and any attributes that may require special
enforcement on the host. If a parameter in the list has a user-
defined type, its definition and those of any other user-defined
types upon which it depends are also traversed recursively for
import.

C. Code Generation

The execution of MetaCL follows the AST traversal order
due to the use of ASTMatchers, but boilerplate code is
generated and cached according to where it will be placed in
the generated interface. Generally, these boilerplate elements
must be created either:

e Once per input file:
cl_program

e Once per kernel function: O(K), corresponding to a
cl_kernel, including both initialization/deconstruction
and the wrapper

« Once per kernel parameter: O(K x A), corresponding to
clSetKernelArg calls and the associated parameter
in the generated wrapper

e Once per output file: O(1) to O(P), corresponding to
top-level elements of the generated interface, such as
internal management data structures, imported user types,
and initialization, registration, and deconstruction

O(P), corresponding to a

MetaCL implements a simple code cache for generated el-
ements, and then, after all ASTs are completely traversed, it
serializes the final output. Depending on the options specified,
this output consists of one or more pairs of .c and .h files
which contain the generated host-to-device interface — these
pairs are hereafter referred to as a generated module.

D. MetaMorph OpenCL Backend for MetaCL

OpenCL applications must explicitly manage compute de-
vices and the OpenCL platforms they reside on. This boiler-
plate scales with the number of devices the application uses,
but by language design, it should be agnostic of the number
and interface of kernels. To support modular and plugin-based
software design patterns, we leave this boilerplate isolated
from that generated by MetaCL and leverage the existing
open-source implementation from MetaMorph’s [10] OpenCL
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backend. MetaMorph is used as it implements a similarly thin
C layer between user code and OpenCL, is open-source, and
offers additional developer conveniences, such as transparent
MPI exchanges of OpenCL buffers.

MetaMorph’s construction is already detailed in [10], but
the existing OpenCL backend was improved and extended to
support MetaCL-generated modules. These changes allow for:

o Dynamic Module Registration: MetaCL-generated mod-
ules need a mechanism to communicate state and pointers
to auto-generated functions to MetaMorph.

o Automatic Module (Re-)Initialization and Deconstruc-
tion: MetaMorph automatically initializes known mod-
ules’ kernels when a device is selected and releases them
when the device is retired.

With these changes, MetaCL-generated modules are capable
of lazy self-registration and initialization at first wrapper call
and often will not require any explicit initialization.

IV. PRODUCTIVITY AND PERFORMANCE EVALUATION

As a proxy for developing new FPGA OpenCL applications
with the MetaCL-supported approach, we apply MetaCL to
the kernels from two existing OpenCL applications. We then
evaluate the performance of the original OpenCL code and the
MetaCL-generated OpenCL code on an Intel Arria 10 FPGA.

First, we explain the applications and the experimental setup
used for evaluation. We then discuss how the MetaCL-assisted
development approach improves developers’ productivity with
specific examples from the evaluated applications. Finally,
both the existing OpenCL-only and new MetaCL-assisted
versions of the applications are profiled on the Intel Arria
10 device in order to understand the performance impact of a
MetaCL-assisted development process.

A. Applications Benchmarks: BabelStream and SNAP

BabelStream [13] is an evolution of the STREAM [14]
memory bandwidth benchmark and provides numerous imple-
mentations to promote cross-platform analysis. The OpenCL
version of BabelStream is written using the OpenCL C++
host-side API [15]; however, the MetaCL-generated interface
expects the more common OpenCL C API's data types.
Utilizing the C++ API’s accessor operators, such as those
in Table II, allows device state to be shared between the
manually-written code and MetaMorph, while kernels were
auto-managed by the MetaCL-generated interface and manual
data management remained in C++.

TABLE II: Accessing c1_types from C++ wrappers.

OpenCL C API Type | OpenCL C++ API Type |  Accessor
cl_command_queue cl::CommandQueue myQueue myQueue()
cl_context cl::Context myContext myContext()
cl_mem cl::Buffer mybuffer myBuffer()

SNAP [16] is a proxy application developed at Los Alamos
National Laboratory. It is based on their discrete ordinate neu-
tral particle transport code, PARTISN [17]. Particle-transport
applications can be difficult to port to FPGAs due to the
large memory footprint of a global timestep. The discretization

used creates a Jacobi computational pattern with an upwind
dependency that sweeps across the domain, thus the Deakin
GPU implementation [18] used in this work utilizes wavefront
parallelism to maximize the number of busy work items
during each sweep. The host implementation is OpenCL C and
invokes nine OpenCL kernels at various execution stages. Most
kernels are allowed to run asynchronously, and a secondary
cl_command_queue is used to synchronize via OpenCL
markers and events. This motivates the inclusion of queue,
async, and returned event pointer parameters to the generated
API to support multi-queue applications, non-blocking kernels,
and event-based synchronization.

B. Experimental Setup

The testing environment consists of dual hex-core Intel
Xeon Gold 6128 CPUs operating at 3.40 GHz with 192-GB
RAM, running Ubuntu 18.04.3 with the 4.15.18 Linux kernel.
Attached via PCle is an Intel Programmable Acceleration
Card (PAC) with an Arria 10 FPGA (10AX115S2F4512SGES)
and OpenCL kernels are compiled using version 19.3 of Intel’s
OpenCL SDK for FPGA. This device has 1.15 million logic
elements, over 5 million memory bits, 1518 DSP blocks, and
2713 RAM blocks.

C. Productivity Improvement

MetaCL improves the productivity of OpenCL host-code
development in three ways. First, it reduces the total host
code that the developer must manually write by abstracting
boilerplate behind a simple kernel interface. Second, the re-
moval of distracting boilerplate improves code clarity, making
the construction and logic of the application more apparent,
and thus easier to maintain. Finally, by being lightweight and
easily integrated with a build environment, MetaCL supports
rapid regeneration of the host-to-device interface. This allows
the kernel code’s interface to be enforced at host compile-time
rather than only at runtime as is typical for OpenCL.

1) Code reduction: To evaluate MetaCL’s productivity im-
provement we use source lines of code (SLOC) as our primary
quantitative metric and compare the manually-written SLOC
required to implement equivalent applications both with and
without MetaCL. Manually-written code is divided into two
categories: (1) user logic and (2) OpenCL and/or MetaCL
APIs. Table III provides an overview of how our MetaCL-
assisted approach saves programming effort related to man-
aging OpenCL kernels and devices. This approach does not
address automation of buffer creation or transfer patterns,
since they are typically application- or problem-specific, which
make up 30.6% and 40.1% of the remaining boilerplate in
BabelStream and SNAP, respectively, after MetaCL is applied.
Despite the remaining data management, by simplifying kernel
and device management, our approach eliminates 41% and
54.1% of all OpenCL-related boilerplate, respectively. This
simplifies the resulting code structure, allowing removal of
other now-redundant code elements such as macros, condi-
tionals, and exception handling (i.e., “Non-API Host Lines”
in Table III) contributing to code clarity.
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TABLE III: Reduction in manually-written host code using
MetaCL-generated interfaces

BabelStream SNAP
Original = Original =
Host Task MetaCL MetaCL
Device Mgmt. 45 = 21 67 = 19
Kernel Mgmt. 23 13 184 = 69
OpenCL / MetaCL erme’ Vem = =
. L Data Mgmt. 15=15 59 = 59
Boilerplate Lines
Total 83 = 49 320 = 147
Savings 41% 54.1%
Non-API Host Lines Removed 19=0 43 =0
Manually-written Entire Host Code 720 = 667 2120 = 1904
Host Lines Savings 7.36% 10.2%

a) BabelStream: The OpenCL C++ API reduces code
bulk over the C API but in exchange requires more compli-
cated C++ program elements. As BabelStream is originally
written with the C++ API, there is less room for improvement
from MetaCL, but it still significantly reduces total manually-
written boilerplate and produces an API that is interoperable
with the existing C++ code. These results show that MetaCL
can provide a sizable reduction in SLOC even compared to
the C++ API, without having to utilize more complicated C++
elements.

b) SNAP: SNAP makes use of OpenCL’s main C API, in
particular utilizing 139 explicit calls to c1SetKernelArgs.
Further, as originally written, SNAP’s nine kernels were in
a single cl_program that would not fit on the Arria 10
FPGA and had to be manually partitioned into two. While
Intel’s OpenCL runtime transparently reconfigures the devices
with these c1_programs as needed, the additional program
requires its own boilerplate to load, create, and release. How-
ever, this additional bulk is entirely hidden by the MetaCL-
generated API and did not need to be repeatedly hand-modified
during the manual kernel-fitting process. After migration to the
generated interface, the number of lines used to launch kernels
is reduced from 184 to 69 and management lines from 67 to
a mere 19. Overall, we observe a 54.1% reduction in lines
spent on boilerplate and a 10.2% reduction in lines across
the entire host code. These results highlight that MetaCL
can substantially reduce the effort to accelerate a large code
with OpenCL, while hiding extra complexities of the FPGA
platform.

2) Code Clarity: One of the negative elements of unassisted
OpenCL development is that the extensive boilerplate require-
ments distract from the the application’s logic by cluttering
the code, which greatly complicates code maintenance. Thus
a secondary benefit of MetaCL-assisted OpenCL development
is that this distraction is dramatically reduced, as MetaCL’s
host-like interface is simply more concise and reminiscent of
a host function launch. Fig. 4 contrasts the sheer bulk typically
required to run SNAP’s main wavefront kernel (4a), with that
required when using the MetaCL-generated interface (4b).

3) Error Reduction: Another productivity improvement of-
fered by MetaCL is the reduction of host-to-device errors that
are not discovered until during or after runtime. Such errors
include mistyped, missing, and excessive kernel parameters,

cl_int err;

1

2 // 2 dimensional kernel

3 // First dimension: number of angles % number of groups

4 // Second dimension: number of cells in plane

5 size_t global[3] = {problem->nang=problem->ng, planes[plane].
< num_cells };

6

7 // Set the (many) kernel arguments

8 err = clSetKernelArg(context->kernels.sweep_plane, 0, sizeof(
< unsigned int), &rankinfo->nx);

9 err |= clSetKernelArg(context->kernels.sweep_plane, 1, sizeof(

< unsigned int), &rankinfo->ny);
... // 22 clsetKernelArg calls omitted for brevity
32 err

|= clSetKernelArg (context->kernels.sweep_plane, 24, sizeof
<~ (cl_mem), &buffers->flux_k);
33 err |= clSetKernelArg(context->kernels.sweep_plane, 25, sizeof

<~ (cl_mem) ,
34 check_ocl(err,
35
36 // Actually enqueue
37 err = clEnqueueNDRangeKernel (context->queue,

— sweep_plane, 2, 0, global, NULL, 0, NULL
38 check_ocl(err, ”“Enqueue plane sweep kernel’ ")

&buffers->angular_flux_out[octant]);
”Setting plane sweep kernel arguments”);

context->kernels .
, NULL) ;

(a) SNAP’s original sweep kernel invocation (manually-written).
Note that 22 additional argument assignments are omitted and all
arguments must have their position and type manually validated

1 cl_int err;

2 // 2 dimensional kernel

3 // First dimension: number of angles % number of groups

4 // Second dimension: number of cells in plane

S size_t global[3j = {problem->nang=problem->ng, planes|[plane].
< num_cells ,1};

6 size_t 109&1[3] = {0,0,0};

7

8 // Actually enqueue

9 err = metacl_innerKernels_sweep_plane (context->queue, global,
< local , NULL, 1, NULL, rankinfo->nx, rankinfo->ny, rankinfo
< ->nz, problem->nang, problem->ng, problem->cmom,istep ,

< jstep , kstep, octant, z_pos, &buffers->planes|[plane], &
< buffers->inner_source , &buffers->scat_coeff , &buffers->

— dd_i, &buffers->dd_j, &buffers->dd_k, &buffers->mu, &

< buffers->velocity_delta, &buffers->mat_cross_section, &
— &buffers >an0u1ar_f1ux_in[0clanl], &
&buffers->f1ux_k, &

buffers->denominator,

<—> buffers->flux_i, &buffers >flux_j ,
buffers >dngu|dr flux oul[octdnl])

10 chec.k _ocl(err, "Enqueue plane sweep kernel”);

(b) SNAP’s simplified sweep kernel invocation using MetaCL’s auto-
generated wrapper, which eliminates the 27 lines used to manually
define arguments and check the resulting return code. A single
missing or mis-typed argument can now be automatically detected
by the host compiler

Fig. 4: Contrast between the manually-written code necessary
to run SNAP’s main wavefront kernel, “sweep_plane.”’

as well as inconsistent struct definitions between the host
and the device. Rather than the host-compiler being oblivious
to the types and kernel prototypes of the device code, as
is typical of just-in-time-compiled OpenCL kernels, instead
MetaCL faithfully represents these components in the host
interface, making them available for static analysis during host
compilation. As a further value, MetaCL also incorporates
all of Clang’s semantic analysis, which is often more strict
than vendor kernel compilers. Hence, kernel compilation errors
are implicitly “double-checked” by adding MetaCL to the
design cycle. This rapid error detection is reliant on integrating
MetaCL with an application’s existing build system and runs
in mere seconds. Further, with a typical Makefile or similar
system, integration is as simple as creating additional build
targets for and dependencies on the MetaCL-generated files.

D. Performance and Analysis

While MetaCL significantly improves the productivity of
OpenCL developers, it is critical that the additional conve-
nience does not compromise application performance. So, we
compare the FPGA’s achieved performance to itself — with
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and without MetaCL. To evaluate the performance effects of
using a MetaCL-generated interface we compare three metrics:

1) The whole-program wall-clock time, measured by the
unix time command

2) The device runtime of each kernel, queried from
OpenCL’s c1_event API

3) The wall-clock overhead for running each kernel, de-
rived by finishing the OpenCL queue(s) and starting a
wall clock before the argument assignment, enqueuing
the kernel, immediately finishing the queue(s) again to
force the kernel to execute, stopping the timer, and
subtracting the c1_event-based device runtime

The whole-program time is the first check to ensure that
total time to solution is not significantly impacted by the
introduction of MetaCL. This measurement is taken without
any of the added flushing and profiling code of the latter
two, and thus any kernels or transfers that are allowed to
run asynchronously in the original code do so in both it and
the MetaCL-assisted version. The cl_event-based timing
ensures that we have not significantly tampered with the
semantics of the kernel execution or invocation by utilizing
the MetaCL-generated kernel wrappers. Finally, by analyzing
the change in kernel launch overhead, we can examine any
scaling cost of the MetaCL-generated interface and work to
keep it lightweight.

1) Test Configurations: For all evaluated metrics, we report
the median result from 30 whole-program trials. Input config-
urations are application-specific and detailed in this section.

a) BabelStream: BabelStream is invoked with the default
problem size, corresponding to three arrays of approximately
268.4 MB of double-precision values. Each run performs a
short initialization phase and then runs each of the benchmark
kernels 10 times; for each trial, the arithmetic mean of their
kernel runtime and overhead are reported. A comparison of
the MetaCL-assisted whole-program runtime relative to the
original OpenCL is shown in Fig. 5. The slight 1% speedup
when using the MetaCL-generated interface is well within one
standard deviation, so the total time to solution is unchanged.
The kernel performance is also effectively unchanged; as
Fig. 6a shows, performance is within +0.006%. As expected,
the average overhead of using the MetaCL-generated interface
increased slightly (Fig 6b). However, in absolute terms, the
overhead is only microseconds per launch and negligible to
the overall application performance. For completeness, Tab. IV
presents the FPGA utilization summary of BabelStream. The
simple streaming kernels easily co-occupy the device without
necessitating reconfiguration.

b) SNAP: We evaluate SNAP using a dataset that simu-
lates a 1x1x100 cell “pencil” region using a grid of 4 x4 x400
cells, up to 100 outer iterations per global timestep, and five
inner iterations per outer!. The test case terminates in a single
global timestep consisting of a total of four outer iterations
and 334 inner iterations. Kernels are called a variable number
of times, thus each trial reports the aggregate runtime and
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overhead as well as the number of calls so that the averages
can be derived. As a complete proxy application rather than
simple benchmark, SNAP’s kernels are significantly more
complex, involving data-dependent branching and complex
global memory indexing. Consequently, several have large
RAM requirements that required partitioning the kernels into
two c1_programs, as shown in Tab. IV. The host application
was manually analyzed to determine the kernels that made
up the inner “hot-loop” to try to minimize reconfiguration
overhead. These kernels were then combined into one program
with the remaining outer kernels collected in another program.

TABLE IV: Resources utilization of BabelStream and SNAP

cl_program  Logic Util. RAMs DSPs Frequency
BabelStream 86329(20%) 512 (19%) 12(1%) 247 MHz
SNAP (inner) 158002 (37%) | 2235 (82%) | 332 (22%) 179 MHz
SNAP (outer) 161324 (38%) | 2031 (75%) | 315 (21%) 175 MHz

The total time to solution remains effectively unchanged,
as shown in Fig. 5. However, when forcing synchronous
execution to profile the kernels, the total time to solution
increases by 30 — 40 seconds in both the MetaCL-assisted
and original, indicating the importance of MetaCL’s support
for these asynchronous execution patterns.

The aggregate kernel runtimes across the global iteration
are unchanged (Fig. 7a) and dominated by the reduction
kernels, 88k calls to the wavefront sweep and 17.7k buffer
resets, which represent optimization targets for future work. As
Fig. 7b shows, the only perturbation to average kernel runtime
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Fig. 7: Kernel and overhead profile for SNAP, showing that MetaCL again has no effect on kernel performance, but introduces
tens of microseconds of extra launch overhead that is dwarfed by the ~ 4s reconfiguration cost to swap out c1_programs

is 1% on the inconsequentially-fast calc_dd_coef f kernel.
Finally, the change in average launch overhead, shown in
Fig. 7¢ is < 1%, which shows that with more complicated
kernels, any overhead added by MetaCL is amortized by the
increased cost of invocation within the OpenCL runtime itself.
Further, average overheads in Fig. 7c spike to ~ 4s during the
reconfigurations when switching between the inner and outer
cl_programs, which contribute about half of the profiling
variants’ total time to solution. Re-designing the kernels to
reduce RAM usage and allowing co-occupation of the device
could significantly improve performance and will be explored
as future work. Overall, MetaCL has helped to eliminate over
50% of the boilerplate writing effort with negligible impact
on performance.

V. CONCLUSION

In this work we have debuted MetaCL, an automated “meta”
OpenCL code generator for FPGA host-side code. Using
MetaCL, programmer productivity is greatly enhanced, saving
the developer from manually writing and maintaining signifi-
cant portions of the required OpenCL host’s device and kernel
management and invocation boilerplate. For the BabelStream
memory-bandwidth benchmark and SNAP proxy application,
MetaCL results in up to 54.1% less manually-written boil-
erplate, reducing total manually written host code by up to
10%. Moreover, this effort-saving scales with the number of
kernels and sizes of their parameter lists. MetaCL achieves
this while delivering comparable total time to solution and
only minor changes to the performance and launch overhead
of individual kernels. In addition, the generated code auto-
matically detects and insulates the application developer from
several runtime-discoverable errors and results in a cleaner
and more concise user application. So, MetaCL provides a
wholly more-productive approach (i.e., “software that writes
itself”) to programming an OpenCL host application than

manual implementation, and it does so without the compilation
or development weight of a larger heterogeneous computing
framework.
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